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Abstract. We explore a new definition of creativity — one which em-
phasizes the statistical capacity of a system to generate previously
unseen patterns — and discuss motivations for this perspective in the
context of machine learning. We show the definition to be computation-
ally tractable, and apply it to the domain of generative art, utilizing a
collection of features drawn from image processing. We next utilize our
model of creativity in an interactive evolutionary art task, that of gen-
erating biomorphs. An individual biomorph is considered a potentially
creative system by considering its capacity to generate novel children.
We consider the creativity of biomorphs discovered via interactive evo-
lution, via our creativity measure, and as a control, via totally random
generation. It is shown that both the former methods find individuals
deemed creative by our measure; Further, we argue that several of the
discovered “creative” individuals are novel in a human-understandable
way. We conclude that our creativity measure has the capacity to aid in
user-guided evolutionary tasks.

1 Introduction

A recent definition of creativity recasts it as “a framework that has a relatively
high probability of producing representations of patterns that can arise only
with a small probability in previously existing frameworks” [2]. An interesting
property of this definition is that it depends neither on notions of value nor
appropriateness. These properties, of course, set it at odds with common usage of
the term “creative”, since the perceived creativity of a system is often culturally
biased, associated with interest, or affected by context. Dorin and Korb consider
the value of a value- and appropriateness-free definition of creativity extensively,
and respond to some obvious criticisms. Regardless of common usage, the ability
to capture even an aspect of creative novelty in an objective measure is enticing;
It affords us the possibility of (a) empirically testing the consequences of the
definition, and it’s value to preconceived notions of creativity; and (b) suggesting
a stream of new and, ideally, interesting frameworks to users. In this latter
motivation, our work resembles the creation of an iterative fitness function [6],
except that rather than provide exemplars of an optimal goal state, our notion
of creativity supports a practically unlimited variation.
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Here we explore the creativity of a system — something or someone that ac-
cepts an input and generates, possibly stochastically, a pattern or phenotype —
rather than the creativity of a particular pattern or representation. An approach
which selected for previously unseen representations or patterns would likely
need to incorporate a notion of distance (since in a sufficiently rich space, any
randomly-generated entity is almost certainly previously unseen), selecting for
new entities “far” from previously seen entities. However, the notion of distance
is problematic in many domains, due to a lack of meaningful metrics or unusual
statistical distributions. Additionally, such a system would likely be biased to-
wards statistical outliers, which could confuse an exploration/exploitation-based
search technique.

We will interpret the Dorin/Korb definition as a simple boolean relation dis-
tinguishing between systems that can reliably generate some collection of pat-
terns, as opposed to a system exceedingly unlikely to do so; This will allow
us to side-step many of the difficulties associated with the use of genotypic or
phenotypic similarity measures.

2 Formalization

In order to make this definition rigorous and practical, we need to qualify several
aspects, and introduce some restraints. We will aim for systems which generate
grayscale images, but generalization should be straightforward. Let us consider
a space of patterns (phenotypes), p ∈ P . For simplicity, we will assume that the
space of patterns is bounded, which excludes new modalities or ever-increasing
scales. Since patterns are often too high-dimensional to deal with directly, we
instead introduce a feature space of finite dimension, F = {F1, ..., Fk} through
which we can characterize the space of patterns: p → (F1(p), ..., Fk(p)) ∈ Rk.
We will assume only that connected regions form perceptually similar segments
of phenotypic space, but assume nothing regarding volume, distribution, nor
the significance of distance. Although our capacity to select a representative
sample is ultimately governed by the representation space, the spread of values
will be strongly affected by the number of features used, recovering the “curse
of dimensionality” which plagues machine learning tasks; to prevent this, in
practice, we will use only two features at a time.

2.1 Images and Image Features

We now turn our attention to systems which generate 8-bit grayscale images of a
fixed size1 of 200×200 pixels. Image similarity is a notoriously difficult problem,
and these images can be considered points in a 40000-dimensional space. In order
to characterize this pattern space, we select a set of features drawn from image
processing in hope of drawing features perceptible to humans.
1 To the reader who believes that a bounded space is insufficiently rich to generate a

practically endless variation of patterns, we refer the reader to McCormack’s discus-
sion of generating simple images [7].
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Following work in pattern classification, we use several statistical moments to
characterize the overall form of the images (as in, for instance, [5]): specifically,
we use geometric moments M00, M01, M10, M20, M02, and M11.

Following examples from content-based image retrieval, we also use histograms
to characterize the space (as in, for instance, [8]). The image is transformed
by an edge-detection measure (Laplacian convolution) and the normalized area
is calculated. Several histogram-related measures are computed for both the
original image and the edge-detected version: the maximum, mean, and standard
deviation, and the entropy.

Finally, we use Grey Level Co-occurrence Matrices (GLCMs) to include tex-
ture measures into our feature set [3]. Specifically, we measure several statis-
tical properties of the normalized co-occurrence matrix P = {p(i, j)}, chosen
due to their demonstrated efficacy in content-based image retrieval [4]. These
are Energy: GE =

∑
i,j p2(i, j); Entropy: GI =

∑
i,j p(i, j) log p(i, j); Contrast:

GC =
∑

i,j(i − j)2p(i, j); and Homogeneity: GH =
∑

i,j
p(i,j)

1+|i−j| .
Overall, we considered a total of 18 features representing the overall form,

histogram, and texture of the image and its edges. Following some initial exper-
imentation, we selected six which support a rich characterization of phenotypic
space (that is, were capable of measuring specialization during our informal
experimentation of the space of images): M11, M02, M01, edge-area, histogram-
entropy, and the GLCM homogeneity measure.

2.2 Detecting Creativity-Indicating Regions

Let S1 and S2 be systems which map from a space of input, x ∈ X , to the space
of patterns P . We wish to claim that S2 is creative (or not) relative to S1 on the
basis of what can be reliably produced by the systems in question. We interpret
this as the capacity to find a compact and connected region of feature space that
can be reliably populated by system S2 but not by system S1. We restrict our
attention to intervals since this is more likely to generate an intelligible region
of space (assuming a measure of continuity in the chosen features), as opposed
to the arbitrariness of general Borel sets, for example.

We now wish to formalize a notion of the capacity of a system to reliably
generate a pattern, with error-tolerance τ and confidence c. We will write that
an interval of feature space is r = (r1 ± δ1, ..., rk ± δk), and that a point p is
contained in r, p ∈ r, if it is contained within the bounds for each feature-
space dimension. We aim to estimate the true probability of Sj generating a
point in interval r, P [Sj(X) ∈ r], via the frequency of sample points, written P̂ .
Assuming our sample is representative, the (conservatively estimated) margin of
error associated with this frequency is

m.e.(P̂ [Sj(X) ∈ r]) =
z√
n

(1)

where z is the upper critical value for confidence-level c, and n is the sample
size. Let us assume that τ > z√

n
, i.e. that our margin of error does not dominate

our error tolerance. Generally, we can achieve this by ensuring that n > z2

τ2 .
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We will now write that r intersects the reliable-support of Sj iff

P̂ [Sj(X) ∈ r] > τ +
z√
n

(2)

We will write that r is not in the reliable-support of Sj iff P̂ [Sj(X) ∈ r] = 0,
with no conclusions being drawn on the region in between. In the former case,
we have greater than c confidence that the probability of generating samples in
the region r is greater than τ , and in the latter, greater than c confidence that
the probability is less than our margin of error.

Hence, provided with values for reliability τ and c, we seek to find a region
r which intersects the reliable-support of S2, but not the reliable-support of S1.
Finding such a region in a set of samples, we shall soon see, is also a matter
requiring some interpretation.

This definition relies heavily on the abilities of a new system relative to some
base system, a metaphor for the existing worldview of an audience. Of course, if
one begins with a trivial base system, nearly any new system will appear creative.

2.3 Generation of Intervals Given Sample Data

Here we attempt to find intervals using our sample and feature space that exist
in the reliable support of system S2, but not in the reliable-support of system
S1. Using a confidence interval of c = 95%, an error tolerance of τ = 0.03, and a
sample size of n = 5000, we need to find regions with at least n(τ + z√

n
) = 292

samples from system S2, and none from system S1. It is natural to base the
minimal size of an interval on the standard deviation of the sample; Rather than
include any such interval capable of supporting the mass of points required, we
will instead require than a minimal length2 of interval be β = σ

5 .
The attempt is made to find intervals surrounding each sample point provided.

If our sample pattern is p = (F1(p), ..., Fk(p)), then we initially define our interval
about p as

b(p) =
(

F1(p) ± β

2
σj

1, ..., Fk(p) ± β

2
σj

k

)
(3)

where Sj is the system from whence sample p was drawn, and σj
i is the standard

deviation of the system Sj in the i-th dimension.
For each such created interval, we ask if it does not contain points from S1 (as

we know it contains at least one point from S2). If so, we attempt to generalize
it. For each dimension in turn, we attempt to widen the width of the interval by
a factor of 2. If we successfully define a new interval containing equal or greater
points from S2 and none from S1, we retain the new interval. Once we have
2 This number was chosen on the basis that during a search of possible values it was

the smallest value leading to a small proportion of random genomes being declared
creative; That is, using a smaller value we risked declaring regions resulting from a
particularly impotent application of mutation (i.e. mutations which had no effect on
phenotype) as creative.
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traversed all dimensions, if our new interval is an improvement on the original,
we traverse the dimensions again. This process will terminate either when a
locally maximal interval is found, or when the interval covers the entirety of
all dimensions. Finally, the best found interval is tested to see if it is in the
reliable-support of S2.

Since searching for our formally defined creativity is a slow process, we also
introduce a multi-valued procedure for estimating relative creativity quickly.
Creativity Lite will take a smaller sample, and return the maximum number
of samples from set S2 that can be found in some region containing no samples
from S1. We use a sample of points from set S1 of size n1 = 1000, and a sample
of points from set two of size n2 = 100. Intervals are constructed using the
technique described above.

2.4 Model Limitations

There are several limitations to the presented model. The first, already noted,
is the reliance on constructing a representative sample of pattern space, which
sets practical limits on the number of features and maximal pattern sizes.

A second potential limitation is the pre-selected feature space. Given any two
non-identical systems, it is likely always possible to generate some feature which
separates them. Clearly, the choice of a trivial feature in feature space will allow
for the discovery of a trivial form of creativity; Our choice of features introduces a
notion of appropriateness alongside our originally appropriateness-free definition
of creativity.

Finally, we note the reliance on several predetermined values — for certainty,
minimal intervals, and interval discovery — likely to be dependent on the prob-
lem domain and data source distributions. As a result, we can never say, with
measurable certainty, that S2 is not creative relative to S1.

3 Biomorphs

Biomorphs were introduced by Dawkins as a simple example of evolutionary
search [1]. Here we present our own interpretation of Dawkins’ original (and
vaguely specified) biomorph growth process.

A genome consists of eleven genes, g = (g1, ..., g11), each a floating point
number in the range [0, 1]. Initialization of genes is random and uniform. The
generated form has a number of properties, applied recursively: A translation
(xtrans, ytrans) = (20g1 − 10, 20g2 − 10); A thickness t = 3g3 + 1 and thickness
variation ∆t = 2g4

3 ; A magnitude m = g5w
2 (where w is the maximum dimen-

sion of the drawing surface) and magnitude variation ∆m = 2g6
3 ; A branch

angle α = πg7 with an angle variation ∆α = 0.4g8 + 0.8; A branching factor
nkids = &6g9 + 1' and a branch depth variance, ∆nkids = 0.4g10 + 0.8; And
a recursion depth, nrec = &4g11 + 2'. These particular properties were chosen
through informal visual search on the space of random genomes as able to gen-
erate a breadth of interesting phenotypes.
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Biomorph drawing is a simple recursive procedure. Given a genome, a starting
location (xstart, ystart), a current magnitude m′, a current thickness t′, a current
number of children n′

kids, and a current angle α′, we draw a line; This is drawn
between the given start location and an end location calculated as

(xend, yend) = (xstart + xtrans + m′ cos(α′), ystart + ytrans + m′ sin(α′)) (4)

At the end point, if we have not exceeded nrec recursive steps, we create n′′
kids =

n′
kids · ∆nkids child lines, each pointing α′′ = α′ · ∆α degrees from the original

direction, with a magnitude m′′ = m′·∆m, and a thickness of t′′ = min{1, t′·∆t}.
We initialize a biomorph at the central point, drawing nkids lines at integer
multiples of α around the π/2 axis. A selection of interesting but randomly
generated biomorphs can be seen in Figure 1.

Fig. 1. A selection of randomly generated biomorphs, chosen to show some of the
diverse structures possible

3.1 Discovery of Creative Biomorphs via Interactive Evolution

Biomorphs are easily evolved using an Interactive Evolutionary Algorithm (IEA).
Here we use a simple (1 + 8)-ES, where mutation selects two randomly chosen
genes and mutates both with a variance of 0.16.

Our initial system is a wide collection of randomly generated genomes. We use
14400 samples in two-dimensional feature space, effectively assuming that 120
samples is sufficient to represent each dimension. Experimentation with com-
puted descriptive statistics over several runs convinces us that this is a sufficient
choice. This pool is considered as our basic worldview (S1 above), the yardstick
from which we will measure creativity in generative systems. Note that dupli-
cate feature values are discarded; In practice, this means an additional 20%
generation time.

Given any particular genome, we can consider it a generative system by con-
sidering it as a seed from which we can generate mutated children. That is, given
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Fig. 2. (top) The spawning individual’s phenotype and a collection of phenotypes in
the discovered interval; (middle) a view of feature-space and sample distribution (data
points have been slightly “jittered” for legibility); (bottom) a random sample of phe-
notypes not in the discovered interval

some genome g, we will generate a set of children Sg = {m(g)}k, consisting of k
mutated versions of the original genome. We will discard any children resulting
from an impotent mutation (in practice, requiring an additional 10% generation
time).

We use three combinations of pairs of features to evaluate the system. For
each, several search strategies are evaluated on their capacity to produce creative
phenotypes. The first search strategy was totally random, where a single random
genome is evaluated. The next two search strategies are variants on evolutionary
search. In each, an initial population of nine random genomes is created, and ten
generations are explored by selecting a single agent and spawning an additional
eight mutants to form the next population. The first evolutionary strategy is
IEA, where the individual is selected subjectively by a human operator3; the

3 Human operators were selected from five people at our research lab, including the
authors, and asked to select for aesthetically pleasing biomorphs. Participants were
not aware of creativity scores while making selections.



8 T. Kowaliw, A. Dorin, and J. McCormack

second is the creativity search, where each population member is evaluated using
the creativity-lite function, and the maximum such value guides the choice of
individual.

We computed the proportion of individuals termed creative for a sample of
runs for each strategy. Each strategy was run forty times (thirty for the IEA
runs), using one of three pairs of features. These proportions were:

search type M02, edge-area M01, GLCM-H M11, histogram-entropy
totally random 0.067 0.025 0.000

IEA 0.433 0.233 0.700
creativity search 0.800 0.475 0.733

The probability of a totally random individual being termed creative was very
small, which we consider further evidence of the statistical sample being rep-
resentative. Via creative-search, relatively high proportions of evolved genomes
are termed creative. It appears that creativity-lite does indeed serve as an ap-
proximation of our more formal notion of creative novelty, allowing for a faster
approximate search. The proportion of individuals termed creative discovered
via IEA lay consistently between the proportions for the totally random and
creative search techniques. This corresponds to the general intuition that hu-
mans tend to seek out novelty, but also that aesthetic pleasure and novelty are
not the same thing. It is also evident that it is easier to discover creative regions
using some combinations of features than others; Using the M01, GLCM-H com-
bination, only two rough patterns of creative regions were discovered — namely,
regions comprised of homogeneous and top-heavy trees, and regions of very high
non-homogeneity — while for the other two explored feature combinations many
different creative regions were discovered.

An example of an easily understood discovered creative individual is illus-
trated in Figure 2. This individual was discovered using creative search and the
M02 and histogram-entropy features. The interval discovered is characterized by
a high histogram-entropy value, and a low M02 value. The high histogram-entropy
value is difficult to discover in a line drawing, since most pixel values are either
black or white; The only means of obtaining a high value is to include many
spaced-out diagonal lines on a variety of angles, and rely on the anti-aliasing of
the line drawing routine. Simultaneously, we require a low M02, meaning that
both the top and the bottom of the image must be mostly black in colour. Satis-
fying both simultaneously is non-trivial — since it is difficult to space out black
lines on a white background and minimize the white content of the image — and
thus a rarity; This individual satisfies both by creating patterns with a blank
hole in the centre, surrounded by an increasing density of angled lines.

Generally speaking, the examples of individuals termed creative by the system
ranged from (in the authors’ opinions) trivial to interesting. Several additional
interesting generators are illustrated in Table 1; Trivial examples include minor
variations on these themes (such as selection for slightly smaller or larger circles,
or a slightly larger or smaller number of diagonal lines), or examples of individu-
als that have discovered regions of trivial mutation (for instance, during the M02,
edge-area runs, some regions consisting of a very large number of near-identical
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Table 1. Examples of discovered “creative” individuals, including the phenotype of the
(left) spawning individual; (middle) an averaged image of all children in the discovered
interval; and (right four) some examples of those children. The discovery technique
and the reason for the individual being termed creative below.

Discovered via IEA using features M02, edge-area. Slightly bottom-heavy (difficult in
a system which automatically begins with branches pointing upwards), high number
of edges (i.e. spaced out lines).

Discovered via creativity-search using features M11, histogram-entropy. A collection
of dark shapes, solid black in the centre with a fuzzy boundary. The fuzzy shapes
create a small but non-zero histogram entropy by having a small portion of the image
devoted to many different angles of line, but a consistent mass via area of shape

Discovered via creativity-search using features M01, GLCM-H. Selection for near-
perfect symmetrical mass over the x-axis and a very large number of colour transitions.

Discovered via IEA using features M02, edge-area. Selection for specific amounts of
edges, mass.

Discovered via IEA using features M11, histogram-entropy. Selection for both a mid-
level entropy (i.e. a fair number of diagonal lines at different angles) and a low but
non-zero moment calculation. The moment calculation implies near-perfect symmetry
in both the x- and y-axis. Children achieve this by having perfect symmetry in one
axis, and near-symmetry in the other, some using the x and others the y.
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patterns were found, relying on the invariance of both features to translation in
the x-axis). Regardless, the tool has demonstrated its ability to find genuinely
improbable and variant regions of space which occasionally correspond to human
interest; Hence, it may be sufficient to remove some of the burden of search from
human operators in an IEA.

4 Conclusions

In this paper we have demonstrated that the Dorin / Korb definition of creativ-
ity can be interpreted in such a way that makes it both tractable generally, and
suitable for generated images. We have further shown that the definition can be
integrated into an interactive evolutionary algorithm: Firstly, by treating indi-
vidual genomes, along with their evolutionary operators, as pattern generators;
And secondly, by considering an approximate and fast version of our creative-
novelty measure, “creativity lite”. It is shown that maximization of creativity
lite generally leads to a system which is creative by our definition.

Several genomes have been discovered which do, indeed, generate regions of
space which are highly unlikely through random generation. While some of these
regions seem trivial to human operators, others are human-recognizably distinct,
which we interpret as evidence that the system can detect human-recognizably
novel generators; In conjunction with the work above, we believe that this mea-
sure can be used to suggest new and interesting directions for users of an IEA.
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4. Howarth, P., Rüger, S.: Evaluation of texture features for content-based image re-
trieval. In: Enser, P.G.B., et al. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 326–334.
Springer, Heidelberg (2004)

5. Kowaliw, T., Banzhaf, W., Kharma, N., Harding, S.: Evolving novel image features
using genetic programming-based image transforms. In: IEEE CEC 2009 (2009)

6. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An
iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado,
P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and
Music, pp. 381–415 (2008)

7. McCormack, J.: Facing the future: Evolutionary possibilities for human-machine
creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A
Handbook on Evolutionary Art and Music, pp. 417–453 (2008)

8. Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.-J.: Image classification for
content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130
(2001)


	An Empirical Exploration of a Definition of Creative Novelty for Generative Art
	Introduction
	Formalization
	Images and Image Features
	Detecting Creativity-Indicating Regions
	Generation of Intervals Given Sample Data
	Model Limitations

	Biomorphs
	Discovery of Creative Biomorphs via Interactive Evolution

	Conclusions


