
A Developmental Model for Generative Media

Jon McCormack

Centre for Electronic Media Art

School of Computer Science and Software Engineering

Monash University

Clayton, Victoria 3800, Australia

jonmc@csse.monash.edu.au

Abstract. Developmental models simulate the spatio-temporal develop-

ment of a complex system. The system described in this paper combines the

advantages of a number of previously disparate models, such as timed L-

systems and cellular programming, into a single system with extensive

modeling flexibility. The new system includes the ability to specify dy-

namic hierarchies as part of the specification, and a decoupling of cell de-

velopment from interpretation. Examples in application areas of computer

animation and music synthesis are provided.

1 Introduction

We are interested in generalized models that simulate the continuous development of

some complex system in space-time. This paper describes a new developmental sys-

tem for the dynamic simulation of organic forms and processes. By decoupling the

generative process from the generated output, dynamic models can be created in a

variety of different application domains, including biological and botanical simulation,

music composition, interactive animation, and computer graphics.

The developmental system described in this paper is strongly influenced by related

work in developmental modeling using L-systems, in particular parametric, timed and

differential L-systems. The original formulation of L-systems by Lindenmayer in

1968 was a conceptually elegant, discrete, symbolic model of development in cellular

biology [1]. In 1990, Lindenmayer and Prusinkiewicz published The Algorithmic

Beauty of Plants, with an emphasis on three-dimensional, visually realistic models of

herbaceous plants [2]. This introduced a number of variations and extensions to L-

systems in order to overcome the discrete, symbolic nature of basic constructs such as

D0L-systems1. Subsequent developments incorporated other continuous developmental

control, such as the use of differential equations to model growth and signaling in

modules [3] and the effects of environmental constraints [4]. More recent work uses

Chomsky grammars in combination with interactive curve editing software to obtain

greater visual modeling flexibility and control [5].

1 D0L-systems are deterministic and context free.

Jon McCormack
J. McCormack: "A Developmental Model for Generative Media", in M. S. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson and J. Timmis (eds),Proceedings of the 8th European Conf. on Advances in Artificial Life, (ECAL 2005), Canterbury, UK, 5-9 September 2005, LNAI Vol 3630, Springer-Verlag, Berlin, Germany, ISSN: 0302-9743, ISBN-10: 3-540-28848-1, ISBN-13: 978-540-28848-0, pp 88-97.

Timed L-systems were proposed by Prusinkiewicz and Lindenmayer [2] as an ex-

tension for modeling continuous development with D0L-systems. Their description

was limited to D0L-systems without parameters and they restricted their modeling

examples to the development of the simple cellular structure of Anabaena catenula.

The cellular developmental model described in the following section follows naturally

from timed, parametric, stochastic L-system models developed by the author. Further

details on these specific extensions can be found in [6, 7].

In parallel with these developments, a number of cellular models of development

have been proposed. The cellular model of Fleischer and Barr [8] modeled developing

cells that exchanged chemicals by diffusion with simple ‘cell programs’. This research

was applied to areas such as three-dimensional texture synthesis [9]. More recent work

combines related cellular development models with evolution to create structures that

grow into target shapes [10].

One area that these systems have difficulty in addressing is in the design of a hier-

archy – a mechanism often observed in natural systems. Additionally, they are typi-

cally designed for some specific simulation or application and are not necessarily

applicable to generalized development. The system described in this paper addresses

these issues. The following sections describe the model in detail.

2 The Cellular Developmental Model

2.1 Cell Definitions

In developing this system, we will consider a basic automaton, which is referred to as

a cell. The name is used as a metaphorical interpretation of cells as found in biological

life. The model is ‘biologically inspired’, but is not designed to reflect a literal inter-

pretation of cellular development. This cellular abstraction is capable (as a simulation)

of functions a biological cell does not have, and reciprocally, the biological cell is

capable of many functions not possible with the model described here. Cells exist in

an abstract entity called the world. The world is responsible for the creation, removal,

and interpretation of cells that exist within it. Details of these terms and the world

itself will be discussed shortly.

A cell is composed of four principle components (refer Fig. 1):

• A label,

€

s∈ V
T
, where

€

V
T
 is an alphabet that is specific to the cell type (approxi-

mately corresponding to the single alphabet of an L-system). The type of a cell is

distinguished by its ability to develop or be interpreted;

• A state,

€

Σ
T
∈ ℜ* ×ℑ*() — a set of variables that reflect measurable properties

(both internal and external) that the cell possesses. The state will change dynami-

cally subject to the mechanisms of the cell;

A set of predicate rules or productions,

€

P
T
⊂ V × Σ

*() ×C Σ() × V × E Σ()
*()
*

, where

€

C Σ() and

€

E Σ() are respectively the set of logical and arithmetic/functional expres-

sions using parameters from

€

Σ . Rules specify developmental changes to the cell, and

may consider the cell state as well as the state of neighbouring cells (the concept of a

neighbour is defined shortly);

• An interpretation,

€

I ⊂ V
I
× E Σ

T()()
*

, which is a set of instructions as to how the

cell is to be realised in the world (

€

V
I
 is the alphabet of a particular set of interpreta-

tive symbols). The interpretation can make use of the cell’s state.

Fig. 1. Master and instance cells, and their principle components

Cellular instantiation follows the class/object model used in object-oriented program-

ming [11]2. Cells are instantiated into pools (spatial data structures), and there may be

many instance cells with the same label, but each cell carries its own state, which

develops independently. Conceptually, each cell also carries its own copy of the rules

and interpretation defined for a cell of that label, although in most situations these are

references to the rules and interpretation contained in the master cell. Thus, normally

no distinction needs to be made between master cells and instance cells.

A special type of cell is called a system. A system has a label and contains state in-

formation, but does not have any rules or interpretation. Unlike a normal cell, a sys-

tem cell may contain other cells, including other system cells. Thus, the system cell

is capable of forming a hierarchical structure (Fig. 2). Systems contain an initial state

(or axiom) that consists of a sequence of instance cells with particular state initializa-

tion information. They also maintain a pool wherein cells may be created, replaced,

and deleted. A root system contains all other cells and systems and is created automati-

2 Alan Kay, inventor of the Smalltalk programming language, used biological metaphors

in its design, likening the concept of objects to ‘cells’ with walls, with the class provid-

ing a well-defined boundary between co-operating units [12].

cally by the world upon initialization. The root system’s age will automatically reflect

the developmental time of the entire system.

Fig. 2. A system cell may contain other cells, which in turn may be system cells. Thus

the cellular hierarchy is formed

System cells may contain other cells (which may be systems too), but they cannot

contain instances of themselves, nor can sub-systems contain instances of parent cells.

This ensures the cellular hierarchy maintains a tree structure (rather than a cyclic

graph, which would permit illegal circular definitions). A hierarchical structure is a

good way of describing many natural patterns and forms [13].

Cells within a system develop asynchronously, however cells may synchronize de-

velopment based on examination of each other’s state. In addition, cells have access to

the state of any parent cells, including the state of the root system. Specific compo-

nents of the cell will now be described in more detail.

Cell State

Cell state captures the measurable components of a cell. The state is a vector com-

posed of both user- and system-defined quantities. The user may define the cell state as

required by the cell’s particular type. In addition, all cells maintain a number of inter-

nal states that are defined and managed by the cell itself. Internal states are ‘read-only’

— available as symbols for use in productions, but they cannot be modified, hence

they provide an introspection of various fixed components of the cell. The internal

state includes the cell age, a continuous scalar that is automatically updated to reflect

the age of the cell during its lifetime. An internal status contains four discrete states

affecting overall cell behaviour: (i) dormant where no state changes are effected (the

usual state of master cells); (ii) birth where state is initialized and the cell appears in

its parent system’s pool; (iii) alive where state development proceeds continuously

(e.g. states such as the cell’s age are continuously updated); (iv) dead where the cell

will be removed from the current pool it resides in.

Cell Rules

Cellular rules, denoted

€

r
i
 are ordered sets of predicate-action sequences of the form:

€

ri : context{ } : predicate :

predicate component

1 2 4 4 4 3 4 4 4
state calculations | cell actions()

action component

1 2 4 4 4 4 4 4 3 4 4 4 4 4 4
(1)

Rules are numbered implicitly in the order of their declaration. While a cell is in the

alive state, its set of rules is evaluated in ascending order. For a rule to be considered,

first, the context requirements must be satisfied. Following this, if the predicate com-

ponent evaluates to TRUE (non-zero), the action component is executed. The action

component may consist of calculations that change the cell state, or actions that the

cell should perform. The following sections describe each component in more detail.

Context

A context statement involves the position in the pool of the current cell in relation to

other cells. A special reserved word, me, is used to represent the current cell. This

allows cells with the same label to be used in context specifications. Context state-

ments also specify the public state variables of cells involved in the context specifica-

tion, and these identifiers may then be used in state calculations involving the current

cell, i.e. a cell may update its state based on the state of its neighbours. Access to the

state of neighbouring cells is read-only. Changing another cell’s state directly is not

permitted.

Here is an example context sensitive rule, where a cell maintains a component of

its state to be the average of its neighbours3, provided it exceeds some minimum

threshold:

€

A(y) me B(z) : y > kmin && z > kmin : x =
y + z

2
(2)

which assumes the cell that owns this rule has a state variable, x. The rule first checks

if the context is satisfied — that cells with labels ‘A’ and ‘B’ are at the ‘left’ and

‘right’ of the current cell. If that relationship is TRUE, the state parameters are then

checked to see if they exceed some minimum constant value (

€

k
min

), if so the current

cell’s state variable x is updated to be the average of the values of it’s neighbours.

Context relations have a more flexible meaning than with context sensitive L-

systems where the derivation string is a one-dimensional array, and so context matches

are decided on by matching symbols to the left and right of the current symbol in the

derivation string (a one-dimensional context). The pool in which the cells exist is

designed in an abstract way, where the interpretation of neighbour relationships is

flexible. This is achieved using polymorphic functions to match context based on

3 This example uses a one-dimensional context relation; higher dimensional relations are

defined in the next section.

pool type. It is important to match context dimension to pool dimension (e.g., a two-

dimensional context relation makes no sense to a one-dimensional array).

€

A() C me D() B()

Context Specification

meC D

A

B

Spatial Configuration

B

C D
E

A

€

A() E C me D()F() B()

Spatial ConfigurationContext Specification

Fig. 3. Higher dimensional context relations and their specification

In the cellular developmental system, context may include other spatial relationships

where context relations are satisfied when the spatial position of the cell is less than

some Euclidian distance, or topological relationships such as the Von Neumann

neighbourhood (Fig. 3) used in cellular automata simulations [14]. The use of paren-

thesis demarks dimensions when specifying context.

As the system described here uses polymorphic objects to represent the pool (e.g.

linear set, multi-dimensional array, spatial structure), the interpretation of context is

determined by the way the specific pool interprets the context statements. This per-

mits flexibility in the types of simulations the system can perform. For example,

such context relationships can be used in music generation where context relations

work in two dimensions: pitch and time (hence context matching can be with chords,

rather than notes.

State Calculations and the Differential Operator

State calculations are mathematical expressions that affect a cell’s state. They are

expressed in a similar manner to expressions in the C programming language. A rich

set of functions is provided, including basic mathematical functions, trigonometric

functions and a variety of stochastic and noise functions. A unary differential operator,

rate, performs a specific form of ordinary differential equation solving with initial

values. The operand for rate is a local cell state variable. The variable is integrated

based on its initial value at birth according to the mathematical formula specified in

the state calculation. The differential operator is useful for simulating processes such

as chemical diffusion between neighbouring cells.

Actions

Actions correspond to the re-writing process in L-systems, being similar to the suc-

cessor word of L-systems. However, the concept of rewriting can be misleading, due

to the way cell actions are handled and cells are placed in the pool. In the case of L-

systems, symbols are always replaced by rewriting productions. Whereas, for the

cellular developmental model, in addition to replacement, cells may continue to exist

in the pool while their actions cause new cells to be added (i.e. the cell action does not

necessarily replace (rewrite) the cell instigating that action). Possible actions are out-

lined in Table 1.

Table 1. Rule actions

T y p e D e s c r i p t i o n Example action syntax

None No action (the current cell remains)

€

→ me

Replace The current cell is replaced

€

→ A x, y()
Add New cells are created and the current cell

remains in the pool.

€

→ A x, y() me B x + y()

Delete The current cell is deleted

€

→∅ (empty string)

2.2 Cell Interpretation

Thus far, cells have been considered in abstraction, without any method of realising

them in the world. The interpretation component specifies how the cell will be inter-

preted as the system develops. In the case of L-systems, developmental words are

interpreted by a turtle, which creates geometry as it interprets the list of symbols. The

case here is similar, with the exception that each cell may contain multiple instruc-

tions to the turtle, permitting individual cells to create more complex geometry with-

out polluting the cellular developmental model with cells used only as part of some

complex geometry building sequence.

The interpretation system is extremely flexible, in the sense that interpretation con-

tains a list of special cells representing instructions. These cells are of a different type

than normal developing cells (they do not develop), but may have associated parame-

ters. These parameters may be set with expressions involving the cell’s state. If a

cell’s state is changing over the lifetime of that cell (the age component for example),

then the interpretation permits the ability to animate the parameters of interpretive

instructions as the cell state changes. This is a more flexible and general form of the

development functions associated with timed L-systems [7]. There is no direct depend-

ence between cell development and interpretation, so a number of different interpreta-

tive sets can be used on the same developmental system. For example, a musical

interpretative set issues musical instructions rather than geometric building ones.

This flexibility allows users of the system to realise their developmental system in

a variety of ways, without the need to completely re-specify the grammar. The use of

multiple instruction sequences in a single cell is a different solution to a similar prob-

lem encountered by Prusinkiewicz and colleagues in the development of their interac-

tive system to model plants [5]. Here they combined a C-like programming language

and Chomsky grammars to enable sequential rewriting of strings, rather than the paral-

lel development specified by L-systems.

3. Examples

Complex structures are often modeled by decomposing them into a hierarchy. In this

section, an example of this method is shown for developing a model of a multi-

segmented, articulated animal with a walking gait. By using a hierarchical description,

it is possible to specify structure in an intuitive way. The hierarchical structure of the

animal is shown below in Fig. 4.

Body Segment

Segment Segment Segment

Head Leg Tail

Leg
Segment

Joint

Animal

Fig. 4. Hierarchical specification of system cells (grey boxes) and module cells (left); the

articulated creature in motion (right)

This structure is specified using the cellular programming language, containing cell

definitions in a human readable form. The system simulates forward kinematics, with

locomotive drivers at the joints to create legged gaits. The drivers function like a state

machine controlling gait movement in each leg. The key advantage of the develop-

mental system is in the flexibility of specification, permitting morphological changes

to be made easily. For example, the number of body segments is controlled by a sin-

gle parameter. Geometry is constructed using generalized cylinders; the shape and

configuration controlled by lower-level cells driving geometry construction. A resul-

tant still from the animated output of this system is also show in Fig. 4.

4.2 Music Generation

Interpretation of cell states is not limited to geometric constructs. Using an object-

oriented approach allows the interpretation of cell states by methods other than a turtle

interpretation. To provide different interpretations a collection of global modules are

imported into the namespace of a particular system (the root system by default). These

modules are directly interpreted as generative commands.

The musical commands use the concept of a state-based player, which is responsi-

ble for converting commands into actual music. The player maintains a state that

includes the current pitch (note) and volume. The player converts incoming commands

into midi4 messages, enabling any midi compatible device to play music generated by

the system.

4. Summary

The developmental system described here unifies a number of previous L-system and

cellular models in the application domain of temporal developmental systems. Based

on both discrete cellular changes and continuous state development, the model success-

fully integrates these two modes of development, and permits complex temporal se-

quences not achievable using previous techniques.

The hierarchical nature of the cellular developmental system allows management of

complexity from the point of view of the user specifying a system model. Hierarchical

ordering increases the control over structure at variety of levels, hence reducing the

‘brittleness’5 of a flat grammar specification. This permits a more intuitive control

over creation of modeled systems. As show in Fig. 5, the complex nature of cell

development stands in contrast to the more simplified discrete D0L-system model.

Fig. 5. Time-state diagram contrasting the developmental differences between discrete L-

systems and the cellular developmental system described in this paper. The diagram shows

the temporal development (from left to right) of each system. Shaded rectangles represent

the symbols present (vertical axis) at any given time (horizontal axis). Both examples

start from a single symbol or cell (the axiom). In the case of the DOL-System (top) each

iteration is clearly synchronized and regular as the rewriting process proceeds in discrete

time steps. In the case of the developmental cellular system, the sequence quickly becomes

irregular and ‘fractal’ due to the individual developmental nature of cells. A single cell at the

top level is shown expanded as a segment of a developing sub-system, illustrating the

complexity that is contained by the hierarchy

4 MIDI is a low-level serial communication protocol for musical instruments and musical

controllers — see [15].
5 That is, more robust to configuration changes — a change at one level in a hierarchy can

have fewer side effects than for the equivalent description in a non-hierarchical system.

References

1 . Lindenmayer, A.: Mathematical Models for Cellular Interactions in Development,

Parts I and II. Journal of Theoretical Biology 18 (1968) 280-315

2 . Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. The Vir-

tual Laboratory. Springer-Verlag New York (1990)

3 . Prusinkiewicz, P., Hammel, M., Mjolsness, E.: Animation of Plant Development.

Proceedings of SIGGRAPH 93 (Anaheim, California, August 1-6, 1993) In Com-

puter Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New

York (1993) 351-360

4 . Prusinkiewicz, P., James, M., Mech, R.: Synthetic Topiary. Proceedings of

SIGGRAPH 94 (Orlando, Florida, July 24-29, 1994) In Computer Graphics Pro-

ceedings, Annual Conference Series, ACM SIGGRAPH, (1994) 351-358

5 . Prusinkiewicz, P., Mündermann, L., Karwowski, R., Lane, B.: The Use of

Positional Information in the Modeling of Plants. Proceedings of SIGGRAPH

2001 (Los Angeles, California, August 12-17) In Computer Graphics Proceedings

Annual Conference Series, ACM SIGGRAPH, (2001) 289-300

6 . McCormack, J.: The Application of L-Systems and Developmental Models to

Computer Art, Animation, and Music Synthesis. Ph.D. thesis, School of Com-

puter Science and Software Engineering, Monash University, Clayton (2003)

7 . McCormack, J.: Generative Modelling with Timed L-Systems. In Gero, J.S. (ed.)

Design Computing and Cognition '04, Kluwer Academic Publishers, Dordrecht

(2004) 157-175

8 . Fleischer, K.W., Barr, A.H.: A Simulation Testbed for the Study of Multicellular

Development: The Multiple Mechanisms of Morphogenesis. In Langton, C.G.

(ed.) Artificial Life III, Addison-Wesley, Reading, Massachusetts (1994) 389-416

9 . Fleischer, K.W., Laidlaw, D.H., Currin, B.L., Barr, A.H.: Cellular Texture Genera-

tion. Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,

(1995) 239-248

10. Kumar, S., Bentley, P.J.: Mechanisms of Oriented Cell Division in Computa-

tional Development. First Australian Conference on Artificial Life (ACAL 2003).

Canbera, Australia (2003)

11. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software.

Prentice Hall Englewood Cliffs, N.J. (1990)

12. Kay, A.C.: The Early History of Smalltalk. The second ACM SIGPLAN conference

on History of programming languages. Cambridge, Massachusetts, ACM Press

(1993) 69-95

13. Simon, H.A.: The Sciences of the Artificial. 3rd Edition. MIT Press Cambridge,

Mass. (1996)

14. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathemati-

cal Plays. Vol. 2. Academic Press New York (1982)

15. Selfridge-Field, E. (ed). Beyond MIDI: The Handbook of Musical Codes. MIT

Press Cambridge, Massachusetts (1997)

