
Generative Composition with Nodal

Jon McCormack, Peter McIlwain, Aidan Lane, and Alan Dorin

Centre for Electronic Media Art
Monash University, Clayton 3800, Australia
Jon.McCormack@infotech.monash.edu.au

www.csse.monash.edu.au/⇠jonmc

Abstract. This paper describes a new generative software system for
music composition. A number of state-based, musical agents traverse a
user-created graph. The graph consists of nodes (representing events),
connected by edges, with the time between events determined by the
physical length of the connecting edge. As the agents encounter nodes
they generate musical data. Di↵erent node types control the selection
of output edges, providing sequential, parallel or random output from
a given node. The system deftly balances composer control with the
facilitation of complex, emergent compositional structures, di�cult to
achieve using conventional notation software.

1 Introduction

The goal of any Artificial Life (AL) or generative composition system should
be to o↵er possibilities and results unattainable with other methods. A number
of authors have suggested that the emergence of novel and appropriate macro
behaviours and phenomena — arising through the interaction of micro compo-
nents specified in the system — is the key to achieving this goal [1–3]. While
simple emergence has been demonstrated in a number of AL systems, in the
case of musical composition, many systems restrict the ability to control and
direct the structure of the composition, conceding instead to the establishment
of emergence as the primary goal.

This focus on emergence exclusively, while interesting in terms of the emer-
gent phenomena themselves, has been at the expense of more useful software
systems for composition itself. The aim of the work described in this paper is to
design and build a generative composition tool that exhibits complex emergent
behaviour, but at the same time o↵ers the composer the ability to structure
and control processes in a compositional sense. The idea being that the com-
poser works intuitively in a synergetic relationship with the software, achieved
through a unique visual mapping between process construction and composi-
tional representation.

This paper describes a new kind of generative music composition system,
which we call Nodal (Fig. 1). The system uses spatial, directed graphs that are
traversed in real-time by one or more state-based agents, known as players. The
players traverse the graphs moving along edges and responding to state changes

Jon McCormack
J. McCormack, P. McIlwain, A. Lane & A. Dorin: "Generative Composition with Nodal", in E.R. Miranda (ed.) Workshop on Music and Artificial Life (part of ECAL 2007), Lisbon, Portugal, 2007. 

Jon McCormack




2 J. McCormack, et. al.

specified in vertices. The time taken for a player to move along an edge is pro-
portional to its length. The composer designs and constructs the graph visually,
using the mouse to create nodes and connect them on a two-dimensional surface.
The visual representation of both structure and process provides a direct map-
ping to the emergent musical output. A threaded architecture permits real-time
editing and visualisation while the network is being played, allowing modifica-
tions to the network as part of a performance if necessary. This real-time design
aspect assists the composer in quickly forming intuitive relationships between
visual structure and musical results.

Fig. 1. Screen shot of Nodal showing the network editor (left) and node editor (right).

1.1 Related Work

While use of graphs for musical analysis has received some attention (e.g. [4]), us-
ing graphs as generative compositional tools is less well studied in the literature.
There are a number of similarities in this approach to previous generative mu-
sical specification systems, such as generative grammars, finite state automata,
Petri nets and Predicate Networks [5–8]).

The ‘ant music’ system of Guéret et. al. used a connected graph structure
with nodes representing midi events [9]. Ants traverse the network, leaving
pheromone trails on the edges. Pheromone intensity acts as transition weight
and pheromones naturally evaporate to avoid stasis. The ants begin at ran-
domly assigned vertices and choose to move along edges based on the amount
of pheromone present on that edge.



Generative Composition with Nodal 3

The Luminaria component of the game software Electroplankton developed
by Japanese artist Toshio Iwai, used a fixed, regular grid of points traversed
by a number of musical agents. Users of the game manipulate arrows at each
grid point allowing them to point to one of the eight nearest neighbours, thus
controlling the movement of the agents as the move from one grid point to the
next. Each grid point is mapped to a di↵erent note, so changing the agent’s path
changes the melody produced.

2 Nodal Operation

In this section the basic structure and operation of the Nodal system is described.
The main user interface is shown in Fig. 1. Users click in the network editor

window to create nodes, and drag to create connections (edges) between nodes.
Alternatively, nodes may be entered by playing any midi keyboard — the node
is created under the current mouse position with state data (pitch, volume,
channel, etc.) recorded from the incoming midi information.

Fig. 2. Elements of a network: player start point, nodes, edges and the timing grid. The
darker grid lines represent principles, lighter grid lines are divisions. In this example
there are four divisions per principle.

2.1 Space and Time

Music can be considered the organisation of sounds in space and time. Nodal ’s
interface literally reflects this consideration. Creating a composition involves
interactive placement of nodes in space and the connection of nodes by edges. As
the spatial distance between nodes represents the musical time between events,
accurate placement is crucial. The editing window uses a grid-based system to
achieve this (Fig. 2). Nodes are interactively placed and snap to the nearest grid
point.



4 J. McCormack, et. al.

Fig. 3. Time control in Nodal (left) and instrument editing (right).

Space (hence time) is divided horizontally and vertically into principles. A
principle represents a number of beats and the overall tempo of traversal specified
beats per minute (bpm). Changing the tempo or beats to principles ratio changes
the overall timing that agents use to traverse the network. The time taken to
move a distance of d principles is given by the equation:

t = d

✓
b

p⌧

◆
(1)

where b/p is the beats per principle ratio and ⌧ the tempo in beats per minute.
To assist with developing standard time signatures and metrical structures,

each principle is further subdivided into a number of divisions. Changing the di-
visions per principle does not a↵ect the timing information, it allows placement
of nodes with appropriate timing within the principles. Fig. 3 shows the doc-
ument editing window in Nodal ’s user interface, responsible for user-editing of
these parameters. The purpose of divisions is to permit accurate construction of
networks with common musical timing (half notes, quarter notes, dotted notes,
triplets, etc.). For example, assuming one principle per four beats and four di-
visions per principle makes each division one quarter note. One can change the
divisions per principle to eight and then create eight notes, without changing
the timing.

Creatively, there has been some criticism of the use of rigid Cartesian struc-
tures such as grids [10, 11], which tend to enforce restrictions on musical possibil-
ities by their constraints. In response, we emphasise two points: firstly, without a



Generative Composition with Nodal 5

system for time quantization, metrical timing structures would not be possible;
secondly, it is easy to turn the grid feature o↵ and explore other geometry in
relation to timing. Fig. 10 shows an example of this where node distribution
is based on non-linear ratios, such as logarithmic spirals and galaxy formation
simulation (node position mapping to stars).

2.2 Players

A player is a musical agent that traverses the graph in real-time. Players play
with one or more instruments, which represent midi output channel(s) and pro-
gram change messages (Fig. 3). A player may change instruments as it traverses
the network.

Players contain a state, consisting of a current pitch, velocity, duration and
instrument. As the player traverses the network its state is updated by the nodes
it encounters.

2.3 Nodes and Edges

Vertices of the graph are referred to as nodes and displayed as a blue circle shape
in the network editor. For a player traversing the network, the normal action
when it encounters a node is to play a note. A node contains state modifying
information, which consists of:

– a list of pitch change information;
– a list of note-on velocity information;
– a list of note duration information;
– instrument change (instructs the player to change instruments);
– the option to update player state information without playing a note;
– a general list of midi instructions to play.

Player state changes can be absolute or relative. For example, a pitch value of +2

increases the player’s current pitch by two semitones, G4 sets the player’s pitch
to the specified note. Duration may be relative, absolute (measured in beats) or
as a percentage of outgoing edge length.

Nodes are connected via edges: any number of edges may enter or leave an
individual node, with edges represented visually as a solid line with an arrow
at the end indicating the direction of the connection (Fig. 2). The way players
select edges to traverse when moving from one node to another depends on the
node type, detailed in Section 2.4. The time taken to travel along an edge is
proportional to its total length. A special kind of edge, known as a wormhole

instantly transports any agent travelling on it between the nodes to which the
edge is connected. Wormhole edges are represented visually as dashed lines (Fig.
2).

By default, edges follow ‘city block’ pathways maintaining axis aligned edges
between nodes. This ensures quantised timing. The edge editor permits changing
this behaviour to ‘shortest path’, permitting edge lengths with irrational ratios.



6 J. McCormack, et. al.

Lists Nodes and edges may contain list-based state-change information. These
are linear lists of values, with both absolute and relative values permitted in each
list. The owner node or edge maintains pointers to current list values, and each
time they are traversed by a player the current list value is used, then the pointer
is immediately incremented. Pointers at the end of a list are automatically reset
to the beginning.

Lists allow a sequence of notes to be triggered from the same node, leading
to more complex harmonies and structures. Lists are provided for pitch, velocity
(volume) and duration1. In edges they provide a way to change the velocity of
agents moving through the edge on a per-edge basis. This allows same-length
edges to be traversed in di↵erent times.

2.4 Node Traversal

When a player agent arrives at a node, its state information is updated by the
data in the node, midi notes are normally played and the agent prepares to move
on. Any node may have one or more output edges, in the case of more than one
output edge the question of which edge to take arises. Nodal o↵ers three distinct
node types: sequential, parallel and random. The editor symbol and behaviour
of each type is show in Table 1.

Table 1. Supported node types

Type Symbol Description

sequential Output nodes are fired one at a time, in the order
specified by the output edge sequence editor for
the node.

parallel All output nodes are fired simultaneously. The
agent clones itself to produce copies for each out-
put edge.

random An output edge is selected randomly with weights
determined by the output edge sequence editor for
the node.

When a sequential node has multiple output edges there must be some way
of determining the output order. This is achieved using the output edge sequence
editor (Fig. 4). When a node is selected in the network editor, its output edges are
automatically assigned di↵erent colour codes2. The colours of the edges shown in
the network editor are duplicated as a sequence of colour chips with an associated
1 The duration of the note event is determined by the node, the time between events

by edge length.
2 Colours are used for edge di↵erentiation rather than numbers or alphanumeric char-

acters due to the di�culty in dealing with adding or deleting edges while editing,



Generative Composition with Nodal 7

count for each chip. These chips form the output edge sequence, read from left to
right. The chips can be moved, swapped, repeated and the count for each can be
changed. This method provides an intuitive way to control complex traversals.
For example, the sequence shown in the figure generates the following sequence
of output edge traversals each time a player agent enters the selected node:

orange ! orange ! orange ! green ! green ! blue ! purple ! purple

! purple ! purple ! blue ! blue ! green ! . . .

After completing the last element of the sequence the sequence begins again.

Fig. 4. Sequence editing. Output edges for the node selected in the network editor
(left) are colour coded to match the numeric colour chips that specify the sequence of
output edges in the node editor (right).

For random nodes the numeric counts for each colour chip become proba-
bilistic weights. For a given node with k output edges, the probability of edge ei

being traversed is:

PrT (ei) =

P
i2ei

ci
Pk

j=1 cj

(2)

where ci is the count value for colour chip i. For parallel nodes the sequences
specified by the colour chips are ignored, although the sequences are still shown
and maintained, allowing the user to cycle between di↵erent node behaviours
without loss of information.

which would leave missing elements in sequences. Colour coding also provides a
natural di↵erentiation for output edges (Fig. 4).



8 J. McCormack, et. al.

3 Emergent Structure

In this section we look at the behaviour of certain simple network structures and
show how they can lead to complex musical outcomes.

3.1 Linear and Cyclic Structures

The simplest type of network is a linear chain, with each node representing a
note in sequence and the distance between nodes the inter-onset time between
events (Fig. 5A). This closely mimics conventional linear notation.

Fig. 5. A linear network (A); two-part cycle with bridge (B); coupled 3-cycle (C);
‘recursive’ network of connected cycles with player start points at each end (D).

A simple cycle consists of two or more sequential nodes with a uni-directional
pathway of edges forming a cycle. The example in Fig. 5B shows a 3-node and
4-node cycle connected by a two-way bridge. The bridge allows flipping between
two di↵erent cycles. Adjusting the output edge counts for the two nodes that
form the bridge controls the number of repeats of each cycle.

Fig. 5C shows three inter-connected cycles without an explicit bridge (the
bridge being the cycles themselves in this case). Combining a structure like this
with harmonically related pitch lists generates structures of surprising complex-
ity. Placing additional players on di↵erent cycles within the one structure permits
temporal interplay between players as each repeats the cycle sequence from dif-
ferent locations on the network. Fig. 5D shows a ‘recursive’ group of spiralling
cycles, each connected into and out of the spiral. The geometric nature of the
structure makes the speed of the cycle increase as the spiral moves inward. Plac-
ing two players at the outer and inner-most cycles produces a complex interplay
of timing — a task that would be di�cult or impossible using conventional linear
compositional tools, yet simple with Nodal.



Generative Composition with Nodal 9

Bi-directional and Asymetric Cycles In addition to uni-directional cycles
shown in the previous examples, bi-directional cycles can also be created. In gen-
eral, the diversity of behaviour from looped networks that comprise sequential
nodes, is related to two factors. Firstly, the extent of interconnection between
nodes, with the complexity dependent on the number of edges more than the
number of nodes. Secondly, symmetry in arc connections also plays a role. As
shown in Fig. 6, a three node graph produces more diversity with an asymmet-
rical distribution of five edges than occurs with a regular bi-directional graph of
six edges.

Fig. 6. A bi-directional network (left) produces regular forward-back cycles, whereas
removing one edge (right) breaks the symetry and produces more interesting variation.
The numbers above each node show the number of times each has been traversed by
the player agent.

Cyclic Pitch Phasing with Lists Nodes may contain lists of pitches to change
the note played at each traversal, the position selected from the list incremented
each time (Section 2.3). Inter-onset time is generated by graph geometry, whereas
all other note parameters are drawn from state changes specific to any node. As
the list for each parameter can be a di↵erent length, it is possible to generate
phased combinations of parameters. The de-coupling of inter-onset time from
other note parameters results in a wide range of combinatorial possibilities even
with the simplest of cycles as shown in Fig. 7. The list of pitches for each node
are shown above the node itself.

 

Fig. 7. Output pitches in a loop resulting from a phased combination of pitch param-
eters. The generated notes form a long string that does not repeat in the short-term.



10 J. McCormack, et. al.

3.2 Parallel Nodes and Feedback Loops

Parallel nodes can be used for three main purposes: polyphony, synchronisation
and feedback. Fig. 8A shows the linear network of Fig. 5A with additional poly-
phonic components. Parallel nodes trigger additional note events via ‘wormhole’
edges which allow the player agent to move instantly between nodes, so vertically
aligned nodes play simultaneously in the example shown. Fig. 8B shows a simple
four-beat cycle, with parallel nodes used for each beat3. Each beat in the main
loop triggers individual sequences. This highlights the use of parallel nodes for
synchronisation where individual nodes are used to synchronise the triggering of
sub-sequences. A typical use of this pattern is for rhythmic patterns and drum
parts. For example, the main beats in Fig. 8B could be the kick drum, with the
sub-patterns high-hats — generating a simple repeating 4

4 drum pattern.

Fig. 8. A linear network with parallel nodes and ‘wormhole’ edges generating poly-
phonic sequences (A); a four beat cycle with each main beat triggering event associated
with that beat (B); three-node feedback loop (C); three-node feedback loop with ‘sink’
nodes to prevent infinite feedback (D).

Fig. 8C shows a simple feedback loop. The parallel node at the bottom trig-
gers the two sequential nodes. Due to the di↵erences in distances (the left node
is 1.5 beats from the parallel node, the right is 2 beats), the left agent returns
to the parallel node first, triggering two new traversals, and so on. The problem
with this configuration is that it quickly leads to an exponential expansion in the
number of agents traversing the network. The software places an upper limit on
3 In these examples we assume 1 principle per beat.



Generative Composition with Nodal 11

the number of agents active at any one time so the network eventually reaches
‘saturation’ where no new agents can be spawned by the parallel node.

A solution to this exponential positive feedback is to augment the feedback
network with ‘sink’ nodes (Fig. 8D). These nodes provide a terminating path-
way for some of the player agents as they feedback through the network. The
sink nodes are shown with dashed outlines to indicate they don’t trigger any
events when an agent arrives (this option is set in the node editor – see Fig.
4). Controlling the ratio of player agents that return into the feedback loop vs.
the number that pass to the sink is achieved by setting appropriate values for
the output edges in the node editor for each of the two sequential nodes in the
feedback loop. For example setting the ratios at 3:2 for the left node and 2:3 for
the right generates complex asymmetrical patterns (Fig. 9).

/Users/petermc/Documents/Projects/researchProjects/Nodal/feedback2

Piano

7

Pno. Fig. 9. The first few bars of output from the feedback network with sinks shown in
Fig. 8D.

4 Examples

In this section we give some compositional examples of how Nodal can be used
as a practical compositional tool. Nebula, shown in Fig. 10, combines multiple
feedback loops with unconventional timing, the network developed without the
use of the metrical timing grid. The composition, for single piano, shifts be-
tween several single-note codas, punctuated by periods of sudden activity — an
explosion of notes as clusters of parallel nodes fire near-simultanously.

Cascades is a more conventional composition, with two parallel nodes driving
rhythmic sequences. Multiple players traverse the network each a beat or 1.5
beats behind each other, repeating the sequences which slowly shift phase. The
topology of the network results in a cascade of harmonic sequences, the results
surprisingly interesting for a network of less than 20 nodes.

5 Conclusions and Future Work

This paper has described a generative composition system that mixes composi-
tional control with the emergent properties of feedback networks. The project
addresses the problem of designing dynamic, graphic notation systems suitable
for composing and specifying generative algorithmic processes for music compo-
sition. Conventional representation systems are ill suited to e↵ectively notating



12 J. McCormack, et. al.

Nebula Cascades

Fig. 10. Two example networks. Nebula on the left uses non-linear time ratios and
geometric patterns such as logarithmic spirals. Cascades (right) creates a complex,
shifting, multi-timberal composition with less than 20 nodes.

the musical output of non-linear generative processes. Moreover, they are inade-
quate for programming specification of such processes. The scheme examined in
this paper represents an on-going investigation into how visual programming and
notation systems can be designed for generative and Alife musical composition.

There are many directions for further investigation. One important consid-
eration is the limitation of specifying graphs in two-dimensions. This restriction
can become problematic when trying to design complex topologies (one of the
reasons for implementing the wormhole edge was to circumvent this problem).
We have also begun to address the specification of continuous information, by
allowing players to interpolate controller information as they travel along edges.
This makes possibilities such as pitch bends and portamento possible. Finally,
the rigid structure of the metrical grid can make sequences generated by Nodal

sound mechanical due to their perfect timing. We are working on musically use-
ful ways to circumvent this problem, without losing the benefits that the grid
system provides.

Nodal is a compositional tool of enormous possibility, easily capable of gener-
ating complex, emergent structures, yet intuitive and simple to understand and
control as a composition system. We encourage readers to try Nodal for them-
selves. Download it from http://www.csse.monash.edu.au/cema/nodal/.

References

1. McCormack, J., Dorin, A. Art, Emergence and the Computational Sublime. In:
Dorin, A. (ed.): Proceedings of Second Iteration, CEMA, Melbourne, Australia
(2001) 67–81



Generative Composition with Nodal 13

2. Whitelaw, M.: Metacreation: art and artificial life. MIT Press, Cambridge, MA
(2004)

3. Cariani, P.: Emergence and Artificial Life. In: Langton, C.G. (ed.): Artificial
Life II, SFI Studies in the Sciences of Complexity. Volume 10. Addison-Wesley,
Redwood City, CA (1991) 775–797

4. Peusner, L.: A graph topological representation of melody scores. Leonardo Music
Journal 12 (2002) 33–40

5. Chemillier, M.: Automata and Music. In: Strange, A. (ed.): Proceedings of the
1992 International Computer Music Conference. International Computer Music
Association, San Francisco (1992) 370–371

6. Lyon, D.: Using stochastic petri nets for real-time nth-order stochastic composition.
Computer Music Journal 19 (1995) 13–22

7. McCormack, J.: Grammar-Based Music Composition. In: Stocker, R. et. al. (eds.):
Complex Systems 96: from Local Interactions to Global Phenomena. ISO Press,
Amsterdam (1996) 321–336

8. Pope, S.: Music notations and the representation of musical structure and knowl-
edge. Perspectives of New Music 24 (1986) 156–189

9. Guéret, C., Monmarché, N., Slimane, M.: Ants can play music. In: Ant Colony
Optimization and Swarm Intelligence. LNCS 3172. Springer, Berlin / Heidelberg
(2004) 310–317

10. Wishart, T.: On Sonic Art. New and revised edition edited by Simon Emmerson
Contemporary Music Series. Harwood Academic Publishers GmbH, Amsterdam
(1996)

11. Lunenfeld, P.: Snap to grid: a user’s guide to digital arts, media, and cultures.
MIT Press, Cambridge, MA (2000)


