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A circular program contains a data structure whose 
definition is self-referential or recursive. The use of such a 
definition allows efficient functional programs to be written 
and can avoid repeated evaluations and the creation of 
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ways, to implement memo-structures and explicit search- 
trees to hold solutions to constraint-satisfaction problems.
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1 INTRODUCTION
A circular program contains a data structure whose definition is 
self-referential or recursive. Such a program cannot be written 
in a conventional, strict, imperative programming language but 
it can be written in a functional language employing lazy 
evaluation [Friedman and Wise, 1976] or call by need.

general schema: let rec ds =f(ds)
— ds is some data structure 

eg let rec posints = 1. (map succ posints)
— list of all +ve integers

Note that V is the infix list constructor also known as cons, 
rec qualifies recursive definitions and map applies a function to 
each element of a list and so produces a new list.

The list posints contains all the positive integers l.(2.(3_))
or [1,2,3,...]. It begins with 1 and continues with the result of 
applying the successor function succ to each element of posints 
itself. Successor applied to the first element gives the second 
element, 2, and so on. It is the definition of the value of the data 
structure posints, not just its type (list), being recursive that 
makes this a circular program.

Under lazy evaluation, an expression is not evaluated unless 
it is needed. In particular, the right hand side of a definition, and 
the actual parameter of a function, are not evaluated until they 
are needed — if they are needed. When an expression is 
evaluated, the value is remembered to avoid recomputation 
later. (The conditional, ‘if, is the only non-strict or lazy operator 
in many imperative languages.) Lazy evaluation permits recur-
sive definitions of data structures and also allows some compu-
tations with infinite data structures. All of a potentially infinite 
data structure can be defined although only a finite part may be 
evaluated. If only a bounded part were defined and evaluated, a 
copy would have to be made if it had to be extended, wasting 
time and space, because functional languages do not permit side- 
effects. Circular programs can, in certain cases, have it both 
ways — an expanding data structure with side-effect-free pro-
gramming. As a bonus, infinite data structures are sometimes 
easier to define because boundary cases are simpler or absent. 
Although posints represents an infinite list, a program using 
posints does not loop unless an attempt is made to print or 
otherwise evaluate all of the list. The program terminates 
provided that only finite parts of such structures are manipulated.

It is sometimes necessary to distinguish between the data 
structure as seen by the programmer and as implemented by the 
language system. If the definition simply incorporates the data 
structure directly, as in ones below, then a cyclic structure of 
cells and pointers is created in the computer memory.

let rec ones = 1. ones — = [1,1,1,...] 
data structure in memory: 

one:--------- > 1.----^----

' /
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This ability to create cyclic structures can be used to form 
circular lists, doubly linked lists and threaded trees in a 
functional language [Allison, 1989]. The programmer cannot 
determine if a cyclic structure has been formed, except indi-
rectly by the program’s speed or modest use of space. If the 
recursive definition uses some function of the contents of the 
data structure, as in posints, no cyclic structure is created at the 
implementation level but those parts already computed can be 
used to compute new parts. This can be used to implement 
queues [Allison, 1989] and various space efficient programs.

Many functional programs compute their final result in 
stages, some data structure being operated on, often in small 
steps or passes, by functions such as map, filter, reduce, and 
so on. Each step produces an intermediate data structure 
which is eventually discarded and collected as garbage at 
some cost. Bird [Bird, 1988] used circular programs in pro-
gram transformations to convert multi-pass algorithms into 
single-pass algorithms. He attributed knowledge of circular 
programs to Hughes and to Wadler and the technique is so 
useful that it has probably been discovered several times.

The objective of the paper is to promote this useful func-
tional programming technique. The examples given here 
construct lists and trees in new ways. They are used to define 
memo-structures and explicit search-trees which remove the 
need to repeat tests in certain constraint-satisfaction prob-
lems. They have all been run on a small lazy interpreter which 
was instrumented to record program behaviour and they 
perform as predicted. The notation used is from a hypotheti-
cal, “generic” functional language and is explained when 
required.

2 CIRCULAR LISTS
The ones and posints examples are amongst the simplest 
circular programs. To introduce the technique more fully, 
some non-trivial but routine examples on lists are given here. 
A popular example computes the Hamming numbers. These 
are all numbers of the form 2‘xTx5\ i, j, k>0, ie 1,2, 3,4, 5, 
6,8,9,10,12,15,.... In this section various circular programs 
are derived from the Hamming numbers program.

The simplest program for the Hamming numbers is the 
following:

let rec Hamming = 1. (merge3 (map (X 2) Hamming)
(map (x 3) Hamming) 
(map (X 5) Hamming))

This is an example used in many books and papers[Bird, 
1988; Henderson, 1976; Turner, 1984]. Hamming is a self- 
referential list. It begins with 1 followed by the result of 
merging three lists. These are the results of multiplying all 
members of Hamming by 2,3 and 5 respectively giving [2,...], 
[3,...] and [5,...]. The second Hamming number is thus 2, so the 
three lists are [2,4,...], [3,...] and [5,...], which allows the 
computation to proceed to the next step. Many duplicate 
numbers are produced, for example 6 = 2x3 = 3x2, and all but

one copy must be removed by the merge function. It is well 
known that this inefficiency can be removed by ensuring that 
the factors in a product are combined in ascending order.

let rec
a = 1. (map (X 2) a) —[1,2,4,8,...]

and b - 1. (merge (tl a) (map (X 3) b) )
— [1,2,3,4,6,8,9,12,...]

and Hamming = 1. (merge (tl b) (map (x 5) Hamming) )

Note that hd (head) returns the first element of a list and tl 
(tail) returns a list minus its first element. A further operator 
null can be used to test if a list is empty.

The list a holds all powers of 2 and is defined in a very 
similar way to posints. List b holds all products of 2 and 3. No 
duplicates are produced because powers of 2 are multiplied by 
powers of 3 and then by powers of 5, in order. Consequently 
a simpler version of merge can be used that does not need to 
deal with duplicates.

It is a natural exercise to generalise the Hamming problem 
to find all products of an arbitrary list of factors. The factors 
are assumed to be coprime and in ascending order.

let rec
products [] = [1] II —no factors
products (f.fs)= — at least one factor/

let recm= 1 . (merge (map (xf) m)
(tl (products fs)))

in m

Note this program uses pattern matching. The function 
products accepts a single list parameter. It distinguishes two 
cases, patterns or kinds of input parameter: the empty list [ ] 
and the general list f.fs consisting of a first factor f and a list 
of remaining factors fs. A definition is given for each case. 
Multiple cases are separated by II which can be read as 
‘otherwise’.

If there are no factors the list [1] is returned. If there are 
factors, the products of the first factor f and of all other factors 
in fs must be combined. The result list m is self-referential. 
First, multiplying any member of m by f is itself a product — 
map (x f) m. Second, products of members of fs are also 
members of m although the leading 1 is not needed — tl 
(products fs). Merging these two lists and putting 1 on the 
front gives m. It is easy to see that any valid product must be 
produced by this process.

The last program works correctly on finite lists of factors. 
It will not work when given an infinite list of factors because 
the merge operation requires the head of two lists before it can 
produce any output. For an infinite list of factors this would 
require the heads of an infinite number of lists to be assembled 
which is impossible. This drawback can be overcome by 
recognising that the second value in m must be the smallest 
factor f itself.
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let rec
products (f. fs) = — NB. not (nullfs)

let rec m — l.f. (merge (map (xf) (tlm)) 
(tl (products fs)))

in m

The function f both produces fiblist and uses it via its 
parameter which always lags two steps behind the element 
being calculated — just enough. It is now possible to find 
fib(n) by indexing to the nlh element of fiblist with the standard 
function index:

This program happens to require an infinite list of factors 
although a case to allow for finite lists can be added. Every 
instance of m now has two values at the front before any merge 
and thus one value remains when the tail is taken so output can 
begin immediately.

3 CIRCULAR TREES
The previous section gave examples of circular programs over 
lists. Here trees are defined in a similar way and used as 
memo-structures to store the results of functions so that later 
calls can access them quickly without recomputation. In 
general, one or more functions and structures are defined 
using mutual recursion.

general schema:
let rec — mutually recursive

ds = g ds — data structure(s) and
andfx - hx dsf —function(s)

The technique is illustrated by application to the Fibonacci 
numbers. Both the so called slow and fast Fibonacci programs 
are well known. The slow version is doubly recursive and runs 
in time exponential in n:

let rec slowfib n =
ifn<-2 then 1 else slowfib (n-2) + slowfib(n-l)

It is easily seen that the running time, T(n), satisfies 
T(n)>2*T(n-2). For example, slowfib (7) calls slowfib(5) and 
slowfib(6). Slowfib(6) calls slowfib(5) and all its 
subcomputations again. Many computations are repeated. 
The fast program recognises that partial results are recalcu-
lated many times by the slow program. It gains efficiency by 
replacing binary recursion with linear recursion to run in O(n) 
time:

let fastfib n = 
let recfn a b = 

ifn=l then b 
elsef(n-l) b (a+b) 

infn 0 1

The parameters a and b hold two successive Fibonacci 
numbers. At the next step these become b and a+b respec-
tively.

It is possible to define a circular program that builds a list 
of the Fibonacci numbers:

let rec
fiblist = 1.1. (ffiblist) — [1,1,2,3,5,...]

andf(a.t) = (a+(hd t)). (ft)

let fib = 
let rec

fiblist = 1.1. (f fiblist) —memo list
andf(a.t) = (a+(hd t)). (ft) —f builds fiblist 
and find n = index n fiblist —get n!h element of fiblist
in find

The list fiblist is a structure storing old results of fib n. On 
a first call of fib n the first n elements of fiblist are constructed. 
On a second call the result is just looked up in fiblist; the 
second call is faster but is still O(n) as index takes O(n) time. 
Actually, the result is looked up on the first call too, but it does 
not yet exist and so the list is built to the required length. Bird 
[1980] discusses the use of arrays to store past values in the 
process of deriving the fast Fibonacci program in an impera-
tive language. Hughes [1985] describes a system that auto-
matically stores past values of functions for fast recall; his 
system is implicit whereas the memo-structure here is ex-
plicit.

If a tree of Fibonacci numbers were built, the results of later 
calls could be looked up in 0(log n) time. The nodes of a 
complete binary tree can be numbered so that the children of 
node n are 2n and 2n+l:

1

2
A

3
/

6

The value of fib n can be stored at node number n: 
1

1 2
/\ /\

3 5 8 13

Given this tree and an integer, for example n = 6]0 = 1102, 
the binary digits of n indicate whether to take left or right 
subtrees in locating the nlh node and this can be done in 0(log n) 
time. The bits of n are read from the second most significant 
bit to the least significant bit; a 1 indicates go right and a 0 
indicates go left. Therefore 1102 implies: start at the root, go 
right and then left. We first define an infinite binary tree type:
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datatype tree = fork int tree tree —an infinite binary tree type

let element (fork e l r) = e — extract the element value
and left (fork e 1 r) = l — extract left subtree
and right (fork e l r) = r — extract right subtree

Fork is a constructor that builds a new tree given an 
element and left and right subtrees. Element, left and right 
return the components of a tree.

let fib =
let rec fibtree = fork 1 (fork 1 (build 4) (build 5))

— memo tree, 
(build 3) —fibtree :tree

and build n = fork (f(n-2)+f(n-l)) — build &f 
(build(2*n)) (build(2*n+1))

— construct fibtree
andfn = lookup n element — return fib n 
and lookup 1 g = g fibtree II — lookup decodes n

lookup n g = — n>l
lookup (ndiv2)(go( if even n then left else right))

inf

Graphically, fibtree is defined to be:

build 4

build 3

build 5

The values in nodes one and two are both 1 and are 
provided to enable node three to be built. This allows node 
four to be built and so on. The function lookup extracts the nth 
number from the tree. It does this by constructing a function 
g to follow left or right links according to the bits in n as 
described. Functional composition ‘o’ is used to link the 
desired sequence of element, left and right operations together 
and these are finally applied to fibtree. ((p o q)(x) = p(q(x))).

Assuming fib has been previously called with a parameter 
greater than n, a second call fib n takes 0(log n) time to scan 
down fibtree. It might appear that the first such call would take 
exponential time because of the two calls to f within build but 
this is not the case. The call f (n-2) causes the tree to be 
evaluated and built up to node n-2. The call f (n-1) only causes 
one additional node to be evaluated using f (n-3) and f (n-2) 
which are just looked up, their corresponding nodes having 
been built already. On the first call, there are O(n) calls on 
build, f and lookup the latter being logarithmic, the total time 
taken is 0(n log n). There is thus an increase in cost from O(n) 
to 0(n log n) on first calls but a reduction from O(n) to 0(log n) 
on subsequent calls over the “fast” Fibonacci program. There 
is also the cost of space to store the tree to be considered.

A subtle point should be noted: Our program let fib = let rec 
... in f binds fib to f which has fibtree in its environment so 
fibtree persists for as long as fib does and is not recomputed. 
If we carelessly defined let fib2 n = let rec... in f n then fibtree 
would persist for only as long as a call to fib2 remained 
unevaluated and would be recomputed on each call. Some 
optimising compilers would undo this unfortunate effect by 
effectively converting fib2 into fib. However this is a difficult 
issue because a programmer might deliberately write a func-
tion having the form of fib2 because he or she needs a 
temporary data structure but wants it to be destroyed to avoid 
tying up space.

It is natural to ask if the log(n) factor in the costs can be 
removed but it is caused by the use of a tree rather than an 
(unbounded) array with 0(1) indexing. In an imperative lan-
guage, and in some functional languages, one might use an 
array instead of the tree. However this would place a limit on 
the size of n.

If it is necessary both to have random access to the 
Fibonacci numbers in log(n) time and to have sequential 
access then it may be convenient to derive a list from the tree 
in breadth-first order. Since the tree is complete and infinite 
the list is particularly simple to create:

let rec 
fibtree 

and build 
andf
and lookup 
and fiblist

and nodes

and bfirst t

let rec

= as before

= map element nodes
— elements in breadth-first order 

= bfirst fibtree
— (sub)trees in breadth-first order

— perform breadth-first traversal oft

q = t. (traverse q)
and traverse ((fork e l r) . q2) = 1. r, (traverse q2) 
in q

Function bfirst returns a list or queue q of the subtrees of a 
tree t in breadth-first order. The queue begins with t itself and 
the auxiliary function traverse produces the rest of the queue. 
Function traverse examines the first element in q and adds its 
subtrees to the end of q, i.e. in the second and third positions. 
This is repeated for successive elements of q. The definition 
of the queue q is self-referential. Since q naturally grows as the 
tree is scanned, and since it is also infinite, it is hard to see how 
q could be created efficiently without a circular program.

The lists nodes and fiblist respectively contain the subtrees 
and the elements of fibtree in breadth-first order. Accessing 
the nth element of fiblist also causes fibtree to be evaluated to 
node number n.
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4 CIRCULAR SEARCH TREES
Many search problems or constraint-satisfaction problems 
require finding a sequence of values <a, b, c,.. .>, or just abc 
. . that satisfies certain constraints. A search program 
explores the search space, building an implicit or explicit tree 
of (partial) solutions. If the constraints are uniform in a certain 
sense then the solution tree may be defined recursively and 
explicitly. The advantage is that no test is performed twice as 
the results of previous tests are available from the structure of 
the tree. This is valuable if the cost of performing tests 
outweighs the cost of building and keeping the tree.

The uniformity required covers two conditions. Firstly, it 
must be possible to build all long solutions by extending short 
solutions. Secondly, the constraints on an element in the 
sequence must involve other members of the sequence only in 
ways that depend on their relative, not absolute, positions in 
the sequence. These conditions hold in many problems.

A suitable n-ary search-tree, in which a node contains an 
element of type ‘ t, a subtree and the siblings of the node, can 
be defined as follows:

datatype tree ‘t = empty II node 7 (tree 7) (tree 7)

Note that 7 is a type parameter — an arbitrary type. There 
are two cases to tree — the empty tree and a node — separated 
by II. Siblings are linked together via the third component of 
a node.

As an example, the complete infinite tree over {1,2,3} can 
be defined as:

let rec three =
node 1 three (node 2 three (node 3 three empty) )

— itree int

A simple generalisation of this example allows trees to be 
built over the range [l..n]:

let build n = 
let rec

T - toplevel 1 — itree int

and toplevel m =
ifm>n then empty
else node m (fT) (toplevel (m+1))

andfT = T

in T

The function toplevel builds the nodes at the top level of the 
tree and f fills in the subtrees. Here f is just the identity function 
and as such it is redundant but it is included to give a general 
schema. The program above creates a finite cyclic data struc-
ture. If we wanted to expand out the cyclic structure, into an 
infinite copy, f could be redefined as follows:
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f empty = empty II 
f (node a subtree sibs) = 

let others =fsibs 
in node a (f subtree) others

Solutions to the various problems discussed below are 
formed only by redefining f in variations on the above. Apart 
from the changes that this entails the schema is unaltered in 
each case.

4.1 Permutations
A common method of generating permutations is to extend 
partial permutations, beginning with the empty sequence. If 
abcde is a partial permutation it can be extended with X to 
abcdeX provided that X differs from a, b, c, d and e. 
Equivalently, it can be extended provided that bcdeX is a 
partial permutation and provided that X differs from a. Note 
that bcde is already a partial permutation because abcde is. 
If a tree is used to hold the permutations then bcdeX, being 
shorter than abcdeX, must occur in the tree at the previous 
level, if it is indeed a partial permutation. If we read permu-
tations as paths from the root of the tree, and identify a node 
with the path to it, the subtree of abcde is a pruned version of 
the subtree of bcde with all occurrences of a filtered out or 
banned. We call bcde the shadow of abcde. The shadow of 
bcde is cde and so on. Coding these ideas into function f of 
the schema in the previous section gives the following 
program:

let build n =
let rec

T = toplevel 1

and toplevel m =
ifm>n then empty
else node m (fm T) (toplevel (m+1))

andf banned empty = empty 11 —f banned shadow
f banned (node a subtree sibs) = 

let others = f banned sibs 
in if a = banned then others — prune a’s subtree 

else node a (f banned subtree) others
— no pruning

in T

Function f has gained an extra parameter for the banned 
element and performs a filtering operation on the shadow tree. 
A single test, a=banned, tells if a permutation can be extended 
with a given value, all other exclusions being implicit in the 
tree structure.

As the permutation tree is traversed it is gradually evalu-
ated. If for example the first permutation, 123, from build 3 
were printed, the evaluated portion would be:
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? ? ?
3 1

Note, *?’ is used to denote an unevaluated subtree. Recall 
that we read a permutation, such as 123, as a path from the root 
of the tree and identify a node with the path to it. The shadow 
of 123 is 23. The subtree of 23 is ‘node 1 ? empty’ and the 1 
is banned for 123, so 123 is a complete permutation. The 
shadow of 23 is 3. The subtree of 3 is ‘node 1 ? (node 2 ? 
empty)’ and the second branch is banned beneath 23 so its 
subtree is ‘node 1 ? empty’.

The shadow of a path grows with the path, one step behind 
it. The structure of the tree stores the results of many past tests 
so that only a single extra test is performed to add a new node. 
(This is not a big issue in permutation generation but there are 
cases where it is.) Note that Topor [Topor, 1982] has exam-
ined the space complexity of functional programs for gener-
ating permutations represented as linear linked lists.

4.2 N-Queens
The well known n-queens problem is to place n queens on an 
nxn chess board so that no two queens threaten each other. 
Each queen must be on a separate row, column and diagonal 
and this property is an invariant that must be maintained as 
partial solutions are extended. The fastest imperative solu-
tions [Rohl, 1983] are based on permutation generators. A 
board is represented by the permutation of rows that the 
queens on the columns occupy. This representation automati-
cally ensures the separate row and column parts of the invari-
ant. Here we observe that a partial solution abcde can be 
extended to a partial solution abcdeX if and only if bcdeX is 
also apartial solution and a and x are on separate diagonals and 
rows. By using shadows, X need only be tested against a’s 
diagonals as the results of the other diagonal tests against other 
queens are already encoded in the shadow tree and do not need 
to be repeated. Again, the required program is a modification 
of the general schema with f redefined. Function f gains a new 
parameter col, being the current column number.

let build n = 
let rec

T = toplevel 1

and toplevel m =
if m>n then empty
else node m(f 1 m T) (toplevel (m+1))

and f col banned empty = empty II 
f col banned (node a subtree sibs) = 

let others = f col banned sibs 
in if member banned [a, a+col, a-col] then

others — prune
else node a (f(col+l) banned subtree)

others — no prune
in T

The standard function member tests the membership of an 
element in a list. Note that the test member banned [a, a+col, 
a-col] is an amalgam of the old permutation test, a=banncd, 
and the new diagonal test.

4.3 Irreducible or Good Sequences
Axel Thue [Hedland, 1967] defined the notion of an irreduc-
ible sequence in a series of papers in the period 1906-1914 
Dijkstra [Dijkstra, 1972] later called these ‘good sequences’ 
and used them in an exercise in structured programming. A 
sequence over the alphabet {1, 2, 3}, or in general over 
(l,...,n), is irreducible if and only if it contains no adjacent 
subsequences that are identical. For example, 1213121 is 
irreducible but 12132131 is not because 213 is immediately 
repeated.

It is easy to see that (i) a sequence abcdeX of even length 
is irreducible if the shorter sequences abcde and bcdeX are 
irreducible and the two halves abc and deX are unequal and (ii) 
a sequence abcdefX of odd length is irreducible if abcdef and 
bcdefX are irreducible. This enables a circular program to be 
written for a tree representing all the irreducible sequences. 
For example, the shadow of abcde (of odd length) is bcde. 
Assuming that abcde is irreducible, abcdeX is irreducible if 
and only if bcdeX is irreducible, if and only if X is a descend-
ant of bcde.

let build n =
let rec

T — toplevel 1

and toplevel m -
if m>n then empty
else node m (f2 [m] T) (toplevel (m+1))

andflen seq empty = empty II 
flen seq (node a subtree sibs) = 

let others - flen seq sibs 
and seq2 - a. seq
in if even len & repeated (len/2) seq2 then others

—prune
else node a (f(len+l) seq2 subtree) others

■—don’t prune
in T
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A new parameter seq carries the particular sequence for-
ward as f descends through the tree. When the length len is 
even, a test is made that the sequence a.seq is not the 
concatenation of two sequences of length len/2. Function 
repeated performs this test in O(len) time and has an obvious 
definition. It is not necessary to test for any shorter repeats. 
These are implicitly ruled out by the use of the shadow to 
generate subtrees. The test would be more complex without 
this information. That portion of the tree that is evaluated in 
order to print the first irreducible sequence of length five is 
shown below:

\ /
3 1

/
1

The shadow of 12131 is 2131 whose shadow is 131 whose 
shadow is 31 whose shadow is 1.

5 CONCLUSIONS
Programmers are familiar with recursive functions but recur-
sive or self-referential data structures used in circular pro-
grams are rare. Circular programs are very powerful enabling 
many infinite structures to be efficiently defined. They often

remove the need for intermediate structures and for repeated 
calculations. They can be used safely provided that later 
values depend only on earlier ones in the structure. Memo- 
structures can be formed by a data structure and function 
defined using mutual recursion. Explicit circular search-trees 
can reduce the number of tests performed in constraint- 
satisfaction problems. As usual, there is a trade-off of time 
against space.
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