
Constraints (2009) 14:443–477
DOI 10.1007/s10601-008-9057-9

On implementing symmetry detection

C. Mears · M. Garcia de la Banda · M. Wallace

Published online: 23 July 2008
© Springer Science + Business Media, LLC 2008

Abstract Automatic symmetry detection has received a significant amount of inter-
est, which has resulted in a large number of proposed methods. This paper reports
on our experiences while implementing the approach of Puget (CP2005, LNCS,
vol. 3709, pp. 475–489. Springer, 2005). In particular, it proposes a modification to the
approach to deal with general expressions, discusses the insights gained, and gives the
results of an experimental evaluation of the accuracy and efficiency of the approach.

Keywords Automatic symmetry detection · Graph automorphism

1 Introduction

Symmetries in constraint satisfaction problems (CSPs) can be used to speed up the
search for solutions. This is achieved by avoiding the exploration of areas of the
search space that are symmetric to areas that are already (or will be) explored [3].
This is correct because if the explored area led to failure, the symmetric area must
also lead to failure. If, on the other hand, it led to a solution s, the symmetric area is
known to only contain solutions that can be more efficiently generated by applying
the symmetries to s.

A common classification of symmetries distinguishes variable symmetries, value
symmetries, and variable-value symmetries, which refer respectively to permutations

C. Mears (B) · M. Garcia de la Banda · M. Wallace
Clayton School of IT, Monash University, Melbourne, Australia
e-mail: cmears@mail.csse.monash.edu.au

M. Garcia de la Banda
e-mail: mbanda@mail.csse.monash.edu.au

M. Wallace
e-mail: wallace@mail.csse.monash.edu.au

444 Constraints (2009) 14:443–477

among only the variables in the CSP, among only the values of each variable, and
among variable-value pairs, which preserve the set of solutions [12]. Related to these
concepts are the notions of value interchangeability [5] where all values of a variable
are equivalent (i.e., every permutation among the values is a symmetry), piecewise
value interchangeability [11] where only some subsets of values are interchangeable,
and their direct variable counterparts (variable interchangeability and piecewise
variable interchangeability).

The importance of automatically detecting symmetries has generated a consid-
erable amount of interest and has resulted in a number of different methods that
automatically detect one or more kinds of symmetries. These methods can be split
into two main categories: those that detect the symmetries of a given CSP (or CSP
instance) [3, 5, 6, 13, 15], and those that detect symmetries of a class of CSPs (or
CSP model) [11, 16]. Each category has advantages and disadvantages. The main
advantage of model-based methods is that the symmetry detection process only
needs to be performed once for the whole class, since each symmetry detected for
a CSP model is known to also be a symmetry of all its CSP instances. Instead,
instance-based methods need to be re-run for each instance. This creates efficiency
problems, especially since the more powerful methods (such as [13]) can become
impractical for large instances. The main advantage of instance-based methods is that
they can take the particular instance data into account and, therefore, might be able
to detect a greater number of symmetries (including some not present in the model).
Furthermore, current model-based methods are relatively limited in the kind of
symmetries they detect (piecewise variable and value interchangeability) and in the
accuracy of their detection process (which depends on the problem being modelled
using global constraints, and on the accuracy of their composition functions).

Our long term aim is to develop a method that (a) detects a broader range
of symmetries than those detected by current model-based methods, (b) detects
symmetries that apply to the CSP model, (c) does not require the model to use
a particular problem formulation (such as global constraints), and (d) is practical.
In order to achieve this we decided to build on powerful instance-based symmetry
detection techniques to discover symmetries for models. The idea is to (1) use
powerful instance-based symmetry detection methods on a series of small problem
instances to elicit candidate symmetries, (2) parametrise these candidate symmetries
to be defined over the model rather than over the data of any particular instance, and
(3) determine whether these are indeed symmetries of the model.

This paper presents a first step towards this long term aim: the implementation
of a powerful instance-based symmetry detection method. In particular, it reports
on work performed while studying three different graph representations of CSP
instances: Puget’s extensional method introduced in [13], and the microstructure and
microstructure complement introduced by Jégou [9] and extended by Cohen et al. [2].
The microstructure complement is a very powerful and general graph representation
capable of detecting symmetries of a CSP by representing the set of disallowed
assignments of each constraint in the CSP. Cohen et al. prove that automorphisms
of this graph correspond to symmetries of the CSP. However, the requirement
to only use disallowed assignments means the graph can be unnecessarily big.
Instead, the microstructure requires each constraint to be represented by the set of
allowed assignments. However, automorphisms of this graph have not been proved
to correspond to symmetries of the CSP. In fact, we later show this not to be the case.

Constraints (2009) 14:443–477 445

Puget’s extensional approach admits a more flexible representation of constraints
in which one can choose to use the allowed or the disallowed assignments of each
constraint in the CSP. The disadvantage of this approach is that some of its features,
such as the explicit representation of variable nodes and constraint nodes, limit the
kind of symmetries that can be detected.

Our aim is to develop a graph representation that combines the best of these two
approaches. In particular, the contributions of this paper are as follows. We first
introduce the allowed assignments graph, which is extends the microstructure in such
a way that its automorphisms can be proved to correspond to symmetries of the CSP
while, at the same time, avoiding too much growth in the size of the graph. We then
define a second graph representation, the full assignments graph, which (as Puget’s
extensional method) can use the set of allowed or disallowed assignments depending
on the particular constraint considered, but without restricting the symmetries that
can be represented by the graph. We also prove that every automorphism of the
full assignment graph corresponds to a symmetry of the CSP, while there may exist
symmetries which are not automorphisms of the graph.

We then propose two techniques for pruning different kinds of nodes in the
full assignment graph (that can also be applied to the other two): one based on
establishing n-ary arc-consistency, and another based on reducing the arity of global
constraints by using a logically equivalent conjunction of constraints of smaller arity.
We prove that the former approach does not eliminate any variable or value sym-
metries (although it might eliminate non-compositional variable-value symmetries)
if all constraints represented in the graph have different scope. We also show how
the latter technique can lead to an increase in the number of symmetries detected.

When compared to Puget’s extensional representation [13], the full assignments
graph increases the number of constraint symmetries that can be detected by,
for example, dropping the use of variable nodes and eliminating representational
differences among constraints. Furthermore, it is less dependant on constraint syntax.
The comparison with Puget’s Boolean representation, also given in [13], is less
clear and will be discussed in detail in Section 2.3. Finally, the paper gives the
results of an experimental evaluation that compares Puget’s extensional and Boolean
representations with ours over a number of benchmarks.

The rest of the paper proceeds as follows. In the next section we discuss previous
work on CSP symmetry detection and symmetry breaking, including a detailed
discussion of Puget’s method for constructing the graph associated with a given CSP.
Section 3 provides the definition of the allowed assignments graph, the disallowed
assignments graph, and the full assignments graph, together with our insights into
their properties and the relationship with related work. Section 4 describes our
two techniques to represent graphs of CSPs more concisely, and the effects these
have on the detected symmetries. Section 5 presents the results of our experimental
evaluation. Finally, Section 6 presents our conclusions.

2 Background

This section introduces the terminology to be used in the paper and provides a
summary of Puget’s method [13] to automatically detect symmetries.

446 Constraints (2009) 14:443–477

2.1 CSP symmetry

A CSP is a triple (X, D, C) where X represents a set of variables, D a set of domains,
C a set of constraints, and where each variable xi ∈ X is associated with a finite
domain Di ∈ D of potential values. By an abuse of notation, if ∀Di, Dj ∈ D : Di =
Dj, we will then make D equal to Di, i.e., we will present the CSP in the form
(X, Di, C).

A literal is of the form xi = di where xi ∈ X and di ∈ Di. For any literal l of the
form xi = di, we will use var(l) to denote its variable xi. An assignment A is a set of
literals. An assignment over a set of variables V ⊆ X has exactly one literal xi = di

for each variable xi ∈ V. An assignment over X is called a complete assignment.
A constraint c is defined over a set of variables which is called its scope, and is

written vars(c). A constraint c specifies a set of allowed assignments over vars(c). An
assignment over vars(c) that is not allowed by c is disallowed by c. An assignment
A over V ⊆ X satisfies constraint c if vars(c) ⊆ V and the projection of A over
vars(c) (i.e., {lit ∈ A : var(lit) ∈ vars(c)}), is allowed by c. A solution is a complete
assignment which satisfies every constraint in C.

A constraint c ∈ C can be represented extensionally by the set of allowed assign-
ments over vars(c), or intensionally by a function that, given an assignment A, returns
true if A satisfies c, and false otherwise. Since we only deal with finite domains
and global constraints whose arguments are known, any intensional constraint can
be converted into its extensional equivalent.

A solution symmetry f is a permutation of literals that preserves the set of
solutions [2]. In other words, it is a bijection from literals to literals that maps
solutions to solutions. Therefore, if {l1, . . . , ln} is a solution, then { f (l1), . . . f (ln)} is
also a solution, and if A1 and A2 are two distinct complete assignments, then f (A1)

and f (A2) are also distinct. Consequently, we can also say that for any solution
symmetry f , assignment A is a solution if and only if f (A) is. A constraint symmetry
is a solution symmetry that preserves the constraints of the CSP.

We now introduce some common, orthogonal classes of symmetries. A variable
symmetry is a permutation of the variables that preserves the constraints or the
solutions [12]. Since the inverse of any such permutation is also a symmetry, we will
use 〈x1, x2, . . . , xn〉 ↔ 〈x1′ , x2′ , . . . , xn′ 〉, where {x1, . . . , xn} = X = {x1′ , . . . , xn′ }, to
denote the variable symmetry which maps every xi to xi′ (or every xi′ to xi). For sim-
plicity, if we have {x1, . . . , xk}, {x1′ , . . . , xk′ } ⊂ X, then 〈x1, . . . , xk〉 ↔ 〈x1′ , . . . , xk′ 〉
denotes the symmetry which maps each xi to xi′ leaving the remaining variables
unchanged.

A value symmetry is a permutation within the sets in D (i.e., a bijection from
the values of a variable to values of that variable) that preserves the constraints
or the solutions [12]. We will use 〈di1, di2, . . . , din〉 ↔ 〈di1′ , di2′ , . . . , din′ 〉, where
{di1, di2, . . . , din} = Di = {di1′ , di2′ , . . . , din′ }, to denote a value symmetry for a given
variable xi ∈ X. A variable-value symmetry is a permutation of the literals (i.e. the
set V × D) that preserves the constraints or the solutions. Note that a variable-value
symmetry of a CSP is not necessarily a composition of a variable symmetry and a
value symmetry of that CSP (i.e., one or both might not be symmetries of that CSP).
These kind of symmetries will be referred to as non-compositional variable-value
symmetries.

Constraints (2009) 14:443–477 447

Example 1 The common N-queens problem requires the placement of N queens
on an N × N chessboard such that no queen attacks another. We can model this
problem using one integer variable xi per row i in the board so that each value, d ∈
{1, . . . , N}, represents the column position of xi in row i.

The corresponding CSP is ({x1, . . . , xN}, {1, . . . , N}, C), where ∀i, j s.t. i <

j we have {xi
= x j, |xi − x j|
= j − i} ⊆ C. This CSP has the variable symmetry
〈x1, . . . , xN〉 ↔ 〈xN, . . . , x1〉 (representing the reflection around a horizontal axis
through the centre of the board), the value symmetry 〈1, . . . , N〉 ↔ 〈N, . . . , 1〉
(vertical axis), and it also has the variable-value symmetry that maps every xi = j
to x j = i (top-left/bottom-right diagonal). Note that the last is a non-compositional
variable-value symmetry that does not result from composing the previous two.

Given a graph represented by the tuple 〈V, E〉, where V is a set of nodes, and E
a set of unweighted and undirected edges, an automorphism f of graph 〈V, E〉 is a
permutation of the nodes such that ∀(ni, n j) ∈ E : (f (ni), f (n j)) ∈ E.

2.2 Puget’s coloured graphs

The method presented by Puget in [13] has two steps. The first takes a CSP
and constructs a coloured graph, i.e., a graph represented by the triple 〈V, E, c〉
where V and E are as before, and c is a map from V to colours. The second
step finds the automorphisms of this graph that also preserve the colours, i.e., that
only interchange nodes of the same colour. Formally, an automorphism f of graph
〈V, E, c〉 is a permutation of the nodes such that ∀(ni, n j) ∈ E : (f (ni), f (n j)) ∈ E
and ∀n ∈ V, c(f (n)) = c(n).

Example 2 The graph shown in Fig. 1a can be reflected across its vertical axis
resulting in that of Fig. 1b, where the dashed arrows indicate the node permutation
used for this reflection. Since the graph edges are preserved, the permutation is
an automorphism. Consider now the graph shown in Fig. 1c where colours are
represented by shading patterns. Its reflection over the horizontal axis results in

Fig. 1 Two graphs and one of
their possible automorphisms

1

2 3 4

5

6

a

5

6 4 3

1

2

b

1

2 3 4

5

6

c

2

1 3 4

6

5

d

448 Constraints (2009) 14:443–477

Fig. 1d, where the dashed arrows again indicate the associated node permutation.
This permutation is also an automorphism. Note that reflecting the graph across the
vertical axis no longer results in an automorphism due to the node colours.

In Puget’s method, the coloured graph associated with the CSP (X, D, C) can
be constructed as follows. First, a variable node is created for each variable xi ∈
X, and a constraint node is created for each constraint c ∈ C. These nodes are
coloured as follows: all variable nodes have the same unique colour, and all constraint
nodes representing a particular “kind” of constraint have the same (also unique)
colour. Constraints can then be represented using two different methods based on
an intensional or an extensional representation, respectively. For the intensional
constraint representation, an edge is added between each constraint node and the
variable nodes in its scope. Dummy nodes might be required to break symmetries
that do not occur in the constraint. Automorphisms of this graph correspond to
variable symmetries.

For the extensional constraint representation, a value node is introduced for each
value of each variable in the scope of the constraint, and an assignment node is
created for each allowed assignment of each constraint. Edges connect each value
node to its variable node, each assignment node to the value node representing each
variable-value literal occurring in the assignment, and each assignment node to its
constraint node. These nodes are coloured as follows: all value nodes for a variable
must have the same unique colour if we want to detect value symmetries, while all
value nodes (regardless of variable) must have the same unique colour if we also want
to detect variable symmetries. All assignment nodes have the same unique colour. As
indicated by Puget, if the set of allowed assignments contains many more elements
than the set of disallowed assignments, then the latter can be used to construct
a smaller graph. Automorphisms of this graph correspond to variable symmetries,
value symmetries and compositional variable-value symmetries.

Example 3 Consider the CSP ({x, y}, {1, 2, 3, 4}, {x ≥ y}). Figure 2a, b show the
graphs obtained by using the extensional constraint representation with allowed and
disallowed assignments, respectively. Both graphs have 1 constraint node (coloured
grey), 2 variable nodes of the same colour (here represented using shape as square),
8 value nodes of the same colour (white), and either 10 or 6 assignment nodes,
respectively, of the same colour (here represented using size and colour as small and

a b c

Fig. 2 Allowed extensional, disallowed extensional, and intensional graphs

Constraints (2009) 14:443–477 449

a b c

Fig. 3 Graphs for CSPs = ({x, y, z},{1, 2, 3},C) where C is:

white). Figure 2c shows the graph obtained for the same CSP using the intensional
constraint representation. This graph needs 1 constraint node and 2 variable nodes
as before, plus a dummy node (represented as a grey square) to break the symmetry.

Example 4 Consider the CSP ({x, y, z}, {1, 2, 3}, {x = y, y = z}). Figure 3a shows
the graph obtained by using the extensional constraint representation with allowed
assignments. The graph has three value nodes per variable.1 It also has three assign-
ment nodes corresponding to each allowed assignment {x = 1, y = 1}, {x = 2, y =
2}, {x = 3, y = 3} of x = y, and another three for those of y = z. All assignment
nodes have the same colour (small and white). Finally, the graph has two constraint
nodes, each connected to its associated assignment nodes and mapped to the same
colour (grey), since they represent constraints of the same kind (equality). The
graph associated with CSP ({x, y, z}, {1, 2, 3}, {x < y, y < z}) using the extensional
constraint representation with allowed assignments is shown in Fig. 3b.

While the method described above is correct (any automorphism of the graph
corresponds to a symmetry of the CSP), it is not complete (some CSP symmetries
might not appear in the graph). This was demonstrated by Puget [13] using the graph
of Fig. 3a which represents constraints {x = y, y = z}. The graph does not contain
any variable symmetries involving y, even though both 〈x, y〉 ↔ 〈y, x〉 and 〈y, z〉 ↔
〈z, y〉 are symmetries of the CSP. To reduce this problem, Puget suggests to take
the transitive closure of equality and ≤ constraints, and also to replace constraints
such as x ≤ y and y ≤ x by x = y. Applying this to the graph of Fig. 3a leads to the
addition of x = z, and results in the graph of Fig. 3c, which does contain symmetries
〈x, y〉 ↔ 〈y, x〉 and 〈y, z〉 ↔ 〈z, y〉. Note, however, that the transitive closure does
not make the method complete.

2.3 Puget’s representation using Boolean variables

As mentioned before, there are symmetries of the CSP that cannot be expressed
as the composition of variable and value symmetries present in the CSP. This is the
case, for instance, for the rotational symmetries of the n-queens problem. These non-
compositional symmetries cannot be expressed using the intensional representation

1Note that, for simplicity, only the leftmost value nodes are labelled, their associated value being
shared by all value nodes at the same horizontal level.

450 Constraints (2009) 14:443–477

of constraints proposed by Puget since, as he indicates, it is only suitable for variable
symmetries. Neither can they be represented using the intensional representation,
due to the existence of variable nodes and to the different colour used for different
kinds of constraints.

Puget addresses this issue by proposing a new representation of CSPs, one that
uses Boolean variables instead of finite domain variables. There is a standard
mapping of finite domain CSPs to the Boolean representation by introducing a
Boolean variable for each literal in the original CSP. An allowed assignment of
a constraint in the original CSP corresponds to an assignment of true to all the
Boolean variables representing literals in the assignment. A solution to the original
CSP corresponds to an instantiation of the Boolean variables such that:

• precisely one Boolean variable for each original variable is set to true
• each original constraint has (at least one) allowed assignment

Puget proposes a graphical representation of the original CSP based on this
Boolean model (actually, using zero-one rather than Boolean variables). He employs
an intensional representation of the Boolean model, together with a node for each
original constraint, linked to the Boolean constraint representing each allowed
assignment of the original constraint (illustrated in Fig. 6 of Puget [13]). As a result,
there are no longer variable nodes and, thus, some non-compositional variable-value
symmetries can be represented.

However, automorphisms of this graph representation do not necessarily cor-
respond to solution symmetries of the original CSP. A counter example can be
illustrated with the CSP ({x, y, z}, {1, 2, 3}, {x < y}), (later shown using a different
graphical representation in Fig. 13), under the permutation 〈x = 3〉 ↔ 〈z = c〉, for
any c ∈ {1, 2, 3}, that is not a symmetry of the CSP. In Lemma 2 below, we impose
some restrictions on the Boolean representation to guarantee that graph automor-
phisms do indeed correspond to symmetries.

Moreover, the link to the original constraint node precludes symmetries involving
different constraints (such as an all_different and a disequation). Interestingly,
Puget’s Boolean model for the all_different constraint does not appear to include
a link back to the original constraint node. For clarity, we briefly summarise four
alternative representations for this constraint under Puget’s approach.

The first representation is an intensional representation of the original constraint.
This comprises a node for the constraint, a node for each variable in its scope,
and an edge between the constraint node and each variable node (Fig. 4a). The
second representation is the extensional representation of the original constraint
with O(mn) nodes representing allowed assignments of n variables each with a
domain size of m (Fig. 4b). A third representation is the standard Boolean one
with an assignment node for each allowed assignment. This is almost the same as
the extensional representation, but without any nodes corresponding to the original
variables (Fig. 4c). The fourth representation is another Boolean one, but this time
without any nodes representing the original constraints. The all_different constraint
over n variables vi can be represented by m constraints (one per value, c j), each of
which is connected to the n Boolean variables bij : i ∈ 1..n, representing vi = c j. Each
Boolean constraint states that only one of the connected Booleans is true (Fig. 4d).

The reason why constraint nodes are needed in the third representation and not in
the fourth representation of the all_different constraint is as follows: while the (many)

Constraints (2009) 14:443–477 451

a b c d

Fig. 4 CSP = ({x, y, z},{1, 2, 3}, {all_different({x, y, z})})

assignments corresponding to an original constraint in the third representation form
a logical disjunction of the Boolean constraints, in the fourth representation they
form a logical conjunction. The constraint node in the third representation removes
any incorrect symmetries between a disjunction of assignments and a conjunction of
constraints. We explore the consequences of this issue further in the next section.

The resulting graph (Fig. 4b shows an example for n = 3) is much smaller (O(m.n)

nodes) than a graph that uses the extensional form of the original all_different
constraint which requires (O(mn) nodes).

To complement this representation, Puget also proposes a similar all_different
constraint between the different values of a variable, connecting the Boolean nodes
bij : j ∈ 1..m. This is necessary to ensure graph automorphisms correspond to solu-
tion symmetries. Indeed, these constraints are not only necessary, but also sufficient,
as shown in the next section. However, if this is expressed via an all_different
constraint, then opportunities for detecting symmetries may be lost since this rep-
resentation does not allow a disequation between two values to participate in a
symmetry with a disequation between two variables (a similar situation is shown in
Example 12).

Note that, as shown in Section 4.1, an extensional representation over Boolean
variables can also stay within the same O(m.n) number of nodes. However, both
the O(m.n) Boolean representations of all_different may lose symmetries due to
the interaction between this (very special kind of) representation and that of other
constraints in the CSP.

2.4 Puget’s representation for expressions

Puget’s method is based on constraints whose arguments are distinct variables.
In order to be able to handle constraints involving expressions, Puget proposes
to represent any expression of the form xi op x j, where xi, x j ∈ X are distinct
variables, as the extensional constraint associated with op(xi, x j, t), where t is a new
(temporary) variable which is then used to replace the expression xi op x j as the
constraint’s argument (see Fig. 5). We believe this method was suggested because (a)
it reuses the already defined constraint representation, and (b) uses the same colour
for constraints with and without complex expressions. For example, A < B can be

452 Constraints (2009) 14:443–477

Fig. 5 Graph of CSP
({x, y, z}, {{1, 2}, {1, 2},
{1, 2, 3}}, {x + y > z}). The
extra variable t represents
x + y, with domain
Dt = {2, 3, 4}

represented by the same colour as C < D + 1 if the latter constraint is expressed as
a combination of E = D + 1 and C < E. This reduces the syntax dependency of the
graph and thus might result in more symmetries being detected.

Since this approach can lead to very large graphs, Puget also proposed an
alternative approach for handling expressions of the form op(x), where the variable
x is only allowed to occur once in the expression. The idea then is to use the literal
x = d to represent t = op(d) wherever it would have occurred (see Fig. 6). Although
this representation results in compact graphs, it is only suitable for some constraints.

Expressions with more than one variable are, therefore, broken into sub-
expressions, each of which is represented by a new (temporary) variable ti. Con-
straints involving expressions as arguments are simply treated by replacing each such
argument by a new variable representing the expression. As noted by Puget and
others [13, 15], this can lead to the unintentional loss of symmetries due, for example,
to the associative nature of operators.

Example 5 Consider the constraint x + y + z > w. If the constraint is parsed as
(x + y) + z > w, it would be transformed into constraint t1 > w, where the new vari-
able t1 has associated constraint +(t2, z, t1) (representing the constraint t2 + z = t1),
and new variable t2 has associated constraint +(x, y, t2). Although in the expression
all three variables are interchangeable, the associated graph only has the variable
symmetry 〈x, y〉 ↔ 〈y, x〉.

The problem can be ameliorated [13, 15] by representing multiple occurrences
of a binary associative operator with a single n-ary operator. For instance, in the
previous example we would only introduce one extra variable t3, and the constraint
+(x, y, z, t3). As recommended in [13], non-symmetric binary arithmetic operations,
such as x − y and x/y, are decomposed using their unary inverse operators, resulting
in x + (−y) and x ∗ (1/y). This allows further grouping of associative operators while
at the same time preventing the creation of false symmetries. Unfortunately, as

Fig. 6 Graph of CSP
({x, y}, {1, 2, 3}, {x + 1 > y}).
Node x = 1 represents
2 = +1(1), and x = 2
represents 3 = +1(2)

Constraints (2009) 14:443–477 453

Fig. 7 Graph of CSP
({x, y, z}, {{1, 2}, {1, 2}, {1}},
{x + z
= y, y + z
= x})

mentioned before, this preprocessing only reduces the problem instead of eliminating
it, since the intermediate variables can still prevent some symmetries from being
captured by the graph, even after performing all the preprocessing steps indicated
above.

Example 6 Consider the CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x + z
= y, y + z
= x}).
This CSP has a variable symmetry 〈x, y〉 ↔ 〈y, x〉, and a value symmetry 〈1, 2〉 ↔
〈2, 1〉, for both x and y. The expressions in the two constraints are represented by
t1 = x + z and t2 = y + z. The associated extensional graph is shown in Fig. 7, with
grey and black constraint nodes linking assignment nodes for equality and disequality
constraints, respectively. It can be seen that the graph captures the variable symmetry
(achieved by reflecting the graph in a vertical axis positioned over value node 1 of z),
but not the value symmetry (which would be achieved by reflecting the graph in a
horizontal axis positioned in between value nodes 1 and 2 of x and y).

The above discussion highlights the considerable influence that the constraint syn-
tax bears on the resulting graph. Since the same constraint can usually be expressed
in several equivalent ways, it would seem advantageous to determine which normal
form would yield a graph that captures the greatest number of symmetries. It was
while trying to determine such a normal form that we decided to abandon the above
method, since it not only generated too many intermediate variables (as already
indicated by Puget), but it could also easily result in symmetries being missed due
to the use of a particular syntax.

2.5 Representing sets

Sets are used in modelling many problems—arguably most problems coming from
the real-world. Consider a set variable xi ∈ X known to be a subset of set S.
Its domain Di is equal to the power-set of S, i.e., Di = {S′|S′ ⊆ S}. In any graph
representation which includes value, or literal, nodes, a node is therefore required for
every element of the power set, and this leads to large graphs. Using the extensional
method (c.f. Fig. 4b) the graph has one variable node and 2|S| value nodes (e.g.,
if S = {1, 2, 3, 4} the graph contains 1 variable node for xi and 16 value nodes
representing values {}, {1}, {2}, . . . , {2, 3, 4}, and {1, 2, 3, 4}). Set constraints are then
extensionally represented as usual by using their allowed or disallowed assignments.

An alternative approach is to use a Boolean representation, (c.f. Fig. 4c). Then,
rather than using each element in the powerset of S to create a value node, we
would use each element in the set, i.e., we would obtain |S| + 1 nodes where one
node represents the empty set, and ∀d ∈ S there is a node representing di ∈ xi (e.g., if

454 Constraints (2009) 14:443–477

a b

Fig. 8 Different representations for set constraint |(s1 ∩ s2) ∪ s3| = 2

S = {1, 2, 3, 4} the graph contains 5 nodes representing xi = {}, 1 ∈ xi, 2 ∈ xi, 3 ∈ xi,
and 4 ∈ xi). A constraint on the set is represented by its allowed assignments. A set is
represented, in an assignment, by its elements. Thus the assignment includes all the
elements which belong to the allowed set, (or the empty set if there are none). The
constraint is, as usual, the disjunction of the represented assignments. In the graph,
a constraint is represented by a constraint node and a node for each of its allowed
assignments. The assignment node is then linked to each of the nodes representing
an element in the allowed set, or the node representing the empty set, if there are
none. This Boolean representation results in fewer nodes but more edges.

The significance of these alternative representations for our implementation is
shown in Section 5.1 below.

Example 7 Figure 8a, b show the two alternative graphs obtained for CSP ({s1, s2, s3},
D, {|(s1 ∩ s2) ∪ s3| = 2}) where Ds1 = Ds2 = {{}, {1}, {2}, {1, 2}}, and Ds3 = {{}, {1}}.

3 A new graph representation

3.1 Allowed and disallowed assignments

Instead of using intensional constraints or factoring out expressions with temporary
variables, we believe it is cleaner and simpler to return to extensional constraints.
An important motivation for us is to eliminate different “kinds” of constraints,
which have different colours and stick to just two kinds: constraints represented
extensionally by allowed and by disallowed assignments. When seen in this light,
it becomes clear that we can avoid the representation of temporary variables and
constants by absorbing expressions into the constraint in which they appear. We also
decided to drop variable nodes and, instead, use literal nodes rather than value nodes.
The consequences of this will be discussed in Section 3.3 below.

Example 8 Consider the CSP ({x, y, z}, D, {x + y > z},) where Dx = Dy = {1, 2}
and Dz = {1, 2, 3}. The ternary constraint x + y > z can simply be represented
extensionally by its set of allowed assignments, {{x = 1, y = 1, z = 1}, {x = 1,

Constraints (2009) 14:443–477 455

Fig. 9 Representing
expressions as allowed
assignments

y = 2, z = 1}, {x = 1, y = 2, z = 2}, {x = 2, y = 1, z = 1}, {x = 2, y = 1, z = 2}, {x =
2, y = 2, z = 1}, {x = 2, y = 2, z = 2}, {x = 2, y = 2, z = 3}}, all linked to an addi-
tional constraint node, as illustrated by Fig. 9.

We would like to simplify the graph further by eliminating the constraint nodes.
This, however, cannot be achieved if the CSP contains at least two constraints c1, c2 ∈
C such that c1
= c2 and vars(c1) = vars(c2). This is because while each constraint
must be interpreted as the union of its allowed assignments, their conjunction
must be interpreted as the intersection of the set of assignments allowed by each.
Without constraint nodes, the graph cannot distinguish between the set of assignment
nodes representing c1 ∧ c2 and that representing c1 ∨ c2. By contrast, representing
c1 ∧ c2 by their disallowed assignments is correct and unambiguous even without
constraint nodes. This is because the set of disallowed assignments {A11, . . . , A1s}
and {A21, . . . , A2t} for c1 and c2, respectively, is interpreted as the conjunction of all
their disallowed assignments, i.e., ¬A11 ∧ . . . ¬A1s ∧ ¬A21 ∧ . . .¬A2t.

Example 9 Figure 10a, b show the graphs obtained by representing the disallowed
assignments of the constraints in CSPs (X, D, C) and (X, D, C′), respectively, where
X = {x, y}, Dx = Dy = {1, 2}, C = {x > y, x < y}, and C′ = {x
= y}. It is clear that,
without the constraint nodes, the graphical representation of these two CSPs are
indistinguishable, even though while the first CSP has no solutions, the second has
two. The confusion is due to x
= y being logically equivalent to (x > y ∨ x < y).
Figure 10c, d show the graphs obtained by representing the disallowed assignments
of the constraints (note that, for clarity, identical assignments disallowed by different
constrains have been merged). As it is clear from the figure, the graphs are perfectly
distinguishable even though constraint nodes are not represented.

The simplicity of this method is pleasing since it eliminates problems such as the
explicit representation of constants (which is now avoided regardless of whether the
constant appears as a constraint argument or not), the normalisation required when
multiple occurrences of a variable appeared in a constraint (such as A×A=1, which
can now be easily treated by computing the values of A for which the constraint
is satisfied), the problem of associative and non-symmetric operands appearing in
the same constraint, and in general, any such normalisation issue affecting a single
constraint. For instance, Fig. 11 shows the graph obtained for the CSP of Example 6
using the new representation method.2 The elimination of temporary variables yields
a graph that has not only the variable symmetry 〈x, y〉 ↔ 〈y, x〉, but also the value
symmetry 〈1, 2〉 ↔ 〈2, 1〉 for both x and y.

2Note that, for simplicity, only the leftmost (topmost) literal nodes are labelled with the associated
value (variable), which is shared by all literal nodes at the same horizontal (vertical) level.

456 Constraints (2009) 14:443–477

Fig. 10 Graphs using allowed
(a, b) and disallowed (c, d)
assignments

a b

dc

The method also avoids syntactical issues regarding constraints whose name
appears to be different but is actually equivalent (e.g., x < y and z > w should be
considered as constraints of the same kind). However, some problems remain when
a CSP has two constraints with identical scopes (see Section 3.3).

3.2 Disallowed assignments and the microstructure complement

Given the above discussion, it would seem advantageous to represent a CSP using
only its disallowed assignments. Let us consider the advantages and disadvantages of
such an approach.

Definition 1 A CSP (X, D, C) is represented by the disallowed assignments graph if
the graph contains two kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific
variable

• Assignment nodes, each representing either a disallowed assignment from any
constraint in C, or a (disallowed) pair of distinct literals {x = a, x = b} for all
x ∈ X and all a, b ∈ Dx such that a
= b

All literal nodes have one colour and all assignment nodes have another. The graph
contains an edge from each assignment node to each of the literals involved.

Example 10 Figure 12 illustrates the disallowed assignments graph for the three-
and four-queens problems (with disallowed disequality assignments shown as small
black nodes). Note the need to represent the disallowed pairs of distinct literals

Fig. 11 Graph for CSP
({x, y, z}, {{1, 2}, {1, 2}, {1}},
{x + z
= y, y + z
= x})

Constraints (2009) 14:443–477 457

Fig. 12 Graph for instances of
N-queens using disallowed
tuples

a b

for each variable, to capture all the symmetries of the chessboard. While they are
also captured by Puget’s Boolean representation, the variable nodes do not allow
Puget’s extensional representation to capture the non-compositional variable-value
symmetries that indicate a rotation of the chessboard.

The disallowed assignments graph is similar to the microstructure complement
introduced by Jégou [9] and extended by Cohen et al. [2]. Given a CSP (X, D, C),
its microstructure is a hypergraph with a node for each literal xi = di such that
xi ∈ X, di ∈ Di, and a hyperedge for every assignment allowed either by a specific
constraint, or by the lack of a constraint between the variables involved. The
microstructure complement is the complement of this graph; i.e., the hyperedges
represent assignments that are not allowed either by a constraint or by the fact that
the literals belong to the same variable.

The only difference between the disallowed assignments graph and the mi-
crostructure complement is that each disallowed assignment is represented by an
assignment node and the literals linked to it, whilst the microstructure complement
represents a disallowed assignment by a single hyperedge linking the literals.

The main drawback of both the microstructure complement and the disallowed
assignments graph is their size. Firstly, they have, in general, more nodes than
necessary. Every value for every variable is represented as a node, although many
of these nodes could never appear in a solution (techniques for pruning nodes
will be discussed below). And secondly, the number of hyperedges (or assignment
nodes) in the graph is high. A mathematical equation, such as x = 2y + z requires
approximately d3 hyperedges, where d is the size of the domains of x, y and z.
While for some constraints the set of disallowed assignments is the most compact
way to represent the constraint, many others, such as mathematical equations, are
much more compactly represented by their allowed assignments. Moreover, the
microstructure complement requires d2 edges to disallow multiple assignments for
a variable in the CSP with domain size d. Thus for n variables, nd2 edges are needed.
While this number could be kept to nd using intensional constraints, as described be-
fore, this would limit the symmetry possibilities, making non-compositional variable-
value symmetries unlikely. Therefore, in the next section we consider an alternative
graph in which only allowed assignments are represented explicitly.

458 Constraints (2009) 14:443–477

3.3 Allowed assignments and the microstructure

The definition of the microstructure provided in the previous section suffers from
a flaw caused by the same reason that prevented us in Section 3.1 from eliminating
constraint nodes for allowed assignments: if two or more constraints have the same
scope, then the set of hyperedges over that scope represents the disjunction, instead
of the conjunction, of the constraints. This flaw can be easily fixed, however, by
a preprocessing step which replaces each set of constraints that have the same
scope by a new constraint whose allowed assignments are those that satisfy all
constraints. From now on, we will assume that every CSP (X, D, C) has already
been preprocessed and, therefore, it is true that for every two distinct constraints
c1, c2 ∈ C : vars(c1)
= vars(c2).

Unfortunately, there is another serious drawback to using the microstructure:
the inclusion of a hyperedge for each assignment “allowed because there is no
constraint between the associated variables”. Assuming there are n variables in
the CSP (X, D, C), there will be 2n subsets of X, with each subset Xi being
either equal to vars(c) for some c ∈ C, or unconstrained. An unconstrained set of
variables {xi, · · · , x j} has |Dxi | × . . . × |Dx j | allowed assignments. Since the number
of constraints is typically much smaller than 2n, the number of hyperedges in the
microstructure is typically very large indeed.

We seek a graphical representation of the CSP that has a small number of edges,
but for which graph automorphisms correspond to solution symmetries. Luckily, it
turns out not to be necessary to add allowed assignments for every set of variables
that do not form the scope of a constraint in the CSP. It is sufficient to add allowed
assignments for each pair of distinct variables which do not both belong to the scope
of a constraint.

If (X, D, C) is a CSP, its binary constraint completion, BC, is the set of binary
constraints whose scopes are the pairs of distinct variables xi, x j ∈ X for which there
is no constraint c ∈ C with {xi, x j} ⊆ vars(c) - i.e., the constraints in BC are logically
equivalent to true.

Definition 2 A CSP (X, D, C) is represented by the allowed assignments graph if the
graph contains two kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific
variable

• Assignment nodes, each representing an allowed assignment from a constraint in
C ∪ BC.

All literal nodes have one colour and all assignment nodes have another. The graph
contains an edge from each assignment node to each of the literals involved.

Lemma 1 Every automorphism f of an allowed assignments graph for CSP (X,

D, C) represents a solution symmetry.

Proof Let S be a solution to the CSP. We will prove that f (S) is also a solution by
first showing it is a complete assignment, and then showing it satisfies each constraint
in C.

Constraints (2009) 14:443–477 459

Let lit1 and lit2 be two distinct literals in S. Then, {var(lit1), var(lit2)} ⊆ vars(c) for
some c ∈ C ∪ BC. Since S is a solution, it satisfies c and, therefore, {lit1, lit2} ⊆ A for
some assignment A allowed by c. As a result, they must both be linked to at least
one allowed assignment node n. By the definition of automorphism, { f (lit1), f (lit2)}
are linked to f (n), which means they also belong to an assignment allowed by
some constraint c′ ∈ C ∪ BC. By the definition of an allowed assignment, var(lit1)
=
var(lit2) and var(f (lit1))
= var(f (lit2)). Since this holds for every pair of literals in
S and f (S), we have that card(f (S)) = card(S) = card(X), and we have shown that
f (S) is a complete assignment.

Let us now show that every constraint in C is satisfied by f (S). If there are m con-
straints in C, then there are m subsets of S which correspond to allowed assignments.
Let c1, c2 ∈ C be two different constraints and A1, A2 ⊆ S be assignments allowed by
c1 and c2, respectively. By assumption of the preprocessing step, vars(c1)
= vars(c2).
Also, by definition of automorphism, the image f (A) of any allowed assignment
A is also an allowed assignment and, therefore, for every two distinct literals
lit1, lit2 ∈ A we have var(lit1)
= var(lit2) and var(f (lit1))
= var(f (lit2)). Therefore,
if v ∈ vars(c1) \ vars(c2), and v = var(lit) with lit ∈ A1, then var(f (lit)) is not in the
set of variables over which f (A2) is an assignment. It follows that f (A1) and f (A2)

are allowed assignments over distinct sets of variables and, therefore, they belong to
two different constraints. This means that f (S) also satisfies m distinct constraints
and, therefore, all constraints in C. Since f (S) is a complete assignment, it must also
be a solution. ��

Figure 13 shows a CSP where, if the BC is excluded, the graph has automorphisms
that are not solution symmetries.

3.4 A graph including allowed and disallowed assignments

We now present a new graph representation for CSPs that does not require all
constraints to use the allowed (or disallowed) assignments and, thus, permits dif-
ferent constraints to use different assignments. The representation takes many ideas
from the work of Puget [13] but is also closely related to the microstructure and
microstructure complement of Cohen et al. [2]. As before, our graph representation
of a CSP (X, D, C) has a node for every literal (and, thus, for every value of the
domain of every variable in X). However, we now admit both allowed assignments
and disallowed ones, distinguished by different colours.

We call an allowed constraint one that is represented by all its allowed assign-
ments, and a disallowed constraint one represented by all its disallowed assignments.

Fig. 13 CSP ({x, y, z}, {1, 2, 3}, {x < y}). The graph has the automorphism 〈x = 3〉 ↔ 〈z = 3〉, which
is not a solution symmetry

460 Constraints (2009) 14:443–477

Definition 3 A CSP (X, D, C) is represented by the full assignments graph if the
graph contains three kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a specific
variable

• Allowed assignment nodes, representing an allowed assignment from a constraint
in C

• Disallowed assignment nodes, either representing a disallowed assignment from
a constraint in C, or a (disallowed) pair of distinct literals {x = a, x = b} for all
x ∈ X and all a, b ∈ Dx such that a
= b .

All literal nodes have one colour, all allowed assignment nodes have another, and
all disallowed assignment nodes have a third. The graph contains an edge from each
assignment node to each of the literals involved.

Two conditions are imposed to ensure that graph automorphisms correspond to
solution symmetries.

1. Each constraint must be either allowed or disallowed
2. Either:

• every pair of variables is in the scope of an allowed constraint (i.e., ∀x, y ∈
X, x
= y : ∃c ∈ C, x, y ∈ vars(c)), or

• every pair of literals within a variable is linked by disallowed assignments, for
all variables (i.e., ∀x ∈ X, ∀a, b ∈ Dx, a
= b : ∃ an assignment node linking
literal nodes x = a and x = b)

Lemma 2 Every automorphism f of the full assignments graph for CSP (X, D, C)

represents a solution symmetry.

Proof Let S be a solution to the CSP. We will prove that f (S) is also a solution by
first showing it is a complete assignment, and then showing it satisfies each constraint
in C.

If every pair of variables is in the scope of an allowed constraint, then this is
proved in Lemma 1 above. Otherwise, for each variable, all its pairs of literals are
linked by disallowed assignments. Let us reason by contradiction and assume that
f (S) is not a complete assignment. Then, there must be two literals, say f (lit1) and
f (lit2), for the same variable. Therefore, { f (lit1), f (lit2)} must be linked to one binary
disallowed assignment node and, by the definition of automorphism, {lit1, lit2} must
also be linked to a binary disallowed assignment node. But this is impossible since
they belong to a solution. We conclude that f (S) must be a complete assignment.

Let us now show that every constraint in C is satisfied by f (S). If there are m
constraints in C, represented by allowed assignments, then it follows, as in the proof
of Lemma 1 above, that f (S) also includes allowed assignments from m different
constraints, and therefore f (S) satisfies all the constraints in C represented by al-
lowed assignments. Otherwise, if f (S) includes a set of literals linked to a disallowed
assignment, then so must S have, which would contradict S being a solution. We
conclude that f (S) is a complete assignment that satisfies all the constraints and,
therefore, it is a solution. ��

Constraints (2009) 14:443–477 461

Fig. 14 Full assignments graph
of CSP ({x, y, z}, {1, 2, 3},
{x < y, y < z})

Lemma 3 Not every solution symmetry for a CSP (X, D, C) is an automorphism f of
its full assignments graph.

Proof It is easy to prove the lemma by contradiction. Consider the CSP ({x, y, z},
{1, 2, 3}, {x < y, y < z}) whose only solution is {x = 1, y = 2, z = 3}. While this CSP
has the solution symmetry 〈x = 2, x = 3〉 ↔ 〈x = 3, x = 2〉, this is not a constraint
symmetry since it maps the allowed assignment {x = 2, y = 3} of constraint x < y to
the disallowed assignment {x = 3, y = 3}. It is clear from its full assignment graph
(Fig. 14) that the solution symmetry is not an automorphism of the graph either. ��

While supporting both allowed and disallowed assignments makes it possible to
reduce the size of the graph, it might lead to a loss of constraint symmetries. This can
occur even if we consistently represent constraints using the method that ensures the
minimum number of assignments.

Example 11 Consider the CSP ({x, y, z}, {1, 2, 3}, C), where C = {c1(z, y), c2(x, y),

x = z}, c1 = {1, 2} × {1, 2, 3} and c2 = {1} × {1, 2, 3}. This CSP contains a solution
symmetry, 〈x = 1〉 ↔ 〈z = 1〉. As illustrated by Fig. 15, if this CSP is represented
using only disallowed assignments or only allowed assignments, the symmetry is
present in the graph. However, if we use the representation with the smallest graph
(disallowed assignments for c1(z, y) and allowed assignments for c2(x, y) and x = z),
then that symmetry is not present in the graph.

Lemma 4 All results proven for a full assignments graph hold for the allowed and
disallowed assignments graphs.

a b c

Fig. 15 Symmetry 〈x = 1〉 ↔ 〈z = 1〉 is not present in (c) (see Example 11)

462 Constraints (2009) 14:443–477

Proof Immediate since, by definition, any allowed (disallowed) assignments graph
is an instance of a full assignments graph in which only allowed (disallowed)
assignments are used for representing constraints. ��

4 Reducing graph size

While the full assignment graph might result in smaller graphs than those obtained
using only allowed or only disallowed assignments, even the full assignments graphs
tend to be rather large (see Table 1 for size data). For example, the number of nodes
in the full assignment graph of a CSP is the sum of:

• the number of literals, which is the product of the variable domain sizes
• the number of allowed assignments for constraints and its binary constraint

completion, if these are explicitly represented

Table 1 Graph sizes

Instance Graph details

Puget’s (Ext) Puget’s (Bool) Ours

Nodes Edges Nodes Edges Nodes Edges Gens

bibd-3-3-1-1-0 216 477 216 477 141 297 4
bibd-6-10-5-3-2 23,737 243,576 23,737 243,576 3,857 26,730 14
golf-2-2-2 1,722 4,670 1,722 4,670 1,034 2,640 6
golf-2-2-3 25,242 73,854 25,242 73,854 10,650 29,344 8
golf-2-3-2 62,841 184,515 62,841 184,515 24,762 68,109 10
golf-3-2-2 4,245 11,667 4,245 11,667 2,703 7,374 8
golomb-4 1,245 3,332 1,006 2,708 2,484 5,456 1
golomb-5 4,815 13,505 3,670 10,380 9,380 21,250 1
golomb-6 14,658 42,072 10,809 31,272 27,978 64,422 1
golomb-7 37,632 109,424 27,181 79,583 70,665 164,297 1
graceful-3-2 1,626 4,380 1,085 3,000 2,235 5,070 4
graceful-5-2 27,160 78,520 17,897 52,520 38,155 91,390 5
latin-10 11,000 28,000 1,300 3,000 14,500 27,000 27
latin-11 15,972 41,261 1,694 3,993 21,296 39,930 30
latin-12 22,464 58,752 2,160 5,184 30,240 57,024 33
latin-13 30,758 81,289 2,704 6,591 41,743 79,092 36
latin-14 41,160 109,760 3,332 8,232 56,252 107,016 39
mostperfect-4 – – – – 80,704 314,112 5
nnqueens-4 460 976 152 304 464 800 5
nnqueens-5 1,110 2,525 270 605 1,175 2,100 6
nnqueens-6 2,282 5,436 432 1,056 2,496 4,560 7
queens-10 1,265 3,160 154 396 1,570 2,940 2
queens-20 9,730 26,620 514 1,596 12,940 25,080 2
queens-30 32,395 91,380 1,074 3,596 44,110 86,420 2
queens-40 76,260 218,440 1,834 6,396 105,080 206,960 2
steiner-5 3,282 9,276 3,282 9,276 2,115 5,904 6
steiner-6 41,975 123,090 41,975 123,090 22,440 65,850 9
steiner-7 347,760 1,032,689 347,760 1,032,689 154,294 459,557 12

Constraints (2009) 14:443–477 463

• the number of disallowed assignments for constraints, and for pairs of literals
from the same variable, if these are explicitly represented

The following subsections describe some general methods that help reduce the
size of the graph.

4.1 Minimising the number of assignment nodes

In the worst case, a constraint over k variables may need to be represented in the
full assignment graph by O(dk) allowed or disallowed assignment nodes, where d is
the size of the smallest domain. A way to minimise the number of assignment nodes
is to keep k as small as possible. Consider for example an all_different constraint
on k variables, where d is larger than k. Using allowed assignments the graph
representation requires d × (d − 1) × . . . × (d − k − 1) assignment nodes or O(dk).
Using disallowed constraints the number is O(d(k−1)). However, when split into
k × (k − 1) binary constraints, the total number of disallowed assignments is d per
binary constraint, making a total of O(k2 × d).

Breaking down each constraint into a logically equivalent conjunction of con-
straints with as small scope as possible, has a very useful side-effect: it will tend to
increase the number of constraints with the same scope, which can be integrated
(during the preprocessing step) into a single constraint, thereby increasing the
number of detected symmetries.

Example 12 Consider the CSP ({x1, x2, x3, x4}, {1, . . . , N}, {all_different(X), x2
=
x4}), where all_different is represented using N disallowed assignments nodes.
Then, the representation of x2
= x4 will limit the symmetries of the graph to those
generated by 〈x1, x3〉 ↔ 〈x3, x1〉 and 〈x2, x4〉 ↔ 〈x4, x2〉. Thus, symmetries such as
〈x1, x2〉 ↔ 〈x2, x1〉 will be lost since they do not correspond to automorphisms of
the associated graph. However, if all_different is represented by the disallowed
assignments of the equivalent constraint {xi
= x j|1 ≤ i < j ≤ 4}, all variable symme-
tries are present in the graph. Figure 16 shows the graphs associated with the two
representation of the CSP for N = 1.

Note that we can also represent the all_different constraint extensionally using
only O(d.k) nodes. Suppose we order the k variables in the constraint, v1, . . . , vk. We
will use Boolean variables bjc to represent v j = c. We now introduce, for each value
c, k new Boolean variables t jc : j ∈ 1..k. t jc is true (1) if any of b1c, . . . , bjc are true.
t1c = b1c and for each j ∈ 2..k there is a constraint with scope t j−1,c, bj,c, t j,c defined by
three allowed assignments: < 1, 0, 1 >, < 0, 1, 1 >, < 0, 0, 0 >. There are just k such
constraints for each value c, and each constraint has just three assignments, so the
total number of edges required is 3.d.k which is O(d.k). While this representation is
also very compact, it has the same problem as the Boolean representation proposed
by Puget: it might lead to a loss of symmetry detection if it has to interact with

Fig. 16 Representing
all_different using n-ary and
binary constraints

a b

464 Constraints (2009) 14:443–477

that obtained for other kinds of constraints. We have therefore not used it in our
implementation.

If all constraints represented in the graph have less than k variables in their scope,
then the number of edges is less than nk where n is the number of nodes. Moreover,
as pointed out in by Cohen et al. [2], by adding enough disallowed assignments
over k variables it is possible to create a (microstructure complement) graph whose
automorphisms represent all solution symmetries of the CSP. Their proof is easily
adapted to show the same holds true of the full assignment graph.

This result gives an upper bound on the size of the graph needed to capture all
the solution symmetries of a given CSP. It follows that representing constraints by an
equivalent conjunction of constraints of minimum possible arity, we achieve a lower
bound on this worst case. Naturally, it remains an NP-hard problem to elicit all the
disallowed assignments, but we at least have a theoretical upper bound on the size of
the smallest graph that captures all the symmetries of the problem.

4.2 Minimising the number of literal nodes

CSPs can be simplified by using standard propagation techniques which reduce the
domains of the variables and, thus, the number of literal nodes which appear in the
full assignment graph. Correct simplifications to achieve node- and arc-consistency
are well-known, and yield a new CSP that has the same set of solutions as the original
one. Indeed, consistency algorithms were first devised for improving the efficiency of
picture recognition programs, to reduce the size of the graph, which is exactly what
we are seeking to do!

Perhaps surprisingly, these methods can also yield a loss of detected symmetries,
i.e., they can exclude graph automorphisms which were present in the graph G of
the original CSP but are eliminated from the graph G′ of the simplified CSP. In
particular, graph G may have an automorphism that maps a literal lit onto another
literal f (lit), while G′ has node lit but not f (lit).

Example 13 Consider the CSP ({x, y, z}, {1, 2, 3}, {x ≥ y, x
= y, z > y}). While
arc-consistency will eliminate value 1 from Dz and 3 from Dy (due to con-
straint z > y), the domain of x will remain unchanged after achieving arc-
consistency (since all its values are supported), obtaining the arc-consistent CSP
({x, y, z}, {{1, 2, 3}, {1, 2}, {2, 3}}, {x ≥ y, x
= y, z > y}). If we now choose to repre-
sent each constraint of the original CSP by its disallowed assignments, the graph has
an automorphism corresponding to the variable symmetry 〈x, z〉 ↔ 〈z, x〉. However,
the graph associated with the arc-consistent CSP no longer has this (or any) variable
symmetry.

We have already motivated the need to merge all constraints with the same scope
before generating the graph associated with a CSP. Such a merging for the previous
example would have ensured that value 1 was also removed from Dx, thus preserving
the variable symmetry between x and z. If we assume this preprocessing step has
been carried out, we can show that any algorithm which achieves arc-consistency
preserves all the variable and value symmetries that were present in the original CSP.

Constraints (2009) 14:443–477 465

We now consider n-ary arc-consistency. A CSP is n-ary arc-consistent if every
value di of every variable xi is supported in every constraint c with xi in its scope,
because there is a tuple of values, each from the domain of its variable, which is
allowed by c and assigns di to xi.

Lemma 5 Let f be an automorphism of the full assignment graph for a CSP (X, D, C)

whose constraints all have distinct scopes. If f represents a variable or a value
symmetry, then the graph of the n-ary arc-consistent version of the CSP has an
automorphism representing the same symmetry as f .

Proof Let lit(xi) be the set of literals associated with a variable xi ∈ X. By as-
sumption, f is a variable or value symmetry and, therefore, ∀xi ∈ X, ∃x j ∈ X such
that lit(x j) = f (lit(xi)) and lit(xi) = f (lit(x j)). Also, ∀c ∈ C, each assignment A over
vars(c) has an image assignment f (A) over the variables { f (x) : x ∈ vars(c)}, which
we will write f (vars(c)). Since each assignment in c has an image over the same set
of variables f (vars(c)), and since each constraint has a different scope, we can call
f (c) the unique constraint over f (vars(c)). This constraint has the same number of
tuples as c. Also, if c is an allowed constraint then so is f (c), and if c is a disallowed
constraint then so is f (c). Note, finally, that since f is a one-to-one mapping of
constraints, each constraint c ∈ C is the image of another constraint c′ ∈ C, i.e.,
c = f (c′).

The proof will show that if f is a graph automorphism satisfying this condition,
then a literal lit will be unsupported if and only if its image f (lit) under the
automorphism is also unsupported, and it will be supported by constraint c if and only
if its image f (lit) is also supported by f (c). This shows that every such automorphism
is preserved after establishing arc-consistency on the CSP. Let us first show that lit
will be supported by constraint c if and only if its image f (lit) is also supported
by f (c). The property clearly holds if c is an allowed constraint, by definition of
automorphism. If c is a disallowed constraint, then lit is supported if there is an
assignment A over vars(c), whose literals belong to the current domains of their
variables. Suppose the literals in f (A) were linked to a disallowed assignment node,
then A would be a disallowed assignment, which is false. Therefore, the literal nodes
in f (A) are not linked to a disallowed assignment node, and so f (A) provides
support for f (lit) with respect to f (c). In the other direction, if A′ provides support
for f (lit) with respect to f (c), then there exists f (A) = A′ and, by the same proof,
A provides support for lit with respect to c.

To complete the proof, if lit is unsupported, then it has no support with respect to
some constraint c and, therefore, f (lit) has no support with respect to f (c). If f (lit) is
unsupported, it has no support with respect to some constraint c′; c′ = f (c) for some
constraint c; and lit has no support with respect to c. ��

Having established that n-ary arc-consistency preserves variable and value sym-
metry, we show that there are other literal symmetries that are not preserved after
establishing arc-consistency.

Example 14 Consider the CSP ({x, y, z}, {1, 2, 3}, C), where C = {x
= y, y
= z, x
=
z, con(x, y), con(z, y)}, and con is defined by the following disallowed assignments:
{〈2, 1〉, 〈2, 3〉}.

466 Constraints (2009) 14:443–477

Fig. 17 CSP with rotational
symmetry

The disallowed assignments graph, illustrated in Fig. 17, admits the ro-
tational symmetry: 〈x = 1, x = 2, x = 3, y = 1, y = 2, y = 3, z = 1, z = 2, z = 3〉 ↔
〈z = 1, y = 1, x = 1, z = 2, y = 2, x = 2, z = 3, y = 3, x = 3〉. The literal node x = 2
can be removed because it is incompatible with every value of the variable y.
However, the node y = 1 cannot be removed because it is compatible with x = 3 and
with z = 3. Our pruning procedure only removes two literal nodes x = 2 and z = 2
from the graph, and the disallowed assignments that contain them. As a result, the
pruned graph no longer has the rotational symmetry exhibited by the original graph.

4.3 Combining both techniques to prune the graph

We briefly describe the method to reduce the number of nodes in the full assignment
graph. The method can logically be divided into three steps:

1. Rewrite the input CSP eliminating expressions and structured objects
2. Establish arc-consistency
3. Map the resulting CSP into a full assignment graph

In practise, the third and first steps are integrated, while arc-consistency is estab-
lished within the graphical representation. As indicated in Section 3.1, constraints
involving expressions are eliminated by simply flattening them into the required set
of variable assignments.

The effect of pruning can be dramatic when eliminating literals of set variables
that were represented using the extensional representation. This is indeed the case
for cardinality constraints of the form |xi| = I, where I is an integer constant, since
assignment nodes can then only be created for literals xi = di for which |di| = I.

Example 15 Consider the CSP (X, D, C) where X = {s1, s2}, Ds1 = Ds2 = {{}, {1},
{2}, {1, 2}} (that is, s1, s2 ⊆ {1, 2}) and C = |s1 ∩ s2| = 1. The graph of this CSP using

Fig. 18 Pruning unnecessary
values

Constraints (2009) 14:443–477 467

the extensional representation is shown in Fig. 18. As can be seen in the figure, none
of the assignments that satisfy the constraint involves s1 = {} or s2 = {}. The literal
nodes associated with these literals can thus be removed from the graph.

From a theoretical point of view, it is advantageous for the CSP on which the
arc-consistency algorithm is applied to include global constraints with many vari-
ables in their scope. This is because establishing arc-consistency on an all_different
constraint is more powerful—and prunes more domain values—than on the set of
binary disequalities that are logically equivalent to it. From a practical standpoint,
however, there are very few implementations of propagation on complex global
constraints, such as the cumulative, or cycle constraint, that establish arc-consistency.
Consequently, there is no guarantee for the properties of preserving variable or value
symmetries to be preserved by current implementations of global constraints.

More work will be needed to establish a real understanding of the trade-offs
between the extra pruning due to global constraint propagation, and any loss of
symmetries that may result. What seems clear is that once the arc-consistency has
been established, constraints should be rewritten and expressed using a logically
equivalent representation with minimal constraint scopes. An automated system to
perform this rewriting is future work.

5 Experimental evaluation

5.1 Implementation

We have implemented an automatic symmetry detection system for the subset
of ECLiPSe programs [1] that only use finite domain and/or set constraints. The
main components of this system are depicted in Fig. 19, with ovals representing
input/output files, white rectangles representing system components, and shaded
rectangles indicating external components used by the system.

The first component is an ECLiPSe library that receives as input the ECLiPSe

program (possibly divided into the model file and the data file) and outputs a text file
containing the set of (syntactic) constraints that would be posted to the solver during
the execution of the program.

This file is, in turn, processed by a graph generator that obtains, for each constraint
in the text file, three possible graph representations: the full assignments graph, a
version of Puget’s extensional graph, and a version of Puget’s Boolean graph. This is
done as follows. For the full assignments graph, equality constraints are represented
by their allowed assignments, disequality constraints by their disallowed assignments,
the all_different constraint is split into the equivalent conjunction of binary dise-
qualities, sets are represented using the extensional representation, and cardinality
constraints are represented using their allowed assignments. No other kinds of
constraints are needed to represent all our benchmarks. For Puget’s extensional
representation, equality, disequality, sets and cardinality constraints are represented
as before, the all_different constraint is represented using its disallowed assignments,
expressions of the form op(x) where x occurs only once are treated specially, and
any other expression is treated using temporary variables as described in Section 2.4.
Finally, for Puget’s Boolean representation, each benchmark is converted into a

468 Constraints (2009) 14:443–477

Fig. 19 System design

Boolean representation as indicated by Section 2.3. Constraint nodes for the original
constraints and variable nodes for the original variables are not created.

Note that while generating the text file significantly slows down the process, it
allows us to easily explore different alternatives for constructing the graph.

The resulting graph is input to the graph automorphism package Saucy [4] which
returns the generating set of the automorphism group. One minor point must be
considered: graph automorphism packages consider a graph to be labelled by non-
negative integers, whereas our graph nodes have more descriptive labels. Therefore,
our system creates a map from graph labels (e.g. x = 2) onto integers. This map is also
used to convert the numeric labels of the automorphisms found back into descriptive
graph labels, thus representing the symmetries in a more intuitive form.

Example 16 Consider the literal nodes of the graph shown in Fig. 20 for the four-
queens problem. The label (xi = di) of each literal node is mapped to the positive
integer shown within each node (for simplicity, the mapping for assignment nodes is
omitted). For this graph, the output of Saucy (omitting the assignment nodes) is:

(1 4)(2 8)(3 12)(6 9)(7 13)(11 14)
(0 3)(1 2)(4 7)(5 6)(8 11)(9 10)(12 15)(13 14)

Constraints (2009) 14:443–477 469

Fig. 20 Literal nodes of
four-queens

Each line represents one symmetry and each pair of numbers represents a
swap of nodes. The first line corresponds to the diagonal variable-value sym-
metry: 〈Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4, Q3 = 1, Q2 = 1, Q1 =
1, Q2 = 2, Q1 = 2, Q1 = 3〉 ↔ 〈Q3 = 1, Q2 = 1, Q1 = 1, Q2 = 2, Q1 = 2, Q1 = 3,

Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4〉. The second line corresponds
to the value symmetry 〈1, 2〉 ↔ 〈4, 3〉, for each queen. These two generators can be
composed to form the group that represents the eight symmetries of a square.

Although we conducted most of our experiments using Saucy to find graph
automorphisms, our implementation is not tied to any particular package. Any graph
automorphism package could be used in its place, such as Nauty [10] or AUTOM
[13]. For instance, we have successfully tested Nauty with our implementation. We
would have liked to have used the faster AUTOM [13], but it is not publicly available.

Section 2.3 described two possible ways of representing set variables: using an
extensional and a Boolean representation. We use the former when evaluating
the extensional meaning of constraints and when pruning, and the latter when
producing a graph to be searched for automorphisms. This is because the latter yields
automorphisms which reflect permutations of the possible elements rather than of
the possible sets themselves, a form more suitable to be used as input to symmetry
breaking packages such as GAP-SBDS [7].

Once the symmetries of a CSP have been found, they can be used to aid a search
for the CSP’s solutions. While the symmetries detected by our system are only of
interest to us as stepping stones towards model-based symmetries, we wanted to
connect our current system to ECLiPSe and GAP-SBDS to make sure everything
was working properly. The automatic coupling of symmetry detection and symmetry
breaking is complicated by the distinction between model and instance. Since the
symmetries detected by our system are not applicable to the model, the system
creates a new program composed of the original model, the goal that specifies the
parameter values used as data for this instance, the symmetries that apply to the
instance, and the search predicate that will be used to find a solution. This program
can then be executed in ECLiPSe to solve the CSP instance. Only unique solutions—
those that are not symmetrically equivalent to other solutions—are found.

5.2 Benchmarks

Let us now provide a brief summary of the set of benchmarks used in our experimen-
tal evaluation. In doing this we will follow the descriptions given in CSPLib [8].

470 Constraints (2009) 14:443–477

Balanced incomplete block design A balanced incomplete block design is an
arrangement of v distinct objects into b blocks such that each block contains exactly k
distinct objects, each object occurs in exactly r different blocks, and every two distinct
objects occur together in exactly λ blocks. Therefore, a BIBD is specified by five
parameters, (v, b, k, r, λ). This benchmark is listed in the results as “bibd-v-b-k-r-λ”.

We model this problem as a v × b binary matrix, with constraints that force exactly
r ones per row, k ones per column, and a scalar product of λ between any pair of
distinct rows. The symmetries found by all three implemented methods are:

• all blocks are interchangeable (variable symmetry)
• all objects are interchangeable (variable symmetry)

These correspond to permutations of the rows and columns of the binary matrix.

Social golfers The social golfers problem aims at scheduling g groups, with p golfers
per group, over w weeks, in such a way that no golfer plays in the same group as any
other golfer twice. This benchmark is listed in the results as “golf-w-g-p”.

We model this problem using one set variable for each group, constraining each
group to have cardinality p, and each intersection between any pair of distinct groups
(from any weeks) to have cardinality at most one. The symmetries found by all three
implemented methods are:

• all golfers are interchangeable (value symmetry)
• all weeks are interchangeable (variable symmetry)
• all groups within a single week are interchangeable (variable symmetry)

Golomb ruler A Golomb ruler is a set of m integers (marks on the ruler) 0 = a1 <

a2 < ... < am such that the m(m−1)

2 differences a j − ai, 1 ≤ i < j ≤ m are distinct. One
problem involving such rulers is to find a valid set of m marks. This benchmark is
listed in the results as “golomb-m”.

We model this problem using m integer variables and one integer variable per
pairwise difference. The difference variables must be all different. A single symmetry
is found using both implemented symmetry detection methods, corresponding to a
180◦ reflection of the ruler. This is a variable symmetry on the difference variables,
and a variable-value symmetry on the marks variables.

N-queens The N-queens problem is to place N queens on an N × N chessboard
such that no queen attacks another. We model this problem using one integer var-
iable per row in the board. Each value, from 1 in N, represents the column position
of the queen in that row. This benchmark is listed in the results as “queens-N”.

Puget’s Boolean method and our method find all symmetries of a square. Puget’s
extensional method finds only the variable symmetry and value symmetry, and misses
the non-compositional variable-value symmetry. In terms of the chessboard, it finds
the horizontal and vertical reflections but not the rotational symmetry.

Latin square A Latin square is an n × n matrix where each element is a value from
1 to n. Each value must occur exactly once in each column and exactly once in each
row. The problem is to find such a square for a given n. This benchmark is listed in
the results as “latin-n”.

Constraints (2009) 14:443–477 471

We model this problem as an n × n matrix of integer variables with domain 1 to n.
An all_different constraint is posted on each row and each column. The symmetries
found by Puget’s Boolean method and our method are:

• all rows are interchangeable (variable symmetry)
• all columns are interchangeable (variable symmetry)
• all values are interchangeable (value symmetry)
• the row and column dimensions are transposable (variable symmetry)
• the row and value dimensions are transposable (variable-value symmetry)

As for N-queens, Puget’s extensional method finds the variable and value symme-
tries, but not the non-compositional variable-value symmetry.

Most perfect magic square A most perfect magic square is an arrangement of n2

integers, 1 to n2, into an n × n matrix such that the n numbers in all rows, columns
and diagonals (with wrap-around) have the same sum, each 2 by 2 subsquare (with
wrap-around) sums to 2(n2 − 1), and all pairs of numbers distant n

2 on a diagonal sum
to n2 − 1. The problem aims at finding such a square for a given n. This benchmark
is listed in the results as “mostperfect-n”.

We model this problem as an n × n matrix of integer variables with domain 1 to
n2. Sum constraints are posted on the rows, columns and diagonals to enforce the
magic-square property. Additional sum constraints over all 2 by 2 subsquares, and
on the pairs of numbers on the major diagonals, enforce the most-perfect property.

This model resulted in a graph for n = 4 that was too large for our implementa-
tions of either of Puget’s methods. Using our method, the symmetries found are:

• the symmetries of a square (rotations through 90, 180 and 270 degrees and
reflections about the horizontal and vertical axes) (variable symmetry)

• the rows (or columns) can be cycled (variable symmetry)
• value i is interchangeable with value n2 − i − 1 (value symmetry)

Steiner triples The Steiner triple problem of order n consists of finding a set of
n(n−1)

6 triples of distinct integers from 1 to n, such that any pair of triples has at most
one element in common. This benchmark is listed in the results as “steiner-n”. The
symmetries found by all three implemented methods are:

• all triples are interchangeable (variable symmetry)
• all values are interchangeable (value symmetry)

N × N-queens The N × N-queens problem is to place a coloured queen on every
square of an N × N chessboard so that no two queens of the same colour attack
each other. There are N colours. A solution to this problem is equivalent to N si-
multaneous non-overlapping solutions to the N-queens problem. This benchmark is
listed in the results as “nnqueens-n”. The symmetries found by all three implemented
symmetry detection methods are:

• the symmetries of the chessboard (variable symmetry)
• all colours are interchangeable (value symmetry)

Graceful graph The graceful graph problem is to find a labelling f of the vertices of
a graph such that f assigns each vertex a unique label from {0, 1, . . . , e} (where e is

472 Constraints (2009) 14:443–477

the number of edges in the graph), and with each edge (a, b) labelled by | f (a) − f (b)|,
all the edges labels are different. This benchmark is listed in the results as “graceful-
m-n” for the graph Km × Pn. The symmetries found by all three implemented
methods are:

• the symmetries of the graph itself (variable symmetry)
• the value symmetry that swaps a with x − a, where x depends on the particular

instance (value symmetry)

5.3 Results for symmetry detection

Tables 1 and 2 show the results of our experimental evaluation of the automatic
symmetry detection tool. Each row in the tables corresponds to a different instance
of a benchmark problem described in the previous section. A bold font indicates the
best result for that row in the table.

The columns in Table 1 compare the total number of nodes (Nodes) and the total
number of edges in the graph (Edges) when using our implementations of Puget’s

Table 2 Running times

Instance Running time

Puget’s (Ext) Puget’s (Bool) Ours

Total Gr HR Total Gr HR Total Gr HR

bibd-3-3-1-1-0 0.04 0.50 0.50 0.04 0.50 0.50 0.02 .50 .50
bibd-6-10-5-3-2 20.80 0.90 0.07 20.61 0.90 0.07 1.96 .83 .14
golf-2-2-2 0.50 0.78 0.20 0.50 0.78 0.20 0.18 .72 .28
golf-2-2-3 17.16 0.89 0.09 16.90 0.89 0.08 2.71 .73 .23
golf-2-3-2 44.68 0.87 0.10 44.14 0.87 0.10 6.72 .72 .22
golf-3-2-2 1.36 0.76 0.21 1.32 0.76 0.21 0.56 .71 .25
golomb-4 0.28 0.86 0.14 0.26 0.85 0.15 0.41 .85 .12
golomb-5 1.41 0.91 0.08 1.31 0.90 0.08 2.00 .91 .08
golomb-6 5.36 0.93 0.05 5.03 0.94 0.05 7.67 .93 .05
golomb-7 16.97 0.95 0.04 15.90 0.95 0.03 24.45 .94 .03
graceful-3-2 0.22 0.68 0.27 0.19 0.68 0.32 0.31 .71 .26
graceful-5-2 6.20 0.76 0.19 4.95 0.82 0.15 8.41 .82 .14
latin-10 1.68 0.34 0.51 0.46 0.26 0.70 2.78 .48 .41
latin-11 2.53 0.33 0.49 0.61 0.25 0.70 4.27 .47 .40
latin-12 3.73 0.33 0.47 0.78 0.24 0.72 6.37 .47 .39
latin-13 5.71 0.30 0.42 1.01 0.25 0.70 9.17 .46 .37
latin-14 7.50 0.31 0.43 1.31 0.25 0.70 12.86 .46 .36
mostperfect-4 – – – – – – 31.70 .85 .10
nnqueens-4 0.03 0.66 0.33 0.01 0.00 1.00 0.05 .60 .40
nnqueens-5 0.09 0.44 0.55 0.05 0.60 0.40 0.12 .58 .42
nnqueens-6 0.20 0.50 0.50 0.08 0.38 0.62 0.30 .60 .33
queens-10 0.08 0.63 0.38 0.03 0.33 0.67 0.15 .73 .27
queens-20 0.74 0.62 0.30 0.13 0.31 0.69 1.61 .80 .16
queens-30 2.74 0.63 0.25 0.33 0.33 0.67 6.62 .82 .13
queens-40 7.04 0.63 0.22 0.65 0.35 0.63 18.43 .84 .11
steiner-5 1.42 0.86 0.12 1.39 0.86 0.12 0.46 .74 .24
steiner-6 28.12 0.88 0.09 27.89 0.88 0.09 5.92 .74 .21
steiner-7 488.38 0.93 0.05 492.85 0.93 0.05 57.49 .76 .17

Constraints (2009) 14:443–477 473

extensional method (Puget’s (Ext)), Puget’s Boolean method (Puget’s (Bool)) and
our method (Ours). Also, but only for our method, it shows the number of generators
found for each instance (Gens).

The columns in Table 2 show the total running time in seconds (Total), followed
by a breakdown (expressed as a proportion of the total time) indicating where this
time is spent. In particular, the table shows the proportion of time spent in graph
generation including the computation of the extensional constraints plus the time
spent printing the graph to be input to Saucy (Gr) and the proportion of time taken
to read Saucy’s output information and print our human-readable form (HR). Any
time not accounted for by these two columns is spent running Saucy, and is usually
small in comparison. Again, there are three sets of data; one for Puget’s extensional
method (Puget’s (Ext)), one for Puget’s Boolean method (Puget’s (Bool)) and one
for our method (Ours). Running times were measured on a desktop with a 3GHz
Intel Pentium 4 CPU and 2 GB RAM, running Linux kernel 2.4.22.

The results show that Puget’s Boolean method is much more efficient when the
problem has all-different constraints (e.g. the Latin square instances), since it handles
these constraints specially. When the problem has many complex expressions (e.g.
the Social Golfers instances), our method is more efficient because it avoids having
many temporary variables.

We were unable to run the most perfect magic square problem using either of
Puget’s methods. The model we used has constraints of the form x1 + x2 + x3 + x4 =
c where the xi are variables and c is a constant. For the size 4 instance, each variable
has a domain of 16 values. To represent the addition as a temporary variable, each
assignment over {x1, x2, x3, x4} is represented in extension, resulting in 164 = 65536
combinations with one node and five edges per combination. As there are several of
these constraints, the resulting graph is too large for our implementation to handle.

However, Puget reports that his method can handle this problem very efficiently.
There are several possible explanations for this discrepancy: (a) he may use a special
representation of these “sum” constraints, like for all-different, (b) he may detect
only variable symmetries in his experiments, or (c) his implementation may be more
efficient than ours (for example, using AUTOM instead of Saucy). While (a) is the
most likely answer, we do not see any natural way to model x1 + x2 + x3 + x4 = c as
a conjunction of Boolean constraints. Thus, Puget’s second Boolean model - without
variable nodes or constraint nodes - is not naturally applicable. It is also possible that
Puget used a combination of the standard Boolean method for this constraint, and the
conjunctive Boolean model for the all_different constraint, but Puget offers no proof
that for a graph combining both kinds of Boolean representation, its automorphisms
correspond to symmetries of the CSP. Indeed, the two Boolean representations
associate a different semantics to a literal node, so having both in the same graph
seems problematic.

5.4 Results for symmetry breaking

As mentioned before, we used the symmetries detected by our implementation to
automatically break symmetries during search, using the GAP-SBDS [7] library for
ECLiPSe. Results of the experiments for symmetry breaking are shown in Table 3.
For each benchmark, times are shown for finding all solutions without and with
SBDS. The numbers in parentheses show the ratio obtained by dividing the time with

474 Constraints (2009) 14:443–477

Table 3 Running times to find
all solutions with and without
SBDS

Instance Running time (seconds) Detect

No SBDS SBDS (ratio) (seconds)

nnqueens-7 >30 min 1.62 (–) 0.7
steiner-7 392.55 0.87 (0.002) 58.0
bibd-7-7-3-3-1 157.89 1.01 (0.006) 0.55
graceful-4-2 296.02 2.57 (0.008) 2.2
golf-3-3-2 76.34 0.77 (0.01) 21.0
queens-13 48.23 118.09 (2.45) 0.5
golomb-6 8.73 67.89 (7.78) 7.5
latin-8 81.12 647.21 (7.98) 1.0

SBDS by the time without SBDS. Note that the times do not include the time to find
the symmetries, although this detection time is shown in a separate column. We have
separated these times because the techniques developed in this paper are targeted
towards finding symmetries in models - though in this paper we only find symmetries
in problem instances. If we can achieve this aim, the time to find the symmetries will
be amortised over all the problem instances in the class defined by the model, and in
this case will be small in comparison with problem-solving time.

The aim of this section is not to demonstrate that speedups can be achieved by
symmetry breaking methods (this has been the subject of many other papers, e.g.
[5, 14, 15]) but, rather, to show that our system is implemented and that the output
of our symmetry detection tool can be easily integrated with a symmetry breaking
tool, such as GAP-SBDS. Still, as shown in Table 3, SBDS performs much better
than a simple search when finding all solutions for more than half the benchmarks,
with most speedups being of several orders of magnitude. For the rest, the overhead
of symmetry breaking is greater than the time saved by reducing the search space.

6 Conclusion

Symmetry as graph automorphisms This paper has explored the extension and
application of constraint symmetry detection based on graph automorphisms, and
its integration into an algorithm that exploits these symmetries during search.

Previous symmetry detection using graph automorphisms can be divided into two
main directions. The first dating back to Crawford et al. [3] represents constraints as
sets of disallowed tuples. This approach is simple but can result in large graphs since
a simple constraint (such as an equation) may require a great many disallowed edges
in its representation. Consequently, this paper has explored the use of allowed edges,
as well, for representing constraints. In doing so, it has studied a second approach,
recently espoused in a sophisticated form by Puget [13], that represents constraints
more flexibly. This flexibility can be exploited to keep the graph small, but it could
lead to either representing too few symmetries, or - worse still - too many.

A flexible, powerful, and correct graph representation Too few symmetries may be
represented if the graph includes a node for each variable, so that only (combinations
of) value and variable symmetries can be represented. Therefore, this paper has
described a graph representation without such nodes. The drawback of such a
representation is that a graph automorphism could map sets of nodes representing

Constraints (2009) 14:443–477 475

solutions to the original problem, to sets of nodes which do not represent a solution,
because they do not “cover” all the variables. Accordingly, we imposed sufficient
conditions on the new graph representation to preclude such automorphisms.

Too few symmetries may also be represented if the graph distinguishes different
(kinds of) constraints. This would prevent, for example, a disequation from being
involved in a symmetry with an all_different constraint. To maximise the number
of potential symmetries, the graph representation introduced in this paper made no
distinction between different constraints. Moreover, it made no distinction between
an edge connecting two literals explicitly allowed by a binary constraint, or allowed
because their associated variables do not belong to the scope of any constraint. Fur-
thermore, it made no distinction between an edge connecting two literals explicitly
disallowed due to a constraint, or disallowed because they represent distinct values
for the same variables. The main drawback of such a representation is the sheer size
of the resulting graph: in principle an allowed edge is required for every compatible
set of nodes, and a disallowed edge between every incompatible set. Therefore, this
paper introduced a graph representation that uses as few edges as possible while still
maximising the number of potential symmetries. Since this requires all constraints
to be represented extensionally, keeping the size of the graph as small as possible is
very important, particularly for variables with large domains, such as set variables.

Too many symmetries are represented by a graph if it has automorphisms that
do not correspond to symmetries of the CSP. This can arise, for example, if the
existence of an edge does not have a unique meaning. For example, the existence
of two edges representing the only two allowed tuples for a single constraint mean
that one should be in a solution, while the existence of two edges representing the
only allowed tuples from two different constraints mean that both should be in a
solution. Also, the absence of an edge should have a unique meaning, such as that
the two unconnected nodes are unconstrained, or that they are incompatible (e.g. if
they represent two different values for a variable).

For a graph with edges representing allowed tuples of a constraint, but without
variable nodes or constraint nodes, it is not trivial to avoid having too many
symmetries. However, for the full assignment graph introduced in this paper, it was
proven that every graph automorphism corresponds to a problem symmetry.

Reducing the size of the graph The paper introduced two additional ways of
reducing the size of the graph representation. The first approach is to achieve arc-
consistency on the original problem, and build a graph representing this reduced
problem. The paper showed that achieving arc-consistency by reducing the domains
of the variables preserves the variable and value symmetries detected by our ap-
proach. However, it also gave an example to show that non-compositional variable-
value symmetry may be lost as a result of achieving arc-consistency.

The second approach is to represent a constraint by a logically equivalent con-
junction of constraints, each with a smaller scope. This was shown to reduce the size
of the graphical representation, and potentially improve pruning.

In summary, when compared to Puget’s approach, the full assignment graph is
more restricted than the combination of Puget’s different approaches: extensional,
intensional, standard Boolean, and conjunctive Boolean. Indeed, the full assignment
graph admits only allowed and disallowed extensional constraints. Nevertheless, our
approach can be applied to either Boolean model of the problem. The resulting

476 Constraints (2009) 14:443–477

benefit is that we have been able to eliminate variable nodes and constraint nodes
from the full assignment graph, so as to be able to capture non-composable variable-
value symmetries and, at the same time, obtain proofs that graph automorphisms
correspond to symmetries of the CSP even when combinations of allowed and
disallowed constraints are represented. Puget never attempted such a proof and,
without the restrictions introduced in this paper, it is shown that certain combinations
would lead to graphs whose automorphisms did not correspond to symmetries
of the CSP. Moreover, and perhaps surprisingly, it is shown that the extensional
graph representation does not necessarily lead to larger graphs than the intensional
representation for the Boolean model: even for the all_different constraint exampled
by Puget, there is an extensional representation with comparable size.

Implementation and next objectives The whole system has been implemented
using the CLP system ECLiPSe and the graph automorphism package Saucy. The
CSP is automatically transformed into a graph, the automorphisms are elicited and
expressed as constraint symmetries of the CSP, and the CSP is solved using the dis-
covered symmetries to automatically prune the search tree. Experiments were per-
formed on a range of benchmarks to establish the correctness of the implementation.

The approach presented in this paper is designed to be able to detect as wide a
class of constraint symmetries as possible. The efficiency of the symmetry detection
method has been a secondary consideration, since it is not planned to be used
to detect and apply symmetries for each new problem instance. Rather, the aim
is to detect as many representational symmetries as possible for several problem
instances, so that they can be tested against a generic problem model, to determine
which ones hold for the whole problem class. These symmetries can then be used
to accelerate the solving of any instance of the model. Accordingly, the cost of
detecting symmetries can be amortised across all the instances of the problem which
are eventually solved using the detected symmetries.

Further, the resulting model-based approach will be able to scale up the applica-
bility of our automatic symmetry detection system, since the detected symmetries
can be used to accelerate the solving of large practical problems involving hundreds
or thousands of variables and constraints.

References

1. Apt, K. R., & Wallace, M. G. (2006). Constraint logic programming using ECLiPSe. Cambridge
University Press.

2. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2005). Symmetry definitions
for constraint satisfaction problems. In P. van Beek (Ed.), CP2005, LNCS (Vol. 3709, pp. 17–31).
Springer.

3. Crawford, J., Ginsberg, M. L., Luck, E., & Roy, A. (1996). Symmetry-breaking predicates for
search problems. In L. C. Aiello, J. Doyle, S. Shapiro (Eds.), KR’96: Principles of knowledge
representation and reasoning (pp. 148–159). San Francisco, CA: Morgan Kaufmann.

4. Darga, P. T., Liffiton, M. H., Sakallah, K. A., & Markov, I. L. (2004). Exploiting structure in
symmetry detection for CNF. In S. Malik, L. Fix, A. B. Kahng (Eds.), DAC (pp. 530–534). ACM.

5. Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In
Proc. AAAI’91 (Vol. 1, pp. 227–233).

6. Frisch, A. M., Miguel, I., & Walsh, T. (2003). CGRASS: A system for transforming constraint sat-
isfaction problems. In B. O’Sullivan (Ed.), Recent advances in constraints, joint ERCIM/CologNet

Constraints (2009) 14:443–477 477

international workshop on constraint solving and constraint logic programming, LNCS
(Vol. 2627, pp. 15–30).

7. Gent, I. P., Harvey, W., & Kelsey, T. (2002). Groups and constraints: Symmetry breaking during
search. In P. van Hentenryck (Ed.), CP2002, LNCS (Vol. 2470, pp. 415–430). Springer.

8. Gent, I. P., & Walsh, T. (1999). CSPLib: A benchmark library for constraints. Technical report,
Technical report APES-09-1999. A shorter version appears in the proceedings of the 5th inter-
national conference on principles and practices of constraint programming (CP-99). Available
from http://www.csplib.org/.

9. Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint
satisfaction problems. In AAAI93: Proceedings of the 11th national conference on artificial intel-
ligence (pp. 731–736).

10. McKay, B. D. (1981). Practical graph isomorphism. Congressus Numerantium, 30, 45–87.
11. Pearson, J., van Hentenryck, P., Flener, P., & Ȧgren, M. (2005). Compositional derivation of

symmetries for constraint satisfaction. In Proceedings of the international symposium on abstrac-
tion, reformulation, and approximation (SARA’05).

12. Puget, J.-F. (2002). Symmetry breaking revisited. In P. Van Hentenryck (Ed.), CP2002, LNCS
(Vol. 2470, pp. 446–461). Springer.

13. Puget, J.-F. (2005). Automatic detection of variable and value symmetries. P. van Beek (Ed.),
CP2005, LNCS (Vol. 3709, pp. 475–489). Springer.

14. Puget, J.-F. (2005). Breaking all value symmetries in surjection problems. In P. van Beek (Ed.),
CP2005, LNCS (Vol. 3709, pp. 490–504). Springer.

15. Ramani, A., & Markov, I. L. (2004). Automatically exploiting symmetries in constraint program-
ming. In B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.), CSCLP (Vol. 3419, pp. 98–112).

16. Roy, P., & Pachet, F. (1998). Using symmetry of global constraints to speed up the resolution of
constraint satisfaction problems. In ECAI98 workshop on non-binary constraints (pp. 27–33).

http://www.csplib.org/

	On implementing symmetry detection
	Abstract
	Introduction
	Background
	CSP symmetry
	Puget's coloured graphs
	Puget's representation using Boolean variables
	Puget's representation for expressions
	Representing sets

	A new graph representation
	Allowed and disallowed assignments
	Disallowed assignments and the microstructure complement
	Allowed assignments and the microstructure
	A graph including allowed and disallowed assignments

	Reducing graph size
	Minimising the number of assignment nodes
	Minimising the number of literal nodes
	Combining both techniques to prune the graph

	Experimental evaluation
	Implementation
	Benchmarks
	Results for symmetry detection
	Results for symmetry breaking

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

