
Learning from Learning Solvers

Maxim Shishmarev1,
Christopher Mears12, Guido Tack12, and Maria Garcia de la Banda12

1 Faculty of IT, Monash University, Australia
2 Data61/CSIRO, Australia

{maxim.shishmarev, chris.mears, guido.tack,
maria.garciadelabanda}@monash.edu

Abstract. Modern constraint programming solvers incorporate SAT-style clause
learning, where sets of domain restrictions that lead to failure are recorded as
new clausal propagators. While this can yield dramatic reductions in search,
there are also cases where clause learning does not improve or even hinders
performance. Unfortunately, the reasons for these differences in behaviour are not
well understood in practice. We aim to cast some light on the practical behaviour
of learning solvers by profiling their execution. In particular, we instrument the
learning solver Chuffed to produce a detailed record of its execution and extend
a graphical profiling tool to appropriately display this information. Further, this
profiler enables users to measure the impact of the learnt clauses by comparing
Chuffed’s execution with that of a non-learning solver, and examining the points
at which their behaviours diverge. We show that analysing a solver’s execution in
this way can be useful not only to better understand its behaviour— opening what
is typically a black box— but also to infer modifications to the original constraint
model that can improve the performance of both learning and non-learning solvers.

1 Introduction

Lazy Clause Generation (LCG) [10, 5] is a powerful solving technique that combines
the strengths of Constraint Programming and SAT solving. It works by instrumenting
finite domain propagation to record the reasons for each propagation step, thus creating
an implication graph like the ones built by a SAT solver [7]. This graph is used to derive
nogoods (i.e., reasons for failure) which can be recorded as clausal propagators and
propagated efficiently using SAT technology. The combination of constraint propagation
and clause learning can dramatically reduce search and greatly improve performance.

Indeed, LCG solvers are the state of the art for solving a number of hard com-
binatorial optimisation problems, such as Resource Constrained Project Scheduling
Problems [12] and the Carpet Cutting Problem [13]. Further, they consistently exhibit
better performance than traditional Constraint Programming (CP) solvers for a large
number of problems in the annual MiniZinc Challenge [15]. Yet, for some problems,
LCG solvers seem to be unable to benefit from the learnt clauses and perform poorly
compared to non-learning competitors. The reasons for these differences in behaviour
are not well understood in practice, as learning solvers are even more complex than
traditional CP solvers. Thus, it is not yet clear to the research community under what
circumstances learning is better, or even how to identify when or why a learning solver
is performing poorly or not.

The aim of this paper is to cast some light on the practical behaviour of learning
solvers by being able to better profile their execution. To achieve this, we instrumented
the open-source LCG solver Chuffed [4] to provide statistical data regarding the clauses
it learnt. We then fed this new data into the profiling tool introduced in [14], which
we augmented with additional visualisations to display and analyse the LCG solving
process. The long term aim of our research is to identify properties of the search that
often indicate good or bad performance. If those properties can be identified, the profiler
will be able to automatically focus the user’s attention on the parts of the search that
show those properties and suggest a reason for the behaviour, considerably simplifying
the profiling task. As shown in Section 4, some of the information uncovered by the
profiler has significant potential in this regard.

While using our augmented profiling tools on models where Chuffed achieved
remarkably good performance, we realised that the clauses learnt by the solver could
sometimes be used to modify the model itself, in such a way as to improve its execution
for traditional CP solvers. This insight came from profiling clauses whose information
was either (a) already expressed in the model by a single constraint, (b) not as strong as
one would have expected, or (c) already captured by the model but not in an explicit way.
Case (a) hints at a lack of appropriate propagation for a particular constraint in themodel.
The usermight then decide to change the strength of the propagator (if the solver supports
this) or modify the constraint to achieve better propagation. Case (b) also hints at a lack
of propagation, possibly as part of the interaction between several constraints. The user
might then decide to modify the constraints involved or add a new redundant constraint
that achieves the desired propagation. Case (c) might suggest new information that could
be expressed as a generic redundant constraint and which might increase propagation if
added to themodel (as it has increased propagation for the learning solver).While adding
redundant constraints to a model is a well known method to improve performance, it
can also have the opposite effect, depending on whether the redundant constraint helps
propagation or not. Inferring useful, new redundant constraints for a given model is
extremely difficult, and we are not aware of any proposed system or method capable of
doing so. Using learnt clauses to achieve this is therefore an exciting new approach with
significant potential. As shown in Section 3, we have already been able to detect clauses
that fit in each of the three cases above, and modified the models accordingly obtaining
considerable reductions in search effort.

2 Background

Constraint Programming: A finite domain constraint problem P is a tuple (C, D, f),
where C is a set of constraints, D a domain which maps each variable x ∈ vars(C) to a
finite set of integers D(x), and f an objective function (if any). The set C is logically
interpreted as the conjunction of its elements, while D is interpreted as ∧x∈vars(C) x ∈
D(x). A literal of P is a unary constraint c where var (c) ∈ vars(C). A CP solver starts
from an original problem P ≡ (C, D) and applies propagation to reduce domain D to
D′ as a fixpoint of all propagators for C. If D′ is equivalent to false, we say P is failed.
If D′ fixes all variables, we have found a solution to P. Otherwise, the solver splits P
into n subproblems Pi ≡ (C ∧ ci, D′), 1 ≤ i ≤ n where C ∧ D′ ⇒ (c1 ∨ c2 ∨ . . . ∨ cn)
and where ci are literals (called decision literals), and iteratively searches these.

The search proceeds making decisions until either (1) a solution is found, (2) a
failure is detected, or (3) a restart event occurs. In case (1) the search either terminates if

Fig. 1. Search tree for freepizza using Chuffed. The path to the highlighted node is labeled.

the model has no objective function, or computes the value of the objective function f ,
sets a bound for the next value of f to be better (greater or smaller, depending on f) and
continues the search for this better value. In case (2), the search usually backtracks to a
previous point where a different decision can be made. In case (3) the search starts a new
search tree, possibly incorporating new constraints learnt during the previous search.
Profiler:We use the functionality available in the profiler of [14], including its visuali-
sation of the search tree and its tools for convenient navigation and analysis of the search.
For example, Figure 1 shows a search tree, where green diamonds denote solutions, red
squares (and the highlighted yellow square) failures, grey squares nodes that are skipped
due to backjumping, blue circles branching nodes, and white circles either unexplored
nodes (in this case skipped due to a restart) or the root of an execution tree with restarts
(as is the case in this execution). Labels showing the search decisions can be turned on or
off for a given subtree or branch. Of particular interest is the capability to visuallymerge
two search trees obtained by, for example, executing the same problemwith two different
solvers. The result is a combined tree, where the parts where the search is the same are
visualised as usual, and those where the searches diverged are depicted as pentagons
that can be expanded to show the divergent trees. This merging technique is particularly
useful in combination with a replaying technique, where the search decisions used by
a given solver when executing a problem are recorded, and the same decisions are then
used to execute the same problem with a different solver. The merged tree then shows
exactly where the two solvers behave differently in terms of constraint propagation.
Lazy Clause Generation: LCG solvers [10, 5] can be seen as Satisfiability Modulo
Theories solvers [9], where constraint propagators play the role of the theories. They
extend CP solvers by instrumenting their propagators to explain the effect of propagation
(i.e., domain changes) in terms of literals. In practice, these literals are all either equality
(x = d for d ∈ D(x)), disequality (x , d) or inequality (x ≥ d or x ≤ d) literals.
An explanation for literal ` is S → `, where S is a set of literals. For example, the
explanation for the propagator of constraint x , y inferring literal y , 5 given literal

x = 5 is {x = 5} → y , 5. Explanations make the reasons behind constraint propagation
explicit and can be used later when a failure occurs. In LCG solvers, each new literal
inferred by a propagator is recorded in a stack in the order it was generated and attached
to its explanation. Decision literals are also added to the stack and marked as such. This
stack is called the implication graph. The decision level for any literal is the number of
decision literals pushed in the stack before it. Thus, it is similar to the traditional concept
of search tree depth in CP.

A nogood N is a set of literals that cannot be extended to a solution. Given an
implication graph, LCG solvers compute a nogood by starting with the direct cause of
the failure, and then eliminating literals by replacing them with their explanations until
only one literal at the current decision level remains. The result is the 1UIP (First Unique
Implication Point, [6]) nogood, and its negation (¬N) is added as a clausal propagator.
The search then backtracks to the decision level of the second latest literal in the nogood,
where it applies the newly learnt clause. Importantly, if the second latest literal is not
from the immediately preceding decision level, the search performs a backjump, skipping
decisions that were unrelated to the failure.

Example 1. Consider the free pizza problem, where customers can get pizzas either by
paying for them or by using vouchers. Each voucher is represented by a pair of numbers
a/b, indicating the voucher allows customers to get b number of pizzas for free, as
long as they pay for a number of pizzas. In addition, none of the b pizzas can be more
expensive than the a pizzas. Given a customer who has m such vouchers and wants n
pizzas, the aim is to minimise the total price paid for the n pizzas. The model used in
the annual MiniZinc Challenge (denoted as freepizza) is as follows:
1 int: n; set of int: PIZZA = 1..n; % number of pizzas wanted
2 array[PIZZA] of int: price; % price of each pizza
3 int: m; set of int: VOUCHER = 1..m; % number of vouchers
4 array[VOUCHER] of int: buy; % buy this many to use voucher
5 array[VOUCHER] of int: free; % get this many free
6
7 set of int: ASSIGN = -m .. m; % i -i 0 (pizza free/paid with voucher i or not)
8 array[PIZZA] of var ASSIGN: how;
9 array[VOUCHER] of var bool: used;

10
11 constraint forall(v in VOUCHER)(used[v]<->sum(p in PIZZA)(how[p]=-v) >= buy[v]);
12 constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]);
13 constraint forall(v in VOUCHER)(sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]);
14 constraint forall(p1, p2 in PIZZA)((how[p1] < how[p2] /\ how[p1]= -how[p2])
15 -> price[p2] <= price[p1]);
16 int: total = sum(price);
17 var 0..total: objective = sum(p in PIZZA)((how[p] <= 0)*price[p]);

The first 5 lines introduce the parameters: lines 1 and 3 introduce n and m, re-
spectively, line 2 introduces an array for the prices of the pizzas, while vouchers are
introduced via two arrays in lines 4 and 5, where the ith voucher a/b is represented as
buy[i]/free[i]. The next 3 lines define the variables: line 9 defines an array of
vouchers, where used[v] is true iff voucher v was used. Line 8 defines an array of
pizzas, where how[p] has value v if pizza p was free thanks to voucher v, has value
0 if p was paid for and not used in any voucher, and has value -v if p was paid for and
used to get free pizzas with voucher v.

Constraints start in line 11, which states that if voucher v was used (used[v]
holds), then the total number of pizzas bought and assigned to vmust be greater than or
equal to the number of pizzas required by it (buy[v]). The constraint in line 12 states
similar information but in the opposite direction: the total number of pizzas bought

Level 0 Level 1 Level 2 Level 3 Level 4

o ≤ 259

99

how[1] = 0

��

how[2] ≥ −7

��

how[2] = −7 how[3] = −8

��

��

how[1] ≤ 0

11

how[2] , −8

&&

how[3] ≤ 0

��
how[5] ≥ 1

��
how[5] , −8

��
used[8] = false // fail

Fig. 2. Part of the implication graph for freepizza. Decision literals are double boxed.

and assigned to voucher v must be less than or equal to used[v]*buy[v]. Together
they constrain the total number of pizzas bought for v to be equal to buy[v], if used.
The constraint in line 13 states that the total number of free pizzas obtained thanks to
voucher v must be smaller than or equal to the number of free pizzas allowed by v if
used (used[v]*free[v]). The last constraint is in line 14 and states that if there
are two pizzas p1 and p2 assigned to the same voucher with p2 being free and p1
being paid for (given how[p1] < how[p2] and how[p1] = -how[p2]), then
the price of p2must be lower than or equal to that of p1. Finally, the objective function
is defined as the sum of the prices of the pizzas that are bought. Figure 1 shows a search
tree for the execution of the model using Chuffed with the following input data:
n = 5;
price = [17, 98, 76, 36, 69];
m = 8;
buy = [4, 4, 1, 4, 2, 1, 1, 3];
free = [2, 4, 1, 1, 4, 2, 3, 3];

The third branch of the tree shows a restart after bound 259 has been established for
the objective. Note that during the MiniZinc compilation process variable names
are modified and, thus, variables how_i and used_j in the tree correspond to vari-
ables how[i] and used[j] in the model, respectively. Figure 2 shows part of the
implication graph used to derive a nogood after the failure caused by search decision
how[3]=-8. The failure set is {how[3]=-8, used[8]=false}. Since the no-
good has two literals belonging to the current decision level (level 4), the last literal is
reduced obtaining {how[3]=-8,how[2],-8,how[5],-8}. Since this set still has
two literals belonging to the current decision level, literal how[5],-8 is reduced
to obtain {how[3]=-8,how[2],-8,how[5]≥1}. This reduction process continues
until only one literal remains at the current decision level, yielding the 1UIP nogood
{objective≤259,how[1]≤0,how[2],-8,how[3]=-8}. This nogood is negated
and added to the search as clause {objective>259, how[1]>0, how[2]=-8,
how[3],-8}, which is interpreted as the disjunction of its literals and prevents the
same failure from recurring. After adding the clause, the search backjumps to level 2,
as the nogood has no literal at level 3. This jump indicates that the decision at level 3
(how[2]=-7) is unrelated to the failure.

3 Exploring the most effective learnt clauses

The merging and replaying techniques mentioned above are useful when trying to
understand the reasons for the success (or failure) of LCG solvers over traditional
CP solvers. To remove the confounding effect of the different search orders, we can
execute the LCG solver Chuffed first and replay its recorded decisions to execute the
same model and search with Gecode [11], an efficient traditional CP solver. In general,
for most constraints Gecode implements the same or stronger level of propagation as
Chuffed. Therefore, the main differences when replaying the search in the form indicated
above come from the clauses learnt by Chuffed. These clauses might help Chuffed (a)
determine a failure earlier in the search, and/or (b) backjump further up than the parent
node. In both cases, Gecode might perform extra search and, after merging the trees,
those nodes will be displayed as pentagons by the tree visualisation.

We have modified Chuffed and the profiler to provide and visualise, respectively,
extra information that is particularly useful when merging the replayed execution of
an LCG solver by a CP solver. In particular, for each pentagon representing a failure
node in the LCG execution, we can now compute and display the learnt clauses that
helped to cause this failure. We refer to the number of pentagons to which a learnt clause
contributed as activity, and measure its effectiveness in terms of search reduction, i.e.,
in terms of the number of nodes that Gecode explores and Chuffed does not thanks to
the addition of the clause. Since several clauses can contribute to a failure, our reduced
search measure divides the total number of nodes by the number of clauses involved.

This information is collated at the end of the execution and shown to the user in table
form (see Table 1 for an example). We used this method to explore Chuffed’s behaviour
on three different problems. As illustrated below, the information shown by our tables
can lead to insights that result in effective model transformations.

3.1 First case study: freepizza.mzn

The first problem we explored combines the freepizza model from the MiniZinc
Challenge 2015 as introduced in Example 1, with the following input data:

n = 10;
price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];
m = 4;
buy = [1, 2, 3, 3];
free = [1, 1, 2, 1];

We executed the problem using Chuffed, replayed its search using Gecode, merged
their execution trees and explored the most effective learnt clauses in terms of reduced
search and activity. Table 1 shows the top 10 clauses sorted by reduced search. We first
concentrated on some of the shorter clauses, like how[5] , -3, how[3] , 3,
which is ranked number four and states that pizza 3 cannot be obtained for free with
voucher 3 by buying pizza 5 and assigning it to this voucher. This is a direct consequence
of the constraint in line 14 and the fact that pizza 3 (cost 60) is more expensive than
pizza 5 (cost 30). This helped us understand the longer clauses and realise that some
of them were weaker (and more complex) than they should. Consider, for example, the
top clause, which captures information about the relationship between obtaining pizza
6 with vouchers 1 or 2 (as how[6] ≤ 0, how[6] ≥ 3 indicates that how[6]

Table 1.Most effective learnt clauses in freepizza

Rank Activity Reduced Search Clause

1 159 3425 how[1] = -1 how[2] = -1 how[3] = -1 how[4] = -1 how[5] = -1
how[1] = -2 how[2] = -2 how[3] = -2 how[4] = -2 how[5] = -2

how[6] ≤ 0 how[6] ≥ 3
2 176 2068 how[7] ≤ 2 how[7] ≥ 4 how[1] , -3 how[1] ≥ -2
3 34 1712 how[4] , 3 how[1] = -3 how[2] = -3 how[3] = -3 how[4] = -3
4 8 1636 how[5] , -3 how[3] , 3
5 8 1636 how[8] , -3 how[3] , 3
6 8 1636 how[9] , -3 how[3] , 3
7 8 1636 how[10] , -3 how[3] , 3
8 143 1489 how[6] ≤ 2 how[6] ≥ 4 how[1] , -3 how[1] ≥ -2
9 25 1404 how[5] , -3 how[4] , 3 how[4] ≤ 2
10 24 1403 how[10] , -3 how[4] , 3

cannot be 1 or 2), and buying pizzas 1, 2, 3, 4, and 5, assigning them to these vouchers.
It is clear by the input data that pizza 6 is more expensive than any other pizza and,
thus, it cannot be obtained for free with any voucher (not just 1 and 2) and must be
paid for. Therefore, the clause should be strengthened by expressing it as how[6]≤
0. It was surprising to realise that this simple fact (and its cousin: the cheapest pizza
cannot be used to obtain any other pizza for free) was not being learnt by the solver.
This interesting insight reinforced the usefulness of studying the learnt clauses to better
understand the information learnt (or not learnt). While the learnings (how[6]≤ 0 and
how[2]≥ 0) were instance specific, the same ideas can be stated in a generic way and
used as redundant constraints in the model:

% the most expensive pizza can never be bought with a voucher
constraint forall(p in PIZZA)

(if forall(o in PIZZA where o != p)(price[p] > price[o])
then how[p] <= 0 else true endif);

% the cheapest pizza can never be used with a voucher
constraint forall(p in PIZZA)

(if forall(o in PIZZA where o != p) (price[p] < price[o])
then how[p] >= 0 else true endif);

where != represents disequality. Of course, these redundant constraints will be vacuous
if there is no single most expensive/cheapest pizza.

Another surprise was the fact that while many of the top clauses (4 to 7) were direct
consequences of a single constraint (the one in line 14), learning them allowedChuffed to
avoid exploring significant amounts of nodes when compared to Gecode. We expected
Gecode to also avoid exploring them by direct propagation. This indicated that the
constraint was not propagating as strongly as expected. Upon inspection, it became clear
that the how[p1] < how[p2] part of the constraint could be replaced by how[p2]
> 0, indicating p2 is free. This is clearly stronger information and connects with the
way the objective function is expressed, thus allowing stronger propagation when the
objective is bounded. The modified constraint is:

constraint forall(p1,p2 in PIZZA)((how[p2]>0/\how[p1]= -how[p2])
-> price[p2] <= price[p1]);

Table 2. Aggregate Results for Free Pizza over a set of random instances (relative)

Models Ratio GeoMean(time) Median(time) GeoMean(fails) Median(fails)

redundant/original 0.4885 0.5497 0.5186 0.5737
final/redundant 0.7746 0.7905 0.9159 0.9368

C
hu

ffe
d

final/original 0.3784 0.4152 0.9368 0.5199

redundant/original 0.0904 0.1250 0.0925 0.1234

Fi
xe
d
Se

ar
ch

final/redundant 0.0569 0.0786 0.0435 0.0461

G
ec
od

e

final/original 0.0051 0.0056 0.0040 0.0042

redundant/original 0.7039 0.7162 0.7625 0.7426
final/redundant 0.8228 0.8070 0.8872 0.8944

C
hu

ffe
d

final/original 0.5791 0.5830 0.6765 0.6876

redundant/original 0.1526 0.1468 0.1493 0.1459

Fr
ee

Se
ar
ch

final/redundant 0.7205 0.7330 0.7991 0.8104

G
ec
od

e

final/original 0.1100 0.1050 0.1193 0.1187

To assess the model changes we randomly generated 100 input data files and mea-
sured the solving time using Gecode and Chuffed with fixed search (as specified in the
original model) and with free search. Since we aimed to solve all instances to completion
within a reasonable amount of time (not too easy, not too difficult) for both solvers, we
generated the input data with between 2 to 10 vouchers for Gecode and 6 to 10 for
Chuffed, each voucher requiring 1 to 4 pizzas to be paid for and allowing customers to
get 1 to 4 pizzas for free. We also used 9 to 10 pizzas for Gecode with fixed search, 12
to 13 for Gecode with free search, and 15 to 16 for Chuffed. We excluded from the final
results any problem data file that, for a given solver and search, was solved in under one
second for all models. Thus, we used 74 and 80 data files for Gecode with fixed and free
search, respectively, and 98 and 95 data files for Chuffed.

Aggregated results for these data files are shown in Table 2, which compares the
performance of the two solvers in terms of execution time and number of failures using
three models: the original one, the one obtained by adding the two redundant constraints,
and the final one obtained by also modifying the constraint in line 14 as indicated above.
Clearly, our modifications improved the performance of both solvers (as all numbers are
below 1), with the results being particularly significant for Gecode with fixed search,
where the difference reaches two orders of magnitude. Detailed results are presented in
Figure 3, where each dot shows the solving time for a given data file using the original
and the final models in the horizontal and vertical axes, respectively. The scatter plots
show that the vast majority of the instances lie below the identity line and, thus, that our
final model consistently performs better than the original one.

3.2 Second case study: radiation.mzn

The second problemwe explored is the intensity-modulated radiation therapy (IMRT)
problem [2], where radiation is given through repeated exposures of a device that deliv-
ers a rectangular field of radiation of uniform intensity. This rectangular field is shaped

Fig. 3. Execution time of original and improved pizza models (logarithmic scale)

using horizontal lead rods positioned at the left and right of the rectangle, and which can
slide laterally to block the radiation. In each exposure, the rods are moved into a given
position, the radiation source switched on for a specified length of time and then switched
off, to move to a new position. The model we studied is the one used in the MiniZinc
Challenge 2015, where the input data is an m × n matrix Intensity of non-negative
integers, where Intensity[i,j] represents the total amount of exposure that the
cell in row i, column j should receive. The problem is to find a decomposition of the
matrix into a positive linear combination of binary matrices, each with the consecutive-
ones property (i.e., all 1s in any row are consecutive), where the 0s represent the part of
the row occluded by the rods and the 1s the part that exposes radiation. The model is:
1 int: m; % Rows
2 int: n; % Columns
3 set of int: Rows = 1..m;
4 set of int: Columns = 1..n;
5 array[Rows, Columns] of int: Intensity; % Intensity matrix
6 set of int: BTimes = 1..Bt_max;
7 int: Bt_max = max(i in Rows, j in Columns) (Intensity[i,j]);
8 int: Ints_sum = sum(i in Rows, j in Columns) (Intensity[i,j]);
9

10 var 0..Ints_sum: Beamtime; % Total beam-on time
11 var 0..m*n: K; % Number of shape matrices
12 % N[b] is the number of shape matrices with associated beam-on time b
13 array[BTimes] of var 0..m*n: N;
14 % Q[i,j,b] is the number of shape matrices with associated beam-on time
15 % b that expose cell (i,j)
16 array[Rows, Columns, BTimes] of var 0..m*n: Q;
17

18 constraint
19 Beamtime = sum(b in BTimes) (b * N[b])
20 /\
21 K = sum(b in BTimes) (N[b])
22 /\
23 forall(i in Rows, j in Columns)
24 (Intensity[i,j] = sum([b * Q[i,j,b] | b in BTimes]))
25 /\
26 forall(i in Rows, b in BTimes)
27 (upper_bound_on_increments(N[b], [Q[i,j,b] | j in Columns]));
28
29 predicate upper_bound_on_increments(var int: N_b, array[int] of var int: L) =
30 N_b >= L[1] + sum([max(L[j] - L[j-1], 0) | j in 2..n]);
31
32 int: obj_min = lb((m*n + 1) * Beamtime + K);
33 int: obj_max = ub((m*n + 1) * Beamtime + K);
34 var obj_min..obj_max: objective = (m*n + 1) * Beamtime + K;

The first 7 lines introduce the parameters of the problem: lines 1 and 2 introduce m
and n, respectively, line 5 introduces the intensity matrix, line 7 computes in Bt_max
the maximum intensity value in the matrix, and in Ints_sum the sum of all intensity
values in the matrix, which is an upper bound to the total amount of time the radiation
beam will have to be on. The next lines introduce the variables of the problem: line 10
defines the total beamtime Bt_max for the solution, line 11 defines the total number
K of binary matrices in the solution (which has m× n as upper bound), line 13 defines
vector N, where variable N[b] is the number of matrices with the same beamtime b,
and line 16 defines array Q, where variable Q[i,j,b] is the number of binary matrices
with beamtime b that expose cell (i,j) to radiation.

Constraints start on line 19, which states that the total beamtime is the result of
adding the beamtime used for every binary matrix. Line 21 states that the total number
of matrices is the result of adding those used for every beamtime. Line 23 states that
the intensity required by each cell (i,j) in the intensity matrix must be achieved by
the solution, that is, it must be equal to the sum of beamtimes for each of the binary
matrices that expose that cell. Finally, line 26 states the consecutive-ones property of the
binary matrices by ensuring that for every beamtime b and every row i of Q[i,j,b],
the number of times the intensity increases from a column j-1 to the next j, is equal
or less than the number of binary matrices with that beamtime N[b].

Table 3 shows the 5 most effective learnt clauses obtained by executing the radiation
model with the following input:

m = 9; n = 9; % rows and columns
Intensity = [| 4, 8, 11, 2, 5, 7, 1, 10, 4 |

11, 4, 4, 5, 1, 8, 9, 3, 9 |
2, 9, 6, 2, 4, 1, 5, 2, 6 |

11, 9, 8, 9, 3, 2, 11, 6, 7 |
2, 8, 11, 2, 10, 5, 5, 4, 5 |
5, 9, 8, 1, 6, 3, 5, 11, 5 |
...
7, 1, 6, 10, 0, 8, 1, 0, 0 |];

The top clause in Table 3 states that there should be a matrix that exposes cell
[2,4] for a beamtime of 1, 3 or 5. This is because the input data requires the amount of
radiation received by cell [2,4] to add up to exactly 5 units, which is an odd number.
Thus, there needs to be at least one matrix with an odd beamtime. In particular, for 5
this requires a matrix with beamtime 1, 3, or 5, with anything longer than 5 resulting in
the overexposure of the cell. This observation can be expressed in the model as follows:

Table 3.Most effective learnt clauses in radiation

Rank Activity Reduced Search Clause

1 3 378 Q2,4,1≥1 Q2,4,5≥1 Q2,4,3≥1
2 3 378 Q2,6,1≥2 Q2,6,1≤0 Q2,6,7≥1 Q2,6,8≥1 Q2,6,5≥1

Q2,6,2≥4 Q2,6,4≥2 Q2,6,3≥1
3 3 378 Q2,1,1≥1 Q2,1,5≥1 Q2,1,3≥1 Q2,1,9≥1 Q2,1,10≥1

Q2,1,11≥1 Q2,1,8≥1 Q2,1,7≥1 Q2,1,3≥2
4 2 315 Q2,9,2≤0 Q2,9,3≥1 Q2,9,4≥2 Q2,9,5≥1

Q2,9,6≥1 Q2,9,7≥1 Q2,9,8≥1 Q2,9,9≥1
(Q2,9,2 - Q2,8,2) ≥ 1 (Q2,9,1 - Q2,8,1) ≥ 2

5 1 245 Q2,9,4≥1 Q2,9,3≥2 Q2,9,1≥5 Q2,9,7≥1
Q2,9,8≥1 Q2,9,9≥1 Q2,9,6≥1 Q2,9,5≥1
(Q2,9,1 - Q2,8,1)≥2 (Q2,9,2 - Q2,8,2)≥3

(Q2,9,3 - Q2,8,3)≥1

constraint
forall(b in BTimes where b mod 2 = 1)
(forall(i in Rows, j in Columns where Intensity[i, j] = b)

(sum([Q[i,j,k] | k in 1..b where k mod 2 = 1]) > 0));

While adding this constraint reduces the amount of search space explored, the reduc-
tion is small (3.0% measured as median over 20 random instances), and is outweighed
by the cost of propagating the extra constraints resulting in a 4.6% longer execution.
This suggests that Chuffed’s good performance on this problem is not due to the learnt
clauses, but to its conflict analysis (as confirmed in Section 4).

3.3 Third case study: Golomb ruler

A Golomb ruler of size n is a set of n integer marks on an imaginary ruler, such that no
two pairs of marks are the same distance apart. An optimal ruler is one with minimum
length; i.e. the largest mark is to be minimised. The MiniZinc benchmarks set contains
a model for finding such rulers3, with two arrays of variables, one holding n integer
variables (the marks) with domain 0..n2, and the other holding n(n−1)

2 integer variables
(thedifferences) with domain 1..n2. This model is known to be difficult for learning
solvers. Indeed, we find that Gecode is consistently faster than Chuffed on this model
(see “Original Model” in Table 5). Nonetheless, Chuffed requires fewer failures to solve
the problem and, thus, we decided to examine Chuffed’s behaviour to see if we could
learn something to help improve the model.

The top of Table 4 shows the 5 most effective clauses learnt by Chuffed while search-
ing for n = 10. All these clauses are of the form mark[i] >= n & mark[i+1]
>= n+1 -> mark[i+2] >= n+3, for some i and n. (Note that a clause of the
form {A, B,C} can be interpreted as ¬B∧¬C → A.) This indicates a missing constraint
which the solver is effectively rediscovering. Looking again at the problem, we con-
firmed it was correct to add the following redundant constraint: mark[i] + 3 <=
mark[i+2], for all i. Clearly mark[i+2] is at least one more than mark[i+1],

3 https://github.com/MiniZinc/minizinc-benchmarks

Table 4.Most effective learnt clauses for Golomb Ruler (before and after the first modification)

Rank Activity Reduced Search Clause

1 49 193 mark[6] ≥ 38, mark[5] ≤ 35, mark[4] ≤ 34
2 6 170 mark[5] ≥ 18, mark[4] ≤ 15, mark[3] ≤ 14
3 6 170 mark[5] ≥ 15, mark[4] ≤ 12, mark[3] ≤ 11

O
rig

in
al

4 5 168 mark[5] ≥ 22, mark[4] ≤ 19, mark[3] ≤ 18
5 50 163 mark[6] ≥ 36, mark[5] ≤ 33, mark[4] ≤ 32
1 2 55 mark[6] ≥ 19, mark[4] ≤ 14, mark[3] ≤ 13
2 3 55 mark[6] ≥ 18, mark[4] ≤ 13, mark[3] ≤ 12
3 3 41 (mark[8] - mark[6] ≤ 5), (mark[8] - mark[6] ≥ 7),

M
od

ifi
ed

(mark[10] ≥ 55), (mark[6] ≤ 41),
(mark[10] - mark[8] ≤ 5)

which is at least one more than mark[i]. Thus, mark[i+2] and mark[i] are at
least two apart and, if so, both intermediate differences must be one, which is forbidden.

We added this redundant constraint to themodel, re-executed themodifiedmodel and
examined the 5 most effective learnt clauses (see bottom of Table 4). The first two fol-
low the pattern mark[i] >= n & mark[i+1] >= n+1 -> mark[i+3] >=
n+5. The third illustrates a property of connected differences: if the difference between
mark[i] and mark[j] is e.g. 6, and the difference between mark[j] and mark[k]
is at least 6, then the difference between mark[i] and mark[k] is at least 6+6+1=13.
(The extra one appears for the same reason as above.) All these clauses refer to the
idea that the distance between two marks that are m positions apart is equal to the sum
of the inner distances, which are all different. As a result, this distance is at least as
large as the sum of the arithmetic sequence of natural numbers, i.e., m(m+1)

2 . In fact,
by following this methodology we rediscovered a redundant constraint for this problem
that was earlier discussed in [3].

The inclusion of this redundant constraint reduces the search effort required to solve
the problem, both in number of nodes and in time (see “Improved Model” in Table 5).
Interestingly, even the non-learning solver Gecode benefited from the constraint. This
demonstrates how, even when learning solvers are not the strongest for a given problem,
we can gain useful insights from examining their behaviour.

Table 5. Golomb Ruler Results

Original Model Improved Model
Size n Time (s) Number of Failures Time (s) Number of Failures

n = 10 1.99 20,912 1.49 19,343
n = 11 72.36 307,957 54.25 288,071

C
hu

ffe
d

n = 12 616.2 2,329,959 512.63 2,254,206

n = 10 0.74 23,463 0.57 19,928
n = 11 15.81 374,886 12.09 321,419

G
ec
od

e

n = 12 147.00 3,002,474 117.83 2,656,663

4 Profiling statistics

In addition to computing and showing the most effective clauses in table form, we have
modified the profiler to compute statistical data based on the information provided by
the solvers. In particular, for a learnt clause L ≡ {l1, . . . , lm } the profiler can now display
the following information:

– Length: the number m of literals in L.
– Decision level: the decision level at which the failure occurred.
– Total number of variables: the cardinality of the set vars(L). Note that this is

always less than or equal to the length. The number of variables can be much
smaller than the length if variables appear in many literals.

– Literal Block Distance: number of decision levels where literals in L were inferred.
Note that this can never be larger than the decision level for L. This measure has
been shown to be useful in SAT problems [1].

– Backjump destination: the decision level of the node to which the search back-
jumped after learning L.

– Backjump distance: the distance between the decision level of the node in which
L was learnt and that of the backjump destination. Note that if it is 1, the behaviour
is similar to traditional CP backtracking.

– Activity: number of times L is involved in inferring failures later in the search.
– Size reduction: number of nodes avoided thanks to L being learnt (both in terms of
the tree that would have been explored by a CP solver and in terms of backjumped
ones). This measure requires a comparison with Gecode’s execution.

– Generation time: point in time during the search at which L was learnt.

Example 2. The length of the clause {objective>259, how[1]>0, how[2]=-8,
how[3],-8} found in Example 1 is 4, which is equal to its number of variables. Its
decision level is 4, its literal block distance is also 4, its backjump destination is level 2,
and its backjump distance is also 2.

As mentioned before, our aim is to determine whether any of this information could
be used to explain the reasons behind good or bad performance and, thus, should be
highlighted to users as possiblemarkers for such behaviour. Figure 4 provides an example
of the plots that display some (due to space limitations) of this statistical information.
Each dot in each square represents a single clause. There is a scatter plot for each pair of
attributes, arranged in a triangular matrix. The attributes shown are (in order from left to
right and top to bottom) time at which the associated clausewas learnt (inmicroseconds),
decision level, backjump distance, literal block distance, backjump destination and raw
activity. The plots along the diagonal show kernel density estimates of each attribute.
For example, the plot shown in the fifth row and second column (denoted (5,2)) shows
the backjump destination against the decision level, while plot (3,3) shows the overall
distribution of backjump distances.

Let us consider Figure 4, which shows the statistics obtained for an instance of
the radiation problem model with fixed search (left) and free search (right), with
Chuffed performing much better for the fixed search. Let us compare this with Figure 5,
which shows the statistics for two instances of the MiniZinc Challenge problems where
Chuffed does not performs well: cvrp (left) and opd (right). There are a few interesting
things to note. First, comparing the (6,1) plots, there is a relatively high level of activity

Fig. 4. Profiling plots for the radiation problem with Chuffed using fixed and free search.

Fig. 5. Profiling plots for cvrp (left) and opd (right).

throughout the entire execution of radiation, while the level of activity in the other
two problems is smaller and, in cvrp, only appears at particular points in time.

From the plots we can also observe the high-level behaviour of the search. For cvrp
and opd the (5,2) plots shows quite a compact diagonal, indicating that the backjump
destination level of most clauses is relatively similar to their decision level – in other
words, the search does not backjump significantly. This is not the case for radiation,
where there is a significant “bulge” below the diagonal.

The radiation problem on the left exhibits a related phenomenon, visible in plots
(2,2) and (5,5), which show the distribution of decision level and backjump destination.
In the fixed search, the peaks of these plots are the reverse of one another, a phenomenon
unique among all the instances shown. This indicates that the search backjumps from a
deeper level (the peak on the right) to a shallower level (the peak on the left). Indeed,

the search is designed to encourage this behaviour; it fixes the variables in such a way
that after the early “master” variables have been selected, the problem consists of wholly
independent subproblems. Whenever one such subproblem fails, all subproblems can
be discarded and the search returns to the master variables. This backjumping caused by

Fig. 6. Golomb ruler original model, n = 11

conflict analysis is the reason that Chuffed
performs well on this problem, as sug-
gested in Section 3.2. The free search per-
forms worse because this behaviour oc-
curs less frequently. The plots of these
statistics confirm that the specified fixed
search is performing as expected.

Finally, Figure 6 shows the profil-
ing plot for the Golomb ruler problem
examined in Section 3. We observe in
the (3,3) plot that there is no significant
backjumping during the search. This par-
tially explains why Chuffed is slower than
Gecode, and confirms that any benefit for
the learning solver comes from the learnt
clauses and not from any improvement to
the search behaviour.

From these and other examples we
have already identified some statistical markers of learning behaviour, including:

– Literal block distance being always close to the decision level: this indicates that
failure explanations are poor and backjumping is likely to be minimal;

– Failure decision level being confined to a narrow range, especially deep in the tree:
this is a clear indication of search making no progress;

– Deep decision levels coupled with low backjump distance and low learnt clause
activity: this strongly suggests poor performance.

5 Conclusions

Learning solvers dramatically outperform traditional CP solvers on many problems, but
their behaviour in practice is opaque and hard to understand. We have instrumented the
learning solver Chuffed to give detailed information about its behaviour, so that it can be
better understood. In particular, we have considered several case studies and shown how
profiling leads to a better understanding of the solver’s behaviour on each problem, and
how the profiling information can lead directly to improvements of the model by either
modifying its constraints or adding new redundant ones. One may argue that redundant
constraints such as those derived in Section 3 could just as well be found without any
profiling data. However, the method we show here allows the solver to tell us precisely
the constraints it requires to reach its conclusion, avoiding the “guess and test” approach
to model improvement.

This work prompts further analysis of learning behaviour. In particular, there is the
possibility to include other features of learnt clauses, and to determine via machine
learning techniques specific markers for good or bad performance. As well as providing
feedback to the user, such indicators could be used to guide heuristics for solvers when

performing autonomous search. It would also be interesting to apply the presented
techniques to SMT solvers [9]. Further, while here we have focused on the statistical
analysis of learned clauses, studying the clause graph structure, as for example in [8],
can be insightful as well. The profiler and the modified versions of Chuffed and Gecode
used in this work are available at http://www.minizinc.org.

Acknowledgements. We thank the anonymous reviewers who pointed to overlooked
related work and provided useful comments. This research was partly sponsored by the
Australian Research Council grant DP140100058.

References
1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In:

Proceedings of the 21st International Joint Conference on Artifical Intelligence. pp. 399–404.
IJCAI’09 (2009)

2. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: CP and IP approaches to cancer radiotherapy
delivery optimization. Constraints 16(2), 173–194 (2011)

3. Barták, R.: Effectivemodeling with constraints. In: Applications of Declarative Programming
and Knowledge Management, pp. 149–165. Springer (2005)

4. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University ofMelbourne
(2011)

5. Feydy, T., Stuckey, P.J.: LazyClauseGenerationReengineered. In: Gent, I.P. (ed.) Proceedings
of the 15th International Conference on Principles and Practice of Constraint Programming.
Lecture Notes in Computer Science, vol. 5732, pp. 352–366. Springer (2009)

6. Marques Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability. In:
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design.
pp. 220–227. ICCAD ’96, IEEE Computer Society, Washington, DC, USA (1996), http:
//dl.acm.org/citation.cfm?id=244522.244560

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference. pp. 530–
535. ACM (2001)

8. Newsham, Z., Lindsay,W., Liang, J.H., Czarnecki, K., Fischmeister, S., Ganesh, V.: SATGraf:
Visualizing community structure in boolean SAT instances. https://ece.uwaterloo.
ca/~vganesh/EvoGraph/Home.html (2014)

9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theo-
ries. In: Baader, F., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and
Reasoning, 11th International Conference, LPAR 2004, Montevideo, Uruguay, March, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3452, pp. 36–50. Springer (2004)

10. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation. In:
Bessiere, C. (ed.) Proceedings of the 13th International Conference on Principles and Practice
of Constraint Programming. Lecture Notes in Computer Science, vol. 4741, pp. 544–558.
Springer (2007)

11. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode (2016),
http://www.gecode.org

12. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.: Why Cumulative Decomposition Is Not as
Bad as It Sounds. In: Gent, I.P. (ed.) Proceedings of the 15th International Conference on
Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol.
5732, pp. 746–761. Springer (2009)

13. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: CP. pp. 69–84 (2011)
14. Shishmarev, M., Mears, C., Tack, G., de la Banda, M.G.: Visual search tree profiling. Con-

straints 21(1), 77–94 (2016)
15. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008-2013.

AI Magazine 35(2), 55–60 (2014)

