Stress Majorization with
Orthogonal Ordering Constraints
Technical Report*, August 2005

Tim Dwyer', Yehuda Koreh, and Kim Marriott

1 School of Comp. Science & Soft. Eng., Monash University, Australia
{tdwyer,marriott }@mail.csse.monash.edu.au
2 AT&T — Researchyehuda@research.att.com

Abstract. Force-directed placement is a widely used approach to automatically
arranging the nodes and edges of a relational diagram or graph in an aesthet-
ically pleasing manner. The adoption of the stress-majorization method from
multi-dimensional scaling into graph layout has provided an improved mathemat-
ical basis and better convergence properties for so-called “force-directed place-
ment” techniques. In this paper we give an algorithm for augmenting such stress-
majorization techniques with orthogonal ordering constraints and we demonstrate
several graph-drawing applications where this class of constraints can be very
useful.

Keywords: graph layout, constrained optimization, separation constraints

1 Introduction

The family of graph drawing algorithms that attempt to find an embedding of a graph
that minimizes some continuous goal function, are variously knowpisg-embedder

or force-directed placemerglgorithms. A popular algorithm in this family has been
that of Kamada and Kawai [8] in which squared differences between ideal distances for
pairs of nodes and their Euclidean distance in the embedding is minimized. Gansner et
al. [5] recently revisited this method and suggested ukingtional majorization— an
optimization technique from the field of multidimensional scaling. Functional majoriza-
tion iteratively improves the drawing by considering a sequence of quadratic forms that
bound the stress function from above. They showed that it had distinct advantages over
the original algorithm of Kamada and Kawai; particularly, a strictly monotonic decrease
in stress and that it could achieve lower values of the cost function in the same running
time.

A useful property of the majorization approach is that each iteration involves min-
imizing a convenient quadratic function. Gansner et al. [5] mentioned that this allows
using any available equation solver. In this paper we take advantage of this property,
and show how it helps in handling ordering constraints on the nodes. The quadratic

* An abridged version of this paper is to appear in the proceedings df¥tieinternational
symposium on Graph Drawing, Lecture Notes in Computer Science, Springer, 2005

nature of the function we minimize in each iteration allows us to efficiently add such
linear constraints. In fact, minimizing linearly constrained quadratic functions is known
asquadratic programmingwhich is an efficiently solvable problem [12]. However, we
have found that general quadratic programming solvers will significantly slow down
the stress majorization process. Therefore, we suggest a solver which is crafted espe-
cially for our problem, utilizing its unique nature. This solver can deal with ordering
constraints without significantly increasing the running time of the layout process. We
also demonstrate the utility of imposing this class of constraints — which wecall
thogonal orderingconstraints — to applications such as network layout reflecting the
relative positions of an underlying set of coordinates and directed graph drawing.

2 Background

We recently introduced the idea of using stress majorization coupled with standard
quadratic programming techniques for drawing directed graphs [4]. In the so-called
DIG-CoLA? technique, nodes in the digraph were partitioned into layers based on
their hierarchical level and constraints were introduced in the vertical dimension to keep
these layers separated. Compared to standard hierarchical graph drawing methods the
Di1G-CoLa algorithm was shown to produce layouts with a much better distribution

of edge lengths and for large, dense graphs it was able to find layouts with fewer edge
crossings. However, a commercial quadratic programming solver was used to minimize
the quadratic forms subject to constraints. This generic approach meant that layout for
graphs with hundreds or thousands of nodes could take some minutes to perform.

Another case where orthogonal ordering constraints are useful is when we want
to improve the readability of a given layout without significantly changing it. Misue
et al. [9] discussed the importance of preserving a user’s “mental map” when adjusting
graph layouts. One of their models for the mental map focused on preserttiogonal
orderingof the nodes in a layout — the relative above/below, left/right positions of the
nodes.

The potential for constraint-based, force-directed graph layout was explored by
Ryall et al. [10], however their implementation did not use true constraint solving tech-
niques. Rather, they added stiff springs to a standard force-directed model to keep user-
selected parts of the diagram roughly spaced as desired. True constraint solving tech-
nigues for graph drawing were explored by He and Marriott in [6], where a Kamada-
Kawai-based method was extended with an active-set constraint solving technique to
provide separation constraints. However, only small examples of fewer than 20 nodes
were tested and the scalability of the technique was not tested.

3 Problem formulation

The general goal function, known #® stress functigrwhich we seek to minimize is
described by

> wii(1X; — Xl — dij)?

i<j

! Directed Graphs with Constraint-based Layout

where for each pair of nodesand j, d;; gives an ideal separation betweeand j
(usually their graph-theoretical distance), = d;f is used as a normalization constant
andX is an x d matrix of positions for all nodes, whetkis the dimensionality of the
drawing andh is the number of nodes.

Majorization minimizes this stress function by iteratively minimizing quadratic forms
that approximate and bound it from above. Due to its central role in this work, we pro-
vide the essential details of the method. Recall thatare the normalization constants
in the stress function. We use thex n matrix A, defined by

—wi L F]
A= J R 1
! {Zk#wiklzj @)

In addition, given am x d coordinate matrixZ, we define the: x n matrix A% by

—wij - dij - inv(||Z; — Z;||) i # j
AZ = Wi i gt rJ 2
J {_quéiAfk 1= @)

whereinv(z) = 1/2 whenz # 0 and 0 otherwise.
It can be shown (see [5]) that the stress function is bounded from above by the
quadratic formF4 (X) defined as

d
FAX) =Y wyd + > ((XW)T AX@® — 2 (X(“)>T AZZ(“)))
a=1

1<j
Here, X (@) denotes the-th column of matrixX . Thus, we have
stress(X) < FZ(X) 4)

with equality whenZ = X.
We differentiate byX and find that the global minima af#(X) are given by
solving
AX =A?Z (5)

This leads to the following iterative optimization process. Given some la¥qtl,
we compute a layou (¢t 4+ 1) so thatstress(X (¢t + 1)) < stress(X(t)). We use
the function 7X()(X) which satisfiesF'X () (X (t)) = stress(X(t)). Then, we take
X (t + 1) as the minimizer ofX (") (X) by solving (5).

Note that it would be equivalent to consider in each iteratidndependent opti-
mization problems, one problem for each axis. Henceutfle axis of the drawing is
determined by minimizing

2T Az — 22T A% Z(@) (6)

Henceforth, we will work, w.l.0.g., with this 1-D layout formulation as it allows a more
convenient notation.

So far we have described the usual, unconstrained stress majorization. In this work
we consider a case where we have additional ordering constraints on each axis. Each
nodes is assigned a level of indeix< lev[i] < m and variable placement must respect

this level. Thus, instead of minimizing (6), we would take th&h axis of the drawing
as the solution of

min 2T Az — 22T AZ 7(@)

subject tolev]i] < lev[j] = x; < x; ()
forallé,j € {1,...,n}

For brevity henceforth we will replacg4Z Z() with b € R, so the target function is
merely f(x) = 7 Ax — 2Tb. We call this the Quadratic Programming with Orthogonal
Constraints (QPOC) problem.

It is easy to show tha#l is positive semi-definite, so the problem has only global
minima. Such a quadratic programming problem can be solved in a polynomial time
[12]. However, our experiments show that generic quadratic-programming solvers are
much slower than solving an unconstrained problem. To accelerate computation we can
utilize two special characteristics of the problem:

1. During the majorization process, we iteratively solve closely related quadratic pro-
grams: The constraints and the matd»are not changed between iterations, while
only the vectow is changed. Therefore, the solution of the previous iteration is still
a feasible solution for current iteration (satisfying all constraints). Moreover, this
previous solution is probably very close to the new optimal solution (e.g., consider
that in most iterations the coordinates are only slightly changed). However, such
initialization, called “warm-start”, is fundamentally not trivial for the barrier (or
interior-point) methods used by most commercial solvers.

2. Our constraints are very simple as each of them involve only two variables, being of
the formz; < ;. This allows a simple mechanism for guaranteeing the feasibility
of the solution.

In the next section we describe an algorithm for solving the QPOC problem.

4 Algorithm

We give an iterativggradient-projectioralgorithm (see Bertsekas [1]) for finding a so-
lution to a QPOC Problem. The algoritheglve QPOC is shown in Figure 1. The first
step is to decreasf(z) = =¥ Az + 2T'b, by movingz in the direction of steepest de-
scent, i.e. ifthe gradientis= V f(x) = Az+bthis direction is—g. While we are guar-
anteed that — with appropriate selection of step-sizethe energy is decreased by this
first step, the new positions may violate the ordering constraints. We correct this by call-
ing theprojectprocedure which returns the closest painbd 2 which satisfies the order-
ing constraints, i.e. it projectson to the feasible region. Finally, we calculate a vector
d from our initial positionz to £ and we ensure monotonic decrease in stress when
moving in this direction by computing a second stepsize arg min, ¢y 11.f(+ ad)
which minimizes stress in this interval.

The procedur@rojectis the main technical innovation in this paper. The main dif-
ficulty in implementing gradient-projection methods is the need to efficiently project

procedure solve_QPOC(A, b, ley
k «— 0,z < initial_soln()
repeat
g«—2Ax+b
T

g'g
s
5 gT Ag

Tz
T «—project(Z — sg, lev)
d—z—2
o — max(%, 1)
r— 2+ ad
until ||z — x| sufficiently small

return =

Fig. 1. Algorithm to find an optimal solution to a QPOC problem with variahigs. .., x,,
symmetric positive-semidefinite matrik, vectorb and1 < lev[i] < m + 1 gives the level for
each node.

on to the feasible region. Because of the simple nature of the orthogonal ordering con-
straints we can do this iQ(mn + nlogn) time wherem is the number of levels
andn the number of variables. Thgroject procedure (Figure 2) iteratively changes
the positions till all constraints are satisifed. In iteratibrall constraints involving
nodes up to th€k + 1)-th level are imposed. More technically, it starts by finding
an ordering of the nodeg such thata = q¢[i],b = ¢[i + 1] implies eitherlev[a] <

lev[b] or (lev[a] = lev[b] andz, < m). For convenience we also keep an array
1 < p1,...pm = n+ 1 of indices for the start of each partition excluding the first
(for convenience,,, was set tar + 1). When considering partitioh, which contains

the nodesibovey, = {ulpr < qlu] < pr+1}, We ensure that none of these nodes are
assigned positions lower than thatiefow;, = {l|1 < ¢[l] < px}. To achieve this

we create a minimal séf;, C {j|1 < ¢[j] < pr+1} that includes nodes violating this
condition. To impose the constraints we force all node&pto lie on a single point
posnUj. Since we want to minimize the quadratic function, we take this point as the av-
erage of all positions iV,. The set/}, is minimal in that it does not necessarily include
all nodes violating the boundary condition farbut only the minimal number that need

to be moved t@osnUj, such that this condition may be satisfied. The following lemma
captures this.

Lemma 1. During execution oproject(x,lev) after finishing thek'" iteration in which
Uy and its associatedosnUy, are computed

Z'GU T
osnUy = == — 8
p k A (8)
and
Ui = {l € belowy, | x; > posnUy} U{u € abovey, | x,, < posnUy} (9)

where the position fox; is its value before the start of the iteration.

procedure project(z,lev)
q — {1 <i < n} sorted by(z;, lev[i])
p « indices to start of each level ip
stp1 <...<Pm-1<pm=n+1
andlevfqlpr]] = levlalpr — 1] + 1,1 < k < m
for1 <k < mdo
% belowy, = {l|1 < g[l] < pr},abover = {ulpr < q[u] < pr41}
% Find U = {q[i]]il < i < iu} C belowy U abovey,
mazriu < prp41 — 1
l—qlpr — 1], u < q[px]
SUM «— X + Tqy, W — 2
iu < pr + 1,il — pp — 2
if x; > x, then
repeat
finished < true
u — qliu]
posnUy «— =7
if tu < mazivandz, < posnUj then
w—tu+1l,w—w+1
SUM +— SUM + Ty
finished «— false
end if
1 — q[id]
if il > 1andx; > posnUj then
il —il —1,w—w+1
sum «— sum + x;
finished «— false
end if
until finished
for il < i < iudo
J — qli]
z; « posnUy
end for
end if
end for
return x

sum

Fig. 2. Algorithm to project variables to the closest position in the feasible redich lev[i] <
m gives the level for each node

Proof. Equation (8) follows directly from the algorithm and is invariant throughout the
loop incrementally buildind/;, (since whenevety,, is expandecosnlUy, is recalcu-
lated).

The post-condition (9) implies thdf;, includes all nodes that violate the internal
constraints among), ..., pr — 1 andpy, ..., pr+1 — 1. Proof is as follows. The levels
are examined in order. When examining lexall nodes inbelow;, must be sorted by
position ing (either by the initial precondition fay or since they have been assigned to
a positionposnUy, I < k). The precondition foy also ensures that nodesdbove;, are
sorted by position.

If there is overlap between the tail &flow;, and the head afbove;, we place these
in Uy, and seposnU. We then iteratively examine the successive elementsiofvy
(from the tail) andubove,, (from the head) and add them &g, until no further overlap
is found between these elements anenUy.

By construction the only elements below,, not placed in;, are those for which
x; < posnUy, (otherwise the loop would not terminate). Dually, for any elemert

abovey, not placed inJ;, we have that:,, > posnUy. Thus
Uk 2 {1 < qli] < pg | x; > posnU} U{pr <i < pr+1 | zi < posnUy}

We now show containment by induction. We prove &r N belowy, while the
proof for Uy, N abovey, is analogous. The base case follows from the fact that at the
moment we add somke€ belowy, it must hold thate; > posnUj,. Now, if later we
add!’ € belowy, then sinceelow, is ordered by positiony;; < z;. By hypothesis,

x; > posnUy, and since the newosnU;, is the weighted average af andposnUy,
we still havex; > posnUy. If later we addu € abovey, then since we are addingwe
must haver,, < posnUy. Now by hypothesisg; > posnUj and sox; > z,,. Thus as
for the previous case; > posnUy.

ad

Corollary 1. During execution oproject(z,lev) after finishing the:*” iteration in which
Uj. and its associategosnUy, are computed

Z’LGU)C i

Uk (10)

posnUy =

where the position of; is the input position.

Proof. Notice that unlike Equation (8), the’s refer now to thénput positions, rather

than to their values before the current iteration. This makes a difference when we find
thatposnU, < posnlU;,l < k and thereford/, > U; andposnU;, will be calculated

from posnU; for those nodes iW; rather than their original positions. In this case (10)
still holds as

1
poank:m |U;|posnU; + Z T
k i€U\U
Txl LU DSEOEED DI B DS
= H = (Ej xX; = €T,
‘Ukl |Ul‘ JEU; 1€UR\U; |Uk| i€Uy

We now show that this results in a valid gradient-projection method.

Lemma 2. If the result of the calproject(z°,lev) is thenz is the closest point ta®
satisfying the ordering constraints defined by lev.

Proof. (Sketch) We must prove that minimizes F'(z) = >, (x; — x9)? subject
to satisfying the ordering constraints. It follows from the construction thsatisfies
the ordering constraints. Proving optimality is more difficult. Lgt. .., u,,_1 be new
variables, one for each partitidn We set values to the new variables by settingo
bemax{x; | lev[i] = k}.

Recall that if we are minimizing a functiofi with a set of convex equaliti&s over
variablesX, then we can associate a variablecalled the Lagrange multiplier with
eache € C. Given a solutiont we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

OF _~, 0
or “Ox

ceC

(11)

for each variabler € X. Furthermore, if we also allow inequalities then the above
statement continues to hold as long)as> 0 for all inequalitiesc of form ¢(z) > 0.
By definition an inequality: which is not active, i.e¢(z) > 0 has\. = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].

We now prove that minimizesF'(z) subjectto, fokk =1,...,m — 1:

up_1 <upifk>1
x; <wuy forallis.t.levli] =k
x; > ug forallist.lev[i]| =k +1

These constraints are equivalent to the ordering constraints.
We show optimality by giving values for all. satisfying Equation (11). An inequal-
ity x; < uy Orax; > uy is active ifi € Uy \ Ug—;. Note that we can havig, C U1,
in which case we must be careful to make the right constraint active so as to ensure
that eachr; will be involved in no more than one active constraint. For a constraint

of formz; > wu;, we set\. = 2 and forc of form z; < u;, we set\. = —4£. The
constraintc of form uy, < wug; is active ifU, C Upy1. We seth. = — ZieUk %.

For all other inequalities we set\. = 0. For more detail see the Appendix.

We can now prove the correctnesssofve_QPOC:

Theorem 1. solve_QPOC converges to an optimal solution to the input QPOC Prob-
lem.

Proof. Lemma 2 ensures thablve_QPOC is a gradient projection method. We now
show that a more general proof of convergence for gradient projection methods holds
for our specific stepsize calculations. First consider a variasdlof_QPOC in which
s is always 1 — note that for both constanand the choice of shown in Figure 1 the
method is equivalent to standard steepest-descent in the case when no active constraints
are encountered. With constant= 1 the computation ofx implements a Limited
Minimization Rule and so from [1, Proposition 2.3.1] every limit poinsofve_QPOC
is a stationary point. Since the original problem is convex any stationary point is an
optimal solution. Now consider our computationsofTo ensure convergence we must
prove that ifs* — 0 wheres* is the value of in thek*" iteration then the limit point of
solve_QPOC is a stationary point. But since the computation’ofs also an example of
the Limited Minimization Rule on the unconstrained problef.— 0 only if the limit
point of solve_QPOC is a stationary point for the unconstrained problem, in which case
it must also be a limit point of the constrained problem.

O

4.1 Running time

The second part of the algorithm, satisfying the constraints, can be perfori@¢hin+
nlogn) time. However each complete iteration is dominated by computing the desired

positions which take€)(n?) time. This is of course the inherent complexity of the
stress function that contair®$(n?) terms. (In fact, this is the same as the complexity

of an iteration of the conjugate-gradient method, which is used in the unconstrained
majorization algorithm.) In practice only few (5-30) iterations are required to return the
optimal solution depending on the threshold |on — Z||. Running times for graphs

with various sizes and with varying numbers of boundanieare given in Table 1. We
compare results for those obtained with #uwve QPOCalgorithm implemented in C

and the Mosek interior-point quadratic programming solver [13]. Tests were conducted
on a 2GHz P4-M notebook PC. As expected, since both solvers return the optimal or
near optimal solution, the resulting drawings look identical. However, the dedicated
solve QPOCalgorithm significantly outperformed the generic solver. The final “stress”
value is given as a rough measure of relative quality. Note that this is the final stress
value after being monotonically reduced by a number of iterations of the functional-
majorization method. Sample graphs were obtained from the Matrix Market [2] (Such
as1138busas shown in Figure 4) and some graphs based on geographic coordinates
which are shown in Figures 5 and 6.

Solve QPOC ||Mosek
graph #nodes () [#levels () Time| Stres§ Time| Stress
1138bus |1138 231 453 74343 209 74374
nos4 100 34 0.14 216.5) 2.75 216.9
nos5 468 256 2,172 8517.3] 13.08614.6
dwa512 |512 14 1.23 22464 37.7) 22464
dwb512 |512 19 157 15707 90.8 16418
NSW Rail312 54/76 {ly-axis) 492 2288 18.62274.5
Backbong2603 2373/1805 £/y-axis)| 55.81246960 > 1000

Table 1. A comparison of results obtained for arranging various graphs sathe QPOC and

theMosekinterior point method. Times are measured by seconds.

5 Applications

5.1 Directed graph drawing

The method and motivation for drawing directed graphs by constrained majorization is
discussed at length in [4]. Generally, a digraph can be said to induce a hierarchical struc-
ture on its nodes based on the precedence relationships defined by its directed edges.
Consequently, an appropriate depiction of a digraph allocates&xés to showing this
hierarchy. Thus, if nodé precedes nodgin the hierarchy, theawill be drawn above

j on they-axis; see, e.g., Sugiyama et al. [11]. This usually leads to the majority of
directed edges pointing downwards, thereby showing a clear flow from top to bottom.
There are a few possibilities for computing the hierarchical ordering of the nodes. We
base our ordering on the “optimal arrangement” suggested by Carmel et al. [3]. Then,

we compute the 2-D layout that minimizes the stress, whileyteeordinates of the
nodes must obey their hierarchical ordering.

It was shown that this method produces drawings with much more uniform edge
lengths making connectivity in large graphs more visible than in drawings produced by
standard hierarchical graph drawing techniques.

We reproduce some example graphs drawn in this style and compare performance of
our solve QPOCalgorithm with that of the solver previously used. Figure 3 illustrates
the concept with a small directed graph containing a cycle. Note that since all nodes in
the cycle are in the same hierarchical level they are drawn within the same band. Figure
4 shows a much larger example from the matrix market collection [2].

Fig. 3. A directed graph arranged using orthogonal ordering constraints in just the vertical di-
mension to preserve layering. The color bars on the left side indicate the layer-bands and the faint
horizontal lines indicate the boundaries between these layers.

= 11
_ . ~ 3 L] aapete e o0gy oo oy L oo
T R L - L] sdee¥ e = M.. “n e o g
| PP e oot 7l N [y AW et P Y S0 -
[wes [S%% 00 Somy - e » @ty o Umspem mess | Wawes s qesey L
= o - . e e . o e
= W X ¢ BTN
| &5 smd NN s N \& W kN S N 1 P N
|] .. ., v . B eMm g we Spaste *an . . o .- - e
W’ A P £ PR s
ese ose * . . oo

. & ARG LR S R | P o

&> | vee N R O > i = teemes s R e . % sees .
. IR i S g o A bl a0 N4
|] e v o ePNeE sy MM et o % . %N o Veedree 0
- o\ 8e) lsaas | [uille)/ @ @ien em'suw | s o e e s oee/ 0
—] Ve oe 8 | @ ledemu s %eneve @ P PR AN N Y
] AN LR SR LT IS AWNG N
! o =t . %8 o "% LA 4 o W %de TR 0 R
. . . . L Cees e . . ses
| o sy ¥ o [qus v 8 we we
|| N vai JNWBV 4 W
. e e . Lol - ® e

Fig. 4. The 1138busggraph (1138 nodes, 1458 edges) from the Matrix market collection[2], dis-
played as a directed graph.

10

5.2 Layouts preserving the orthogonal ordering

Sometimes a graph has meaningful coordinates. These might be natural physical coor-
dinates associated with the nodes, or just a given layout with which the user is familiar.
We want to improve the readability of the given layout while keeping its overall struc-
ture, thus preserving the user’s mental map and/or natural properties of the layout. A
way to achieve these goals is to minimize the stress of the graph, while preserving the
original vertical and horizontal ordering of the nodes. These can be achieved by our
algorithm. We provide here two examples of refining layouts with meaningful physical
coordinates.

The first example involves automatic production of rail network maps. This prob-
lem has been tackled as a graph drawing problem by Hong et al. [7]. To produce print
quality drawings the authors seek to satisfy quite complex aesthetic requirements such
as effective labelling, edges strictly aligned to axes or diagonals and no induced cross-
ings. However, as illustrated in Figure 5, simple orthogonal ordering also goes a long
way to improving these diagrams. Note that the underlying geographic relationships are
still evident while paths have been straightened and complex sections enlarged.

The second example is an internet backbone network as shown in Figure 6. The
layout based on original coordinates contains very dense areas. However, readability is
vastly improved by minimizing the stress, while original orthogonal order is preserved.

)
.«} A Ry ’ .b‘::um“'.
- L 1 “‘._.
Y
. {
p -
JURCN A ’7 %
~f{ - .
1 "
*
1
N ‘.‘
\.?_ \
.~
O |
/ \ {
I/ :
N
(a) Actual geographic positions (b) Ordering preserving layout

Fig. 5. The New South Wales rail network (312 nodes, 322 edges) shown with actual geographic
positions (left) and then refined using stress minimization with orthogonal ordering constraints

(right)

11

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 6. A backbone network (2603 nodes, 2931 edges). Left picture is based on the actual ge-
ographic coordinates while the right picture is based on ordering-preserving constrained stress
minimization

6 Conclusion and Further Work

We have demonstrated some applications of orthogonal-ordering constraints and that
stress majorization can efficiently deal with such constraints. We are currently working
on extending the algorithm to work for general separation constraints that may have
many more applications, including clustered graph drawing — where we want to sepa-
rate different clusters — and also cases where we want to restrict portions of the graph
to specific rectangular regions. An obvious extension is to allow a wider variety of lin-
ear constraints. This would allow restricting portions of the graph to specific convex
regions. However solving more general linear constraints requires a more sophisticated
algorithm. Active-set techniques [12] may prove promising in this area.

7 Acknowledgements

Thanks to Damian Merrick for the NSW rail network data and members of the Adaptive
Diagrams group at Monash University for their advice and support.

References

1. D. P. Bertsekadyonlinear ProgrammingAthena Scientific, 1999.

2. R. Boisvert, R. Pozo, K. Remington, R. Barrett and J. Dongarra, “The Matrix Market: A
web resource for test matrix collections”,@uality of Numerical Software, Assessment and
EnhancemenChapman Hall, 1997, pp. 125-137.

3. L. Carmel, D. Harel and Y. Koren, “Combining Hierarchy and Energy for Drawing Directed
Graphs”|EEE Trans. Visualization and Computer Graphid®(2004), 46-57.

4. T. Dwyer and Y. Koren, “Dc-CoLA: Directed Graph Layout through Constrained Energy
Minimization”, IEEE Symposium on Information Visualization (Infovis'0&) appear 2005.

5. E. Gansner, Y. Koren and S. North, “Graph Drawing by Stress MajorizatRm®,. 12th Int.
Symp. Graph Drawing (GD’04)1NCS 3383, Springer Verlag, pp. 239-250, 2004.

12

o

. W. He and K. Marriott, “Constrained Graph LayouConstraints3 (1998), 289-314.
. S. Hong, D. Merrick and H. Nascimento, “The metro map layout probl&rdc. 12th Int.
Symp. Graph Drawing (GD’04)1NCS 3383, Springer Verlag, pp. 482-491, 2004.
8. T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Gragh&jr-
mation Processing Lettef&l (1989), 7-15.
9. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout Adjustment and the Mental Map”,
Journal of Visual Languages and Computi®&@¢l995), 183-210.
10. K. Ryall, J. Marks and S. M. Shieber, “An Interactive Constraint-Based System for Drawing
Graphs”, ACM Symposium on User Interface Software and Technpfygy97-104, 1997.
11. K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual Understanding of Hierarchical
Systems” |EEE Trans. Systems, Man, and Cybernetit$1981), 109-125.
12. J. Nocedal, S. Wrighhumerical OptimizationSpringer, 1999.
13. Mosek Optimization Toolkit V3.2&ww.mosek.com .

~

APPENDIX

Lemma 3. If the result of the calproject(z°,lev) is = thenz is the closest point ta®
satisfying the ordering constraints defined by lev.

Proof. We must prove that minimizesF(z) = Y7, (z; — 2?)? subject to satisfying
the ordering constraints. It follows from the construction thegatisfies the ordering
constraints. Proving optimality is more difficult. Let, ..., u,,_1 be new variables,
one for each partitiork . We set values to the new variables by setting ; to be
posnU,,—1 and then iteratively fok = m — 2, ..., 1 settinquy, to ug41 If Uy C Ug11
or elseposnUy.

Recall that if we are minimizing a functiofi with a set of convex equalitigs over
variablesX, then we can associate a variablecalled the Lagrange multiplier with
eachc € C. Given a solutiont we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

OF s~ 0
dr “Ox

ceC

(12)

for each variabler € X. Furthermore, if we also allow inequalities then the above
statement continues to hold as longXas> 0 for all inequalitiesc of form ¢(z) > 0.
By definition an inequality: which is not active, i.e¢(z) > 0 has\. = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].

We now prove that minimizesF'(x) subject to, fork = 1,...,m — 1:

uk,lgukifk>1
x; <uy forallis.t.lev[i] = k
x; > ug forallist.lev[i]| =k +1

These constraints are equivalent to the ordering constraints.

We show optimality by giving values for all, satisfying Equation (12). An inequal-
ity x; < uyg Oorzx; > uy is active ifi € Uy \ Ug—1. Note that we can havg, C Uy 1,
in which case we must be careful to make the right constraint active. Thusyegah
be involved in no more than one active constraint. For a consttahform z; > uy
we set\. = gTF and forc of form z; < w;, we set\. = _6%' The constraint: of

13

form ug, < w4 is active if U, C Upy1. We seth,. = ZzeUk gF For all other
inequalitiesc we set\. = 0.

We first show that these satisfy Equation (12). Consider somé x; does not
occur in an active constraint then we must sh&ﬁ@v = 0. Now

oF
= 2(x; — V).
axi (‘r’b xz)

Sincez; does not occur in an active constraint we haye= 2 and so this is trivially
true.

Now consider the case when occurs in an active constraintof form x; > wy,
i.e.,x; —ug > 0. By constructionrl- occurs in no other active constraints so we must

show thatdF = A smce = 1. But this follows from the definition ok.. The case
whenz; occurs inan actlve constraiabf form z; < wuy is dual
Now consider the varlabkfz;C We must show thaf . A 2% = 0since2E = 0.
Substituting for) .~ Ac 8u we have
M <ur = Aup<uppn + D Ae = 3 A =0 (13)

ceL celG

whered is the set of active constraints of formy > w; and L the set of active con-
straints of formz; < uy.

For each constraint of form z; > u;, € G, Ac = g—i and for each constraint
cofformz; < wp € L, A\, = fg—i. Let us denote the respective sets of nodes
by GV = {i | ; > ugisactivgg andLV = {i | z; < uy is activeé. Note that
GV ULV = U \ Uy, and thatGV, LV andUj_; are disjoint. IfU;_1 C Uy,

up—1 < uy is active and\y,_,<u, = — Y icp, gf Thus
oF
S SIS SRR Lo

ceL ceG €U

On the other hand, Wy,_; € Uy, ur—1 < ug is not active and s@,, _, <, = 0. Thus
sinceGV U LV = Uy, again we have that

uk 1<uk+z/\ _Z)‘ gf

cel ceG 1€Uy
Thus Equation (13) holds iff
oF
_ Z o Aug<upsy =0 (14)
€Uy ¢

There are two cases to considemf C U1 thenuy, < ug, 1 is active and by con-
struction\y, <u,,, = — ZleUk b . Thus Equation (14) trivially holds. B, Z U1
thenu, < ux41 is not active and by constructiox,, <, ., = 0. Thus Equation (14)

holds if oF
> =0 (15)

and this is true if
Z 2(x; —2)) =0
€U
But this follows from (10) since we have that for each maximal boundane. & s.t.

Uk € Uk, ZieUk Ti = ZiEUk ;]
We must now prove that for each active inequatithat\. > 0. Consider an active
constraintc of form z; > u;. By construction

Ao OF

Sl e 2(x; — 1:(-]).

1
For c to be active we have thaf’ < z;, and so\. > 0. The case for an active constraint
c of form x; < wy is symmetric.

Now consider an active constraindf form uy, < ux,1. By construction

We have seen that (10) implies thataif is placed atposnU;, for all i € Uy, then
ZieUk g—i = 0. Now, in case that/;, C Uy, for somei € U, we may haver; #
posnUy. In this case, it follows from (9) that i/, C Uy.y1, posnUy > posnUyy1.

Thus, ifi € Uy thenposnU, > x; and we get

225:22(xi—x?)=0 0

1€U i€Ux

N

and so)\. > 0.

15

