
Stress Majorization with
Orthogonal Ordering Constraints

Technical Report∗, August 2005

Tim Dwyer1, Yehuda Koren2, and Kim Marriott1

1 School of Comp. Science & Soft. Eng., Monash University, Australia
{tdwyer,marriott }@mail.csse.monash.edu.au

2 AT&T — Researchyehuda@research.att.com

Abstract. Force-directed placement is a widely used approach to automatically
arranging the nodes and edges of a relational diagram or graph in an aesthet-
ically pleasing manner. The adoption of the stress-majorization method from
multi-dimensional scaling into graph layout has provided an improved mathemat-
ical basis and better convergence properties for so-called “force-directed place-
ment” techniques. In this paper we give an algorithm for augmenting such stress-
majorization techniques with orthogonal ordering constraints and we demonstrate
several graph-drawing applications where this class of constraints can be very
useful.

Keywords: graph layout, constrained optimization, separation constraints

1 Introduction

The family of graph drawing algorithms that attempt to find an embedding of a graph
that minimizes some continuous goal function, are variously known asspring-embedder
or force-directed placementalgorithms. A popular algorithm in this family has been
that of Kamada and Kawai [8] in which squared differences between ideal distances for
pairs of nodes and their Euclidean distance in the embedding is minimized. Gansner et
al. [5] recently revisited this method and suggested usingfunctional majorization— an
optimization technique from the field of multidimensional scaling. Functional majoriza-
tion iteratively improves the drawing by considering a sequence of quadratic forms that
bound the stress function from above. They showed that it had distinct advantages over
the original algorithm of Kamada and Kawai; particularly, a strictly monotonic decrease
in stress and that it could achieve lower values of the cost function in the same running
time.

A useful property of the majorization approach is that each iteration involves min-
imizing a convenient quadratic function. Gansner et al. [5] mentioned that this allows
using any available equation solver. In this paper we take advantage of this property,
and show how it helps in handling ordering constraints on the nodes. The quadratic

? An abridged version of this paper is to appear in the proceedings of the13th international
symposium on Graph Drawing, Lecture Notes in Computer Science, Springer, 2005

nature of the function we minimize in each iteration allows us to efficiently add such
linear constraints. In fact, minimizing linearly constrained quadratic functions is known
asquadratic programming, which is an efficiently solvable problem [12]. However, we
have found that general quadratic programming solvers will significantly slow down
the stress majorization process. Therefore, we suggest a solver which is crafted espe-
cially for our problem, utilizing its unique nature. This solver can deal with ordering
constraints without significantly increasing the running time of the layout process. We
also demonstrate the utility of imposing this class of constraints — which we callor-
thogonal orderingconstraints — to applications such as network layout reflecting the
relative positions of an underlying set of coordinates and directed graph drawing.

2 Background

We recently introduced the idea of using stress majorization coupled with standard
quadratic programming techniques for drawing directed graphs [4]. In the so-called
DIG-COLA1 technique, nodes in the digraph were partitioned into layers based on
their hierarchical level and constraints were introduced in the vertical dimension to keep
these layers separated. Compared to standard hierarchical graph drawing methods the
DIG-COLA algorithm was shown to produce layouts with a much better distribution
of edge lengths and for large, dense graphs it was able to find layouts with fewer edge
crossings. However, a commercial quadratic programming solver was used to minimize
the quadratic forms subject to constraints. This generic approach meant that layout for
graphs with hundreds or thousands of nodes could take some minutes to perform.

Another case where orthogonal ordering constraints are useful is when we want
to improve the readability of a given layout without significantly changing it. Misue
et al. [9] discussed the importance of preserving a user’s “mental map” when adjusting
graph layouts. One of their models for the mental map focused on preservingorthogonal
orderingof the nodes in a layout — the relative above/below, left/right positions of the
nodes.

The potential for constraint-based, force-directed graph layout was explored by
Ryall et al. [10], however their implementation did not use true constraint solving tech-
niques. Rather, they added stiff springs to a standard force-directed model to keep user-
selected parts of the diagram roughly spaced as desired. True constraint solving tech-
niques for graph drawing were explored by He and Marriott in [6], where a Kamada-
Kawai-based method was extended with an active-set constraint solving technique to
provide separation constraints. However, only small examples of fewer than 20 nodes
were tested and the scalability of the technique was not tested.

3 Problem formulation

The general goal function, known asthe stress function, which we seek to minimize is
described by ∑

i<j

wij(||Xi −Xj || − dij)2

1 Directed Graphs with Constraint-based Layout

2

where for each pair of nodesi and j, dij gives an ideal separation betweeni and j
(usually their graph-theoretical distance),wij = d−2

ij is used as a normalization constant
andX is an× d matrix of positions for all nodes, whered is the dimensionality of the
drawing andn is the number of nodes.

Majorization minimizes this stress function by iteratively minimizing quadratic forms
that approximate and bound it from above. Due to its central role in this work, we pro-
vide the essential details of the method. Recall thatwij are the normalization constants
in the stress function. We use then× n matrixA, defined by

Ai,j =
{
−wij i 6= j∑

k 6=i wik i = j
. (1)

In addition, given ann× d coordinate matrixZ, we define then× n matrixAZ by

AZ
i,j =

{
−wij · dij · inv(‖Zi − Zj‖) i 6= j
−

∑
k 6=i AZ

i,k i = j
, (2)

whereinv(x) = 1/x whenx 6= 0 and 0 otherwise.
It can be shown (see [5]) that the stress function is bounded from above by the

quadratic formFZ(X) defined as

FZ(X) =
∑
i<j

wijd
2
ij +

d∑
a=1

((
X(a)

)T

AX(a) − 2
(
X(a)

)T

AZZ(a)

)
. (3)

Here,X(a) denotes thea-th column of matrixX. Thus, we have

stress(X) 6 FZ(X) (4)

with equality whenZ = X.
We differentiate byX and find that the global minima ofFZ(X) are given by

solving
AX = AZZ (5)

This leads to the following iterative optimization process. Given some layoutX(t),
we compute a layoutX(t + 1) so thatstress(X(t + 1)) < stress(X(t)). We use
the functionFX(t)(X) which satisfiesFX(t)(X(t)) = stress(X(t)). Then, we take
X(t + 1) as the minimizer ofFX(t)(X) by solving (5).

Note that it would be equivalent to consider in each iterationd independent opti-
mization problems, one problem for each axis. Hence thea-th axis of the drawing is
determined by minimizing

xT Ax− 2xT AZZ(a) (6)

Henceforth, we will work, w.l.o.g., with this 1-D layout formulation as it allows a more
convenient notation.

So far we have described the usual, unconstrained stress majorization. In this work
we consider a case where we have additional ordering constraints on each axis. Each
nodei is assigned a level of index1 ≤ lev[i] ≤ m and variable placement must respect

3

this level. Thus, instead of minimizing (6), we would take thea-th axis of the drawing
as the solution of

min
x

xT Ax− 2xT AZZ(a)

subject to:lev[i] < lev[j] ⇒ xi ≤ xj

for all i, j ∈ {1, . . . , n}

(7)

For brevity henceforth we will replace2AZZ(a) with b ∈ Rn, so the target function is
merelyf(x) = xT Ax−xT b. We call this the Quadratic Programming with Orthogonal
Constraints (QPOC) problem.

It is easy to show thatA is positive semi-definite, so the problem has only global
minima. Such a quadratic programming problem can be solved in a polynomial time
[12]. However, our experiments show that generic quadratic-programming solvers are
much slower than solving an unconstrained problem. To accelerate computation we can
utilize two special characteristics of the problem:

1. During the majorization process, we iteratively solve closely related quadratic pro-
grams: The constraints and the matrixA are not changed between iterations, while
only the vectorb is changed. Therefore, the solution of the previous iteration is still
a feasible solution for current iteration (satisfying all constraints). Moreover, this
previous solution is probably very close to the new optimal solution (e.g., consider
that in most iterations the coordinates are only slightly changed). However, such
initialization, called “warm-start”, is fundamentally not trivial for the barrier (or
interior-point) methods used by most commercial solvers.

2. Our constraints are very simple as each of them involve only two variables, being of
the formxi ≤ xj . This allows a simple mechanism for guaranteeing the feasibility
of the solution.

In the next section we describe an algorithm for solving the QPOC problem.

4 Algorithm

We give an iterativegradient-projectionalgorithm (see Bertsekas [1]) for finding a so-
lution to a QPOC Problem. The algorithm,solveQPOC, is shown in Figure 1. The first
step is to decreasef(x) = xT Ax + xT b, by movingx in the direction of steepest de-
scent, i.e. if the gradient isg = ∇f(x) = Ax+b this direction is−g. While we are guar-
anteed that — with appropriate selection of step-sizes — the energy is decreased by this
first step, the new positions may violate the ordering constraints. We correct this by call-
ing theprojectprocedure which returns the closest pointx̄ tox which satisfies the order-
ing constraints, i.e. it projectsx on to the feasible region. Finally, we calculate a vector
d from our initial positionx̂ to x̄ and we ensure monotonic decrease in stress when
moving in this direction by computing a second stepsizeα = arg minα∈[0,1]f(x + αd)
which minimizes stress in this interval.

The procedureproject is the main technical innovation in this paper. The main dif-
ficulty in implementing gradient-projection methods is the need to efficiently project

4

procedure solve QPOC(A, b, lev)
k ← 0, x← initial soln()
repeat

g ← 2Ax + b

s← gT g
gT Ag

x̂← x
x̄←project(x̂− sg, lev)
d← x̄− x̂

α← max(gT d
dT Ad

, 1)
x← x̂ + αd

until ‖x̂− x‖ sufficiently small
return x

Fig. 1. Algorithm to find an optimal solution to a QPOC problem with variablesx1, . . . , xn,
symmetric positive-semidefinite matrixA, vectorb and1 ≤ lev[i] ≤ m + 1 gives the level for
each nodei.

on to the feasible region. Because of the simple nature of the orthogonal ordering con-
straints we can do this inO(mn + n log n) time wherem is the number of levels
andn the number of variables. Theproject procedure (Figure 2) iteratively changes
the positions till all constraints are satisifed. In iterationk all constraints involving
nodes up to the(k + 1)-th level are imposed. More technically, it starts by finding
an ordering of the nodesq such thata = q[i], b = q[i + 1] implies eitherlev[a] <
lev[b] or (lev[a] = lev[b] and xa 6 xb). For convenience we also keep an array
1 < p1, . . . pm = n + 1 of indices for the start of each partition excluding the first
(for conveniencepm was set ton + 1). When considering partitionk, which contains
the nodesabovek = {u|pk ≤ q[u] < pk+1}, we ensure that none of these nodes are
assigned positions lower than that ofbelowk = {l|1 ≤ q[l] < pk}. To achieve this
we create a minimal setUk ⊆ {j|1 ≤ q[j] < pk+1} that includes nodes violating this
condition. To impose the constraints we force all nodes ofUk to lie on a single point
posnUk. Since we want to minimize the quadratic function, we take this point as the av-
erage of all positions inUk. The setUk is minimal in that it does not necessarily include
all nodes violating the boundary condition fork, but only the minimal number that need
to be moved toposnUk such that this condition may be satisfied. The following lemma
captures this.

Lemma 1. During execution ofproject(x,lev) after finishing thekth iteration in which
Uk and its associatedposnUk are computed

posnUk =

∑
i∈Uk

xi

|Uk|
(8)

and
Uk = {l ∈ belowk | xl > posnUk} ∪ {u ∈ abovek | xu < posnUk} (9)

where the position forxi is its value before the start of the iteration.

5

procedure project(x,lev)
q ← {1 ≤ i ≤ n} sorted by(xi, lev[i])
p← indices to start of each level inq

s.t.p1 < . . . < pm−1 < pm = n + 1
andlev[q[pk]] = lev[q[pk − 1]] + 1, 1 ≤ k < m

for 1 ≤ k < m do
% belowk = {l|1 ≤ q[l] < pk}, abovek = {u|pk ≤ q[u] < pk+1}
% Find Uk = {q[i]|il < i < iu} ⊆ belowk ∪ abovek

maxiu← pk+1 − 1
l← q[pk − 1], u← q[pk]
sum← xl + xu, w ← 2
iu← pk + 1, il← pk − 2
if xl > xu then

repeat
finished← true
u← q[iu]
posnUk ← sum

w
if iu ≤ maxiu and xu < posnUk then

iu← iu + 1, w ← w + 1
sum← sum + xu

finished← false
end if
l← q[il]
if il ≥ 1 and xl > posnUk then

il← il− 1, w ← w + 1
sum← sum + xl

finished← false
end if

until finished
for il < i < iu do

j ← q[i]
xj ← posnUk

end for
end if

end for
return x

Fig. 2. Algorithm to project variables to the closest position in the feasible region,1 ≤ lev[i] ≤
m gives the level for each nodei.

Proof. Equation (8) follows directly from the algorithm and is invariant throughout the
loop incrementally buildingUk (since wheneverUk is expandedposnUk is recalcu-
lated).

The post-condition (9) implies thatUk includes all nodes that violate the internal
constraints among1, . . . , pk − 1 andpk, . . . , pk+1 − 1. Proof is as follows. The levels
are examined in order. When examining levelk all nodes inbelowk must be sorted by
position inq (either by the initial precondition forq or since they have been assigned to
a positionposnUl, l < k). The precondition forq also ensures that nodes inabovek are
sorted by position.

If there is overlap between the tail ofbelowk and the head ofabovek we place these
in Uk and setposnUk. We then iteratively examine the successive elements ofbelowk

(from the tail) andabovek (from the head) and add them toUk until no further overlap
is found between these elements andposnUk.

By construction the only elementsl ∈ belowk not placed inUk are those for which
xl ≤ posnUk (otherwise the loop would not terminate). Dually, for any elementu ∈

6

abovek not placed inUk we have thatxu ≥ posnUk. Thus

Uk ⊇ {1 ≤ q[i] < pk | xi > posnUk} ∪ {pk ≤ i < pk+1 | xi < posnUk}

We now show containment by induction. We prove forUk ∩ belowk, while the
proof for Uk ∩ abovek is analogous. The base case follows from the fact that at the
moment we add somel ∈ belowk, it must hold thatxl > posnUk. Now, if later we
add l′ ∈ belowk, then sincebelowk is ordered by position,xl′ ≤ xl. By hypothesis,
xl > posnUk and since the newposnUk is the weighted average ofx′l andposnUk,
we still havexl > posnUk. If later we addu ∈ abovek, then since we are addingu we
must havexu < posnUk. Now by hypothesis,xl > posnUk and soxl > xu. Thus as
for the previous casexl > posnUk.

ut

Corollary 1. During execution ofproject(x,lev) after finishing thekth iteration in which
Uk and its associatedposnUk are computed

posnUk =

∑
i∈Uk

xi

|Uk|
(10)

where the position ofxi is the input position.

Proof. Notice that unlike Equation (8), thexi’s refer now to theinput positions, rather
than to their values before the current iteration. This makes a difference when we find
thatposnUk < posnUl, l < k and thereforeUk ⊃ Ul andposnUk will be calculated
from posnUl for those nodes inUl rather than their original positions. In this case (10)
still holds as

posnUk =
1
|Uk|

|Ul|posnUl +
∑

i∈Uk\Ul

xi


=

1
|Uk|

|Ul|(
1
|Ul|

∑
j∈Ul

xj) +
∑

i∈Uk\Ul

xi

 =
1
|Uk|

∑
i∈Uk

xi

ut
We now show that this results in a valid gradient-projection method.

Lemma 2. If the result of the callproject(x0,lev) is x thenx is the closest point tox0

satisfying the ordering constraints defined by lev.

Proof. (Sketch) We must prove thatx minimizesF (x) =
∑n

i=1(xi − x0
i)

2 subject
to satisfying the ordering constraints. It follows from the construction thatx satisfies
the ordering constraints. Proving optimality is more difficult. Letu1, . . . , um−1 be new
variables, one for each partitionk. We set values to the new variables by settinguk to
bemax{xi | lev [i] = k}.

Recall that if we are minimizing a functionF with a set of convex equalitiesC over
variablesX, then we can associate a variableλc called the Lagrange multiplier with
eachc ∈ C. Given a solutionx we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

7

∂F

∂x
=

∑
c∈C

λc
∂c

∂x
(11)

for each variablex ∈ X. Furthermore, if we also allow inequalities then the above
statement continues to hold as long asλc ≥ 0 for all inequalitiesc of form c(x) ≥ 0.
By definition an inequalityc which is not active, i.e.,c(x) > 0 hasλc = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].

We now prove thatx minimizesF (x) subject to, fork = 1, . . . ,m− 1:

uk−1 ≤ uk if k > 1
xi ≤ uk for all i s.t. lev [i] = k
xi ≥ uk for all i s.t. lev [i] = k + 1

These constraints are equivalent to the ordering constraints.
We show optimality by giving values for allλc satisfying Equation (11). An inequal-

ity xi ≤ uk or xi ≥ uk is active ifi ∈ Uk \ Uk−1. Note that we can haveUk ⊆ Uk+1,
in which case we must be careful to make the right constraint active so as to ensure
that eachxi will be involved in no more than one active constraint. For a constraintc
of form xi ≥ uk we setλc = ∂F

∂xi
and forc of form xi ≤ uk we setλc = − ∂F

∂xi
. The

constraintc of form uk ≤ uk+1 is active ifUk ⊆ Uk+1. We setλc = −
∑

i∈Uk

∂F
∂xi

.
For all other inequalitiesc we setλc = 0. For more detail see the Appendix.

We can now prove the correctness ofsolve QPOC:

Theorem 1. solve QPOC converges to an optimal solution to the input QPOC Prob-
lem.

Proof. Lemma 2 ensures thatsolve QPOC is a gradient projection method. We now
show that a more general proof of convergence for gradient projection methods holds
for our specific stepsize calculations. First consider a variant ofsolve QPOC in which
s is always 1 — note that for both constants and the choice ofs shown in Figure 1 the
method is equivalent to standard steepest-descent in the case when no active constraints
are encountered. With constants = 1 the computation ofα implements a Limited
Minimization Rule and so from [1, Proposition 2.3.1] every limit point ofsolve QPOC
is a stationary point. Since the original problem is convex any stationary point is an
optimal solution. Now consider our computation ofs. To ensure convergence we must
prove that ifsk → 0 wheresk is the value ofs in thekth iteration then the limit point of
solve QPOC is a stationary point. But since the computation ofsk is also an example of
the Limited Minimization Rule on the unconstrained problem,sk → 0 only if the limit
point of solve QPOC is a stationary point for the unconstrained problem, in which case
it must also be a limit point of the constrained problem.

ut

4.1 Running time

The second part of the algorithm, satisfying the constraints, can be performed inO(mn+
n log n) time. However each complete iteration is dominated by computing the desired

8

positions which takesO(n2) time. This is of course the inherent complexity of the
stress function that containsO(n2) terms. (In fact, this is the same as the complexity
of an iteration of the conjugate-gradient method, which is used in the unconstrained
majorization algorithm.) In practice only few (5-30) iterations are required to return the
optimal solution depending on the threshold on||x − x̂||. Running times for graphs
with various sizes and with varying numbers of boundariesm are given in Table 1. We
compare results for those obtained with thesolveQPOCalgorithm implemented in C
and the Mosek interior-point quadratic programming solver [13]. Tests were conducted
on a 2GHz P4-M notebook PC. As expected, since both solvers return the optimal or
near optimal solution, the resulting drawings look identical. However, the dedicated
solveQPOCalgorithm significantly outperformed the generic solver. The final “stress”
value is given as a rough measure of relative quality. Note that this is the final stress
value after being monotonically reduced by a number of iterations of the functional-
majorization method. Sample graphs were obtained from the Matrix Market [2] (Such
as1138busas shown in Figure 4) and some graphs based on geographic coordinates
which are shown in Figures 5 and 6.

SolveQPOC Mosek
graph #nodes (n) #levels (m) Time Stress Time Stress
1138bus 1138 231 4.53 74343 209 74374
nos4 100 34 0.14 216.5 2.75 216.8
nos5 468 256 2.172 8517.3 13.08614.6
dwa512 512 14 1.23 22464 37.7 22464
dwb512 512 19 1.57 15707 90.8 16418
NSW Rail 312 54/76 (x/y-axis) 4.92 2288 18.62274.5
Backbone2603 2373/1805 (x/y-axis) 55.81246960> 1000

Table 1. A comparison of results obtained for arranging various graphs withsolveQPOCand
theMosekinterior point method. Times are measured by seconds.

5 Applications

5.1 Directed graph drawing

The method and motivation for drawing directed graphs by constrained majorization is
discussed at length in [4]. Generally, a digraph can be said to induce a hierarchical struc-
ture on its nodes based on the precedence relationships defined by its directed edges.
Consequently, an appropriate depiction of a digraph allocates they-axis to showing this
hierarchy. Thus, if nodei precedes nodej in the hierarchy, theni will be drawn above
j on they-axis; see, e.g., Sugiyama et al. [11]. This usually leads to the majority of
directed edges pointing downwards, thereby showing a clear flow from top to bottom.
There are a few possibilities for computing the hierarchical ordering of the nodes. We
base our ordering on the “optimal arrangement” suggested by Carmel et al. [3]. Then,

9

we compute the 2-D layout that minimizes the stress, while they-coordinates of the
nodes must obey their hierarchical ordering.

It was shown that this method produces drawings with much more uniform edge
lengths making connectivity in large graphs more visible than in drawings produced by
standard hierarchical graph drawing techniques.

We reproduce some example graphs drawn in this style and compare performance of
our solveQPOCalgorithm with that of the solver previously used. Figure 3 illustrates
the concept with a small directed graph containing a cycle. Note that since all nodes in
the cycle are in the same hierarchical level they are drawn within the same band. Figure
4 shows a much larger example from the matrix market collection [2].

Fig. 3. A directed graph arranged using orthogonal ordering constraints in just the vertical di-
mension to preserve layering. The color bars on the left side indicate the layer-bands and the faint
horizontal lines indicate the boundaries between these layers.

Fig. 4. The1138busgraph (1138 nodes, 1458 edges) from the Matrix market collection[2], dis-
played as a directed graph.

10

5.2 Layouts preserving the orthogonal ordering

Sometimes a graph has meaningful coordinates. These might be natural physical coor-
dinates associated with the nodes, or just a given layout with which the user is familiar.
We want to improve the readability of the given layout while keeping its overall struc-
ture, thus preserving the user’s mental map and/or natural properties of the layout. A
way to achieve these goals is to minimize the stress of the graph, while preserving the
original vertical and horizontal ordering of the nodes. These can be achieved by our
algorithm. We provide here two examples of refining layouts with meaningful physical
coordinates.

The first example involves automatic production of rail network maps. This prob-
lem has been tackled as a graph drawing problem by Hong et al. [7]. To produce print
quality drawings the authors seek to satisfy quite complex aesthetic requirements such
as effective labelling, edges strictly aligned to axes or diagonals and no induced cross-
ings. However, as illustrated in Figure 5, simple orthogonal ordering also goes a long
way to improving these diagrams. Note that the underlying geographic relationships are
still evident while paths have been straightened and complex sections enlarged.

The second example is an internet backbone network as shown in Figure 6. The
layout based on original coordinates contains very dense areas. However, readability is
vastly improved by minimizing the stress, while original orthogonal order is preserved.

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 5. The New South Wales rail network (312 nodes, 322 edges) shown with actual geographic
positions (left) and then refined using stress minimization with orthogonal ordering constraints
(right)

11

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 6. A backbone network (2603 nodes, 2931 edges). Left picture is based on the actual ge-
ographic coordinates while the right picture is based on ordering-preserving constrained stress
minimization

6 Conclusion and Further Work

We have demonstrated some applications of orthogonal-ordering constraints and that
stress majorization can efficiently deal with such constraints. We are currently working
on extending the algorithm to work for general separation constraints that may have
many more applications, including clustered graph drawing — where we want to sepa-
rate different clusters — and also cases where we want to restrict portions of the graph
to specific rectangular regions. An obvious extension is to allow a wider variety of lin-
ear constraints. This would allow restricting portions of the graph to specific convex
regions. However solving more general linear constraints requires a more sophisticated
algorithm. Active-set techniques [12] may prove promising in this area.

7 Acknowledgements

Thanks to Damian Merrick for the NSW rail network data and members of the Adaptive
Diagrams group at Monash University for their advice and support.

References

1. D. P. Bertsekas,Nonlinear Programming, Athena Scientific, 1999.
2. R. Boisvert, R. Pozo, K. Remington, R. Barrett and J. Dongarra, “The Matrix Market: A

web resource for test matrix collections”, inQuality of Numerical Software, Assessment and
Enhancement, Chapman Hall, 1997, pp. 125–137.

3. L. Carmel, D. Harel and Y. Koren, “Combining Hierarchy and Energy for Drawing Directed
Graphs”,IEEE Trans. Visualization and Computer Graphics10 (2004), 46–57.

4. T. Dwyer and Y. Koren, “DIG-COLA: Directed Graph Layout through Constrained Energy
Minimization”, IEEE Symposium on Information Visualization (Infovis’05), To appear 2005.

5. E. Gansner, Y. Koren and S. North, “Graph Drawing by Stress Majorization”,Proc. 12th Int.
Symp. Graph Drawing (GD’04), LNCS 3383, Springer Verlag, pp. 239–250, 2004.

12

6. W. He and K. Marriott, “Constrained Graph Layout”,Constraints3 (1998), 289–314.
7. S. Hong, D. Merrick and H. Nascimento, “The metro map layout problem”,Proc. 12th Int.

Symp. Graph Drawing (GD’04), LNCS 3383, Springer Verlag, pp. 482–491, 2004.
8. T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Graphs”,Infor-

mation Processing Letters31 (1989), 7–15.
9. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout Adjustment and the Mental Map”,

Journal of Visual Languages and Computing6 (1995), 183-210.
10. K. Ryall, J. Marks and S. M. Shieber, “An Interactive Constraint-Based System for Drawing

Graphs”,ACM Symposium on User Interface Software and Technology, pp. 97–104, 1997.
11. K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual Understanding of Hierarchical

Systems”,IEEE Trans. Systems, Man, and Cybernetics11 (1981), 109–125.
12. J. Nocedal, S. Wright,Numerical Optimization, Springer, 1999.
13. Mosek Optimization Toolkit V3.2www.mosek.com .

APPENDIX

Lemma 3. If the result of the callproject(x0,lev) is x thenx is the closest point tox0

satisfying the ordering constraints defined by lev.

Proof. We must prove thatx minimizesF (x) =
∑n

i=1(xi − x0
i)

2 subject to satisfying
the ordering constraints. It follows from the construction thatx satisfies the ordering
constraints. Proving optimality is more difficult. Letu1, . . . , um−1 be new variables,
one for each partitionk . We set values to the new variables by settingum−1 to be
posnUm−1 and then iteratively fork = m− 2, . . . , 1 settinguk to uk+1 if Uk ⊆ Uk+1

or elseposnUk.
Recall that if we are minimizing a functionF with a set of convex equalitiesC over

variablesX, then we can associate a variableλc called the Lagrange multiplier with
eachc ∈ C. Given a solutionx we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

∂F

∂x
=

∑
c∈C

λc
∂c

∂x
(12)

for each variablex ∈ X. Furthermore, if we also allow inequalities then the above
statement continues to hold as long asλc ≥ 0 for all inequalitiesc of form c(x) ≥ 0.
By definition an inequalityc which is not active, i.e.,c(x) > 0 hasλc = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].

We now prove thatx minimizesF (x) subject to, fork = 1, . . . ,m− 1:

uk−1 ≤ uk if k > 1
xi ≤ uk for all i s.t. lev [i] = k
xi ≥ uk for all i s.t. lev [i] = k + 1

These constraints are equivalent to the ordering constraints.
We show optimality by giving values for allλc satisfying Equation (12). An inequal-

ity xi ≤ uk or xi ≥ uk is active ifi ∈ Uk \ Uk−1. Note that we can haveUk ⊆ Uk+1,
in which case we must be careful to make the right constraint active. Thus, eachxi will
be involved in no more than one active constraint. For a constraintc of form xi ≥ uk

we setλc = ∂F
∂xi

and forc of form xi ≤ uk we setλc = − ∂F
∂xi

. The constraintc of

13

form uk ≤ uk+1 is active if Uk ⊆ Uk+1. We setλc = −
∑

i∈Uk

∂F
∂xi

. For all other
inequalitiesc we setλc = 0.

We first show that these satisfy Equation (12). Consider somexi. If xi does not
occur in an active constraint then we must show∂F

∂xi
= 0. Now

∂F

∂xi
= 2(xi − x0

i).

Sincexi does not occur in an active constraint we havexi = x0
i and so this is trivially

true.
Now consider the case whenxi occurs in an active constraintc of form xi ≥ uk,

i.e.,xi − uk ≥ 0. By constructionxi occurs in no other active constraints so we must
show that∂F

∂xi
= λc since ∂c

∂xi
= 1. But this follows from the definition ofλc. The case

whenxi occurs in an active constraintc of form xi ≤ uk is dual.
Now consider the variableuk. We must show that

∑
c∈C λc

∂c
∂uk

= 0 since ∂F
∂uk

= 0.

Substituting for
∑

c∈C λc
∂c

∂uk
we have

λuk−1≤uk
− λuk≤uk+1 +

∑
c∈L

λc −
∑
c∈G

λc = 0 (13)

whereG is the set of active constraints of formxi ≥ uk andL the set of active con-
straints of formxi ≤ uk.

For each constraintc of form xi ≥ uk ∈ G, λc = ∂F
∂xi

and for each constraint

c of form xi ≤ uk ∈ L, λc = − ∂F
∂xi

. Let us denote the respective sets of nodes
by GV = {i | xi ≥ uk is active} and LV = {i | xi ≤ uk is active}. Note that
GV ∪ LV = Uk \ Uk−1 and thatGV , LV andUk−1 are disjoint. IfUk−1 ⊆ Uk,
uk−1 ≤ uk is active andλuk−1≤uk

= −
∑

i∈Uk−1

∂F
∂xi

. Thus

λuk−1≤uk
+

∑
c∈L

λc −
∑
c∈G

λc = −
∑
i∈Uk

∂F

∂xi
.

On the other hand, ifUk−1 6⊆ Uk, uk−1 ≤ uk is not active and soλuk−1≤uk
= 0. Thus

sinceGV ∪ LV = Uk, again we have that

λuk−1≤uk
+

∑
c∈L

λc −
∑
c∈G

λc = −
∑
i∈Uk

∂F

∂xi

Thus Equation (13) holds iff

−
∑
i∈Uk

∂F

∂xi
− λuk≤uk+1 = 0 (14)

There are two cases to consider. IfUk ⊆ Uk+1 thenuk ≤ uk+1 is active and by con-
structionλuk≤uk+1 = −

∑
i∈Uk

∂F
∂xi

. Thus Equation (14) trivially holds. IfUk 6⊆ Uk+1

thenuk ≤ uk+1 is not active and by constructionλuk≤uk+1 = 0. Thus Equation (14)
holds if ∑

i∈Uk

∂F

∂xi
= 0 (15)

14

and this is true if ∑
i∈Uk

2(xi − x0
i) = 0

But this follows from (10) since we have that for each maximal boundaryk, i.e.k s.t.
Uk 6⊆ Uk+1,

∑
i∈Uk

xi =
∑

i∈Uk
x0

i

We must now prove that for each active inequalityc thatλc ≥ 0. Consider an active
constraintc of form xi ≥ uk. By construction

λc =
∂F

∂xi
= 2(xi − x0

i).

Forc to be active we have thatx0
i ≤ xi, and soλc ≥ 0. The case for an active constraint

c of form xi ≤ uk is symmetric.
Now consider an active constraintc of form uk ≤ uk+1. By construction

λc = −
∑
i∈Uk

∂F

∂xi

We have seen that (10) implies that ifxi is placed atposnUk for all i ∈ Uk, then∑
i∈Uk

∂F
∂xi

= 0. Now, in case thatUk ⊂ Uk+1 for somei ∈ Uk we may havexi 6=
posnUk. In this case, it follows from (9) that ifUk ⊆ Uk+1, posnUk > posnUk+1.
Thus, if i ∈ Uk thenposnUk > xi and we get∑

i∈Uk

∂F

∂xi
=

∑
i∈Uk

2(xi − x0
i) = 0 6 0

and soλc ≥ 0.
ut

15

