Comparison of Lazy Bayesian Rule and Tree-Augmented Bayesian Learning

Zhihai Wang
School of Information Technology,
Deakin Untversity, 3125, Australia
zhw@deakin.edu.au

Abstract

The naive Bayes classifier is widely used in interactive
applications due to its computational efficiency, direct the-
oretical base, and competitive accuracy. However, its at-
tribute independence assumption can result in sub-optimal
accuracy. A number of techniques have explored simple re-
laxations of the attribute independence assumption in or-
der 10 increase accuracy. Among these, the lazy Bayesian
rule (LBR) and the tree-augmented naive Bayes (TAN)
have demonstrated strong prediction accuracy. However,
their relative performance has never been evaluated. This
paper compares and contrasts these two fechniques, find-
ing that they have comparable accuracy and hence should
be selected according to computational profile. LBR is de-
sirable when small numbers of objects are to be classified
while TAN is desirable when large numbers of objects are
to be classified.

1. Intreduction

The Naive Bayesian classifier is one of the most compu-
tationally efficient algorithms for machine learning and data
mining. It has been shown in many domains to be surpris-
ingly accurate compared to alternatives including decision
tree leamning, rule learning, neural networks, and instance-
based learning [10], [11], {4}, [8], [5], [12]. It is based
on Bayes’ theorem and an assumption that all attributes are
mutually independent within each class.

Assume X is a finite set of instances, and A =
{A1,4z,---, An} is a finite set of n atiributes. An in-
stance £ € X is described by a vector < ay,a2,---, @, >,
where a; is a value of attribute A;. C is called
the class attribute. Prediction accuracy will be maxi-
mized if the predicted class L(< ay,a2, .8, >) =
argmaz(P(c| < ay,a2,+,a, >). Unfortunately, unless
< ay,82, ", 8, > OCCUrs many times within X, it will not
be possible to directly estimate P(c| < a1,az,--,a, >)
from the frequency with which each class ¢ € C co-

Geoffrey 1. Webb
School of CSSE, Monash University,
Victoria, 3800, Australia
webb@csse.monash.eda.an

occurs with < aj,asy,--,a, > within X. Bayes’ theo-
rem provides an equality that might be used to help estimate
P({c;jz) in such a circumstance:

P(C,‘)P((a1,02, " ,0n > Icl')

P(Cilx)z P{<ey.a9,-,0, >)

§))

If the n attributes are mutually independent within each
class value, then the probability is directly proportional to:

Pled < a1,a2,-+,an >) x Ples) [[Plailes). @
k=1

Classification selecting the most probable class as estimated
using formulas 1 and 2 is the well-known naive Bayesian
classifier.

2. Approaches of improving naive Bayesian
method

The attribute independence assumption makes the ap-
plication of Bayes” theorem to classification practical in
many domains, but this assumption rarely holds in real-
world problems. Notwithstanding Domingos and Pazzani’s
(1996) analysis that demonstrates that some violations of
the independence assumption are not harmful to classifica-
tion accuracy [4), previous research has shown that semi-
naive techniques [10] and Bayesian networks [5] that ex-
plicitly adjust the naive strategy to allow for violations of
the independence assumption, can improve upon the pre-
diction accuracy of the naive Bayesian classifier in many
domains.

One approach is to select attribute subsets. The selective
Bayesian classifier [11] is a variant of the naive method that
uses only a subset of the given attributes in making predic-
tions. Kohavi and John (1997) use best-first search, based
on accuracy estimates, to find a subset of attributes [9].
Their algorithm can wrap around any classifiers, includ-
ing either the decision tree classifiers or the naive Bayesian
classifiers, Another of the most important research ap-
proaches is directly to relax the independence assumptions.

Copyright © 2005 IEEE. Reprinted from Proceedings of ICDM 2002.

This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

0-7695-1754-4/02 $17.00 © 2002 IEEE 490

michelle
Copyright © 2005 IEEE. Reprinted from Proceedings of ICDM 2002.

This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Kononenko (1991) proposed a semi-naive Bayesian clas-
sifier [10]), which partitioned the attributes into disjoint
groups and assumed independence only between atiributes
of different groups. Pazzani (1996) proposed an algorithm
based on the wrapper model for the construction of Carte-
sian product attributes to improve the naive Bayesian clas-
sifier [13).

Friedman, Geiger and Goldszmidt (1997) compared the
naive Bayesian method and Bayesian network, and showed
that using unrestricted Bayesian networks did not generally
lead to improvements in accuracy and even reduced accu-
racy in some domains [5]. They presented a compromise
representation, called tree-augmented naive Bayes (TAN),
in which the class node directly points to all attributes nodes
and an attribute node can have only at most one additional
parent to the class node. Based on this presentation, they
utilized the concept of mutual information to efficiently find
the best tree-augmented naive Bayesian classifier. Keogh
and Pazzani (1999) took a different approach to construct-
ing tree-augmented Bayesian networks [7]. They use the
same representation, but use leave-one-out cross validation
to estimate the classification accuracy of the network when
an arc is to add. The two methods mainly differ in the cri-
terion of attribute selection used to select dependence rela-
tions among the attributes while building a tree-augmented
Bayesian network.

Zheng and Webb (2000) proposed the lazy Bayesian rule
(LBR) leaming technique [17]. LBR can be thought of
as applying lazy learning techniques to naive Bayesian rule
induction. At classification time, for each test example, it
builds a most appropriate rule with a conjunction of condi-
tions as its antecedent and a local naive Bayesian classifter
as its consequent. LB R has been compared experimentatly
with a naive Bayesian classifier, a decision tree classifier,
a Bayesian tree learning algorithm, a constructive Bayesian
classifier, a selective naive Bayesian classifier, and a lazy
decision tree algorithm in a wide variety of natural domains.
In their extensive experiments, LB R obtained lower error
than all the alternative algorithms.

Both LBR and TAN can be viewed as variants of naive
Bayes that relax the attribute independence assumption.
T AN relaxes this assumption by allowing each attribute to
depend upon at most one other attribute in addition to the
class. LBR allows an attribute to depend upon many other
atiributes, but all attributes depend upon the same set of
other attributes. These two different approaches to relaxing
the attribute independence assumption have not previously
been compared. This paper compares the two techniques.
focusing primarily on prediction accuracy but also investi-
gating the significance of the use of lazy learning in LBR
in comparison to the use of eager learning in T AN, and the
criteria used for attribute selection.

491

ORIERD

Figure 1. The Bayesian network structure of
the naive Bayesian classier

3. The representation of dependencies

Bayesian networks have been a popular medium for
graphically representing and manipulating attribute inter-
dependencies. Bayesian networks are directed acyclic
graphs (DAG) that allow for efficient and effective repre-
sentation of joint probability distributions over a set of ran-
dom variables. Each vertex in the graph represents a ran-
dom variable, and each edge represents direct correlations
between the variables. Each variable is independent of its
non-descendants given its parents in the graph.

3.1. Basic Bayesian network

We now more formally introduce some notation for
Bayesian networks. Let A = {Ay, Ag,---, A, } be a finite
set of discrete random variables where each variable A;
may take on values from a finite domain. A Bayesian
network is an annotated directed acyclic graph that encodes
a joint probability distribution over A. It can be formally
defined as follows.

Definition 1. A Bayesian network is defined as a pair:
B=<G,0> 3

where G =< N,E > is a directed acyclic graph where
each node A € N, corresponds to a random variable (an
attribute in standard naive Bayesian terminology) and
where each arc £ € E represents a direct dependence
between variables. © is the set of parameters that quantifies
the Bayesian network, in which each # € © represents a
conditional probability distribution for the corresponding
node.

Bayesian networks provide a kind of direct and clear rep-
resentation for the dependencies among the variables or at-
tributes. These dependencies can be exploited to calculate
the posterior probability P(< a),ag, - ,8, > |¢;) in for-
mula 1. A Bayesian network for the naive Bayesian classi-
fier is the simple structure depicted in Figure 1, which has
the class node as the parent node of all other nodes. No

RN

SCERyy

3
T

Figure 2. A Bayesian network for TAN

other arcs are allowed in its structure. That means every at-
tribute is independent from the rest of the attributes given
the state of the class variable. The naive Bayesian classi-
fier has surprisingly outperformed many sophisticated clas-
sifiers over a large number of data sets, especially where the
attributes are not strongly correlated. However, when the at-
tribute independence assumption is violated, which appears
to be very common, the performance of the naive Bayesian
classifier might be poor.

3.2. Tree-augmented Bayesian networks

From the viewpoint of the representation of dependen-
cies, we can think of the structure of the naive Bayesian
network as being the most restrictive case of the attribute
dependencies, in that it strictly allows no dependencies
between attributes given the class variable. In order to
improve the performance of the naive Bayesian classifier
and reduce the negative impact of the independence
assumption, many efforts have been made to extend the
structure of the naive Bayesian classifier to account for de-
pendence between attributes [14, 5, 7, 2, 3, 16]. Both of the
algorithms of Friedman et al (1997) and Keogh et al (1999)
are based on tree-augmented Bayesian networks, which can
be viewed as a compromise between the restrictive naive
Bayesian network and an unrestricted Bayesian network.

Definition 2, A tree-augmented Bayesian network is de-
fined by the following conditions:

o Each attribute has the class attribute as a parent;

o Attributes may have one other attribute as a parent.

Figure 2 shows an example of an augmented Bayesian
network. There are two reasons for this restriction [7].
First, it reduces the search space of classifiers that must be
considered. Secondly, the probability estimates for a node
become more unreliable as additional parents are added,
because the size of the conditional probability tables in-
creases exponentially with the number of parents. In a tree-
augmented Bayesian network, a node without any parent,

492

Figure 3. A Bayesian network for LER

other than the class node, is called an orphan. Given a tree-
augmented Bayesian network, if we extend arcs from node
Aj 1o every orphan node A;, then node Ay is said to be
a super parent. Assume that Parents(v) is the set of all
parents of node v, and Parents is the set of Parents(v)
for all nodes in a tree-augmented Bayesian network, ie.,
Parents = {Parents(v) : Vv € V}. Acually, here
Parents just represents a tree-augmented Bayesian net-
work. If v is an orphan, then Parents(v) = 1.

3.3. Lazy Bayesian Rule Learning

Lazy learning algorithms exhibit three characteristics
that distinguish them from other learning algorithms [1].
First, they defer processing of their inputs until they re-
ceive requests for information; they simply store their inputs
for future use. Next, they reply to information requests by
combining their stored data. Finally, they discard the con-
structed answer and any intermediate results. This provides
another approach to alleviating the small disjunct problem
of decision tree leaming, and further improving the perfor-
mance of naive Bayesian classification.

In general, any lazy learning approach to building a
Bayesian network will build a new network based on each
given test instance. For a given test instance and training
instances, the network is initialised to a naive Bayesian net-
work, which means all nodes in the network are orphans and
Parents = @. For any training instance, each attribute only
has two values to be used in the network. One is equal to
the value of the test instance, and another value is not equal
to the value of the test instance on this attribute. We don’t
need to differentiate any different value that is not equal to
the value on the test instance.

3.4. The Bayesian network for a lazy Bayesian rule

The lazy Bayesian rule (LBR) learning technique [18,
17} can be thought of as applying lazy learning techniques
to Bayesian rule induction. LBR is similar to LazyDT
(Lazy Decision Tree learning algorithms) [6], which can be
considered to generate decision rules at classification time.

For each instance to be classified, LazyDT builds one rule
that is most appropriate to the instance by using an entropy
measurement. The antecedent of the rule is a conjunction
of conditions in the form of attribute-value pairs. The con-
sequent of the rule is the class to be predicted, being the
majority class of the training instances that satisfy the an-
tecedent of the rule. LB R can be considered as a combina-
tion of the two techniques N BTree and LazyDT. Before
classifying a test instance, it generates a Bayesian rule that
is most appropriate to the test instance. Alternatively, LBR
can be viewed as a lazy approach to classification using the
following variant of Bayes theorem,

P(GiViAV;) = P(CiV2) P(VIIC A Vo) [P(iV2) (4)

Here, V) and V; are any two conjunctions of attribute val-
ues such that each a; from belongs to exactly one of V; or
V2. The structure of a Bayesian network for a lazy Bayesian
rule is shown in Figure 3, here V) = {4, A2, -+, Ay} and
Va = {Ak41, Aks2, -+, An}. At classification time, for
each instance to be classified, the attribute values in V are
allocated to V7 and V5 in a manner that is expected to mini-
mize estimation error. The antecedent of a Bayesian rule is
the conjunction of attribute-value pairs from the set V5, and
the consequent of a Bayesian rule s a local naive Bayesian
classifier created from those training instances that satisfy
the antecedent of the rule, which only uses those attributes
that belong to the set V1. That is to say, we have known
there are some dependencies among the attributes in V3, but
we don’t need to clarify what they are. And a weaker as-
sumption that all the attributes in V4 are mutual independent
given class value and V5 is hold. During the generation of
a Bayesian rule, the test instance to be classified is used
to guide the selection of attributes for creating attribute-
value pairs. The values in the attribute-value pairs are al-
ways the same as the corresponding attribute values of the
test instance. The objective is to grow the antecedent of a
Bayesian rule that ultimately decreases the errors of the lo-
cal naive Bayesian classifier in the consequent of the rule.

4. Classification using Bayesian networks

On In this section, we will discuss some issues to be
related to our Bayesian learning framework. In general
speaking, a Bayesian network allows for modeling of arbi-
trarily complex dependencies between artributes. Sahami
(1996} makes use of the notion of k-dependence Bayesian
classifiers to illustrate the relationship of the naive Bayesian
classifier and a full unrestricted Bayesian classifier [14].

Definition 3. A k-dependence Bayesian classifier is
a Bayesian network which contains the structure of the
naive Bayesian classifier and allows each attribute to have

493

a maximum of k attribute nodes as its parents.

The naive Bayesian classifier is a O-dependence
Bayesian classifier. The full unrestricted Bayesian Network
classifieris a (n — 1)-dependence Bayesian classifier, where
n is the number of domain attributes. Thus, Bayesian net-
works have much representational power at the cost of com-
putationally expensive learning and inference. Restricting
the number of parents to two could mitigate problems in es-
timating probabilities from the training dara while allowing
some amount of dependencies among attributes to be repre-
sented.

Finding the best Bayesian network is an intractable
problem. What is the best Bayesian network for the
training data? In building a Bayesian network, how to
evaluate a new Bayesian network when an arc is added?
Friedman, Geiger and Goldszmidt (1997) described the
problem of learning 2 Bayesian network from training data
as follows [5].

Statement 1. Given a rtaining data set
X = Az1,12,---,2m} of instances of A* =
{A1,Az,- -, An,C}, find a Bayesian network B that
best matches the training set X.

However, the use of such criteria runs the risk of overfit-
ting, Cerquides (1999) presented an alternative statement
as follows [2].

Statement 2, Given a training data set
X = {zi,z2,---,Zm} of a probability distribution
P, find the Bayesian network B that best matches P*.

In practice, this statement is still not operative with re-
spect to building a Bayesian network. In order to efficiently
express the classification purpose, we prefer the following
statement,

Statement 3, Given a training data set
X = {z,19,-,Zm} of instances of A* =
{A, Az,---,A,,C}. find a Bayesian network B that
has the best classification accuracy.

The algorithm of Friedman, Geiger and Goldszmidt
(1997) builds a tree structure over the training data us-
ing the concept of mutual information tests conditioned
on class variable [5]. Cerquides’ (1999) algorithm uses a
variant of mutual information (loglikelihood) to evaluate
a network [2]. Neither algorithm directly reflects classi-
fication accuracy. Keogh and Pazzani (1999) take a dif-
ferent approach to evaluating a tree-augmented Bayesian
network [7]. They used leave-one-out cross validation to
estimate the accuracy of the network with that arc added.

LBR [17] also uses leave-one-out cross validation and a
significance test to manage the trade-off between the de-
gree to which the attribute independence assumption of the
naive Bayesian classifier is violated and the number of train-
ing instances available for training the local naive Bayesian
classifier.

5. Lazy tree-augmented Bayesian network
learning

LBR and TAN differ in two respects. The first is the
types of inter-dependencies that they allow. TAN allows
every node to have different parents, but each node may
have at most one parent. LB R requires all nodes to have
the same parents, but places no restriction on the number of
parents. The primary reason for each of these restrictions is
to restrict the space of alternative networks that is explored,
both to reduce computation and also to reduce variance.

The second respect in which they differ is that LB R uses
lazy learning while TAN uses eager learning. In conse-
quence, LB R may create a different network for each case
to be classified while TAN will apply the same network to
all cases classified. To evaluate the effect of this latter differ-
ence, we implement a lazy version of TAN (LazyT AN).
For a lazy learning method, the Bayesian classifier is only
based on specific attribute values of the test instance to be
classified.

Now, we further give some notations and functions to be
used in the following lazy leamning algorithm for building
tree-augmented Bayesian classifiers, which is used mainly
to explain the differences between the lazy Bayesian rule
learning technique and the tree-augmented Bayesian net-
work learning technique, We will then explain some spe-
cial issues for our implementations. We also discuss criteria
for auribute selection while building a Bayesian network to
predict the class of an unseen instance.

5.1. Basic functions description

Assume ¢ is a conjunction of some attributes values, then
X s the subset of X that satisfies the conjunction of at-
tributes values e. And Parents(v) is the set of all parents of
node v, and Parents is the set of Parents(v) for all nodes
in a Bayesian network, i.e., Parents = {Parents(v) :
Yu € V}. If v is an orphan, then Parents(v) = §. When
an arc is to added into the current Bayesian network, we use
the following functions to check whether the new Bayesian
network is still a tree-augmented Bayesian network.

¢ Ancestor{b,a} is a Boolean function, its value is
true if (b € Parenst(a)) or (3v € Parents{a) :
Ancester(v,b)).

494

Table 1. The Description of LazyTAN

ALGORITHM: LazyTAN (X, V,C, 5)
INPUT: 1) X is the set of training instances,
2) V is the set of attribute values of the test,
3) C is the set of class values,
OUTPUT: Estimated values of the probabilities
PlaiAas A Aagle:).
FORall v € V, Parents(v) = @
/* Initialize the parents of each value */
MiniErrors = Estimate(X, Parents)
DO
BestSuperParent = Argmingev
Estimate(X, Insert All(Parents, v})
/* This is the value for which making that value a parent
of all qualified values will have the greatest effect.*/
IF Eestimate(X, Insert All{ Parents,a)) >
MiniErrors THEN BREAK
b= Argmin{u:Quaiified(aﬁu)}
Estimate(X, Insert(Parents(v), a,v)})
f* This selects the value which is most desirable to
add to a.*/
IF Estimate(X, Insert{ Parents(h),a,b}) >
MiniErrors THEN BREAK
Parents = Insert(Parents(b),a,b)
RETURN
the class probability estimates for V' and Parents.

e Qualified(b,a) is a Boolean function to check
whether an arc, which is from node a to node b, can
be added. Its value is true if —ancestor{b,a) and

Parents(b) = 0.

The first condition —ancestor(b,a) ensures the network
is still acyclic if the arc is added. The second condition
Parents(b) = @ guarantees node a is a unique parent for
node b. The function Inserti(Parents(h), a, b} add nodes
@ into Parents(b). That is, it adds an arc from node a
to node b into the current Bayesian network. The function
InsertAll{Parents, b} is the result of adding b to each
node a of Parents such that quali fied(b, o). Given a tree-
augmented network B, if we extend an arc from node A,
to each orphan in turn, and test the effect on predictive ac-
curacy, the node pointed to by the best arc is said to be the
favourite child of node Ay.

The evaluation of classification accuracy is done by
Estimate(X, Parents), which is an integer function, its
value is the number of instances which are classified incor-
rectly using leave-one-out cross validation estimate on the
training data set X of a tree-augmented Bayesian network
with Parents.

5.2. LazyT AN algorithm

A lazy TAN algorithm is described in Table 1. The
main loop is a straight-forward translation 10 lazy learning
of Keogh and Pazzani’s (1999) variant of the TAN algo-
rithm [7). First, it makes each node a super parent and
the classification accuracy of the corresponding network is
evaluated using leave-one-out cross validation. It then finds
the best super parent. Next it tries to find the favourite child,
by assessing the effect of adding a single arc from the best
super parent to each orphan. For one test instance, the com-
plexity of selecting the best super parent is O(n), because
there are at the most n Bayesian networks to be evaluated,
and the complexity of selecting the favourite child is also
O({n}, because there are at the most 7 arcs to be tested.

Each tree-augmented Bayesian network in our lazy al-
gorithm is based on a single given test instance. Thus, an
attribute only has two values to be used in the network. One
is equal to the value of the test instance, and the other value
is not equal to the value of the test instance on this attribute.
We don’t need to differentiate different values that are not
equal to the value on the test instance. This kind of Bayesian
network does not reflect the joint probability distributions
for all attributes, but reflects the specific dependencies be-
tween the attribute values of the current test instance,

6. Experiments on Weka system

We compare the classification performance of four learn-
ing algorithms. We use the naive Bayes classifier imple-
mented in the Weka system, simply called Naive. We im-
plemented in Weka a lazy Bayesian rule (LBR) leaming
algorithm [17], a tree-augmented Bayesian network (T AN)
learning algorithm {7], and a lazy tree-augmented Bayesian
network learning algorithm {called LazyT AN). All the ex-
periments were performed in the Weka system [15], which
provides a workbench that includes full and working imple-
mentations of many popular learning schemes that can be
used for practical data mining or for research.

Thirty-two natural domains are used in the experiments
shown in Table 2. Twenty-eight of these are drawn from
twenty-nine data sets used in previous research in the
area [7, 17]. Splice-junction had to be discarded as com-
putations could not be completed in reasonable time. The
original corpus of data sets is dominated by small data sets.
As LBR and TAN are directed at larger data sets, the re-
maining twenty-seven data sets were augmented by a se-
lection of four larger data sets {vehicle, mfeat-mor, sign,
segment).

In Table 2, 3. “SH” means the number of instances in
a data set. “CY” means the number of values of a class
attribute. “Af” means the number of attributes, not in-
cluding the class attribute. The classification accuracy

495

Table 2. Descriptions of Data

Domain St Cf At

1 Annealing Processes 898 6 38
2 Audiology 226 24 69
3 Breast Cancer(Wisconsin) 699 2 9
4 Chess (King-rook-vs-king-pawn) 3196 2 36
5 Credit Screening(Auwstralia) 690 2 15
6 Echocardiogram 4 2 6
7 Glass Identification 214 7 10
8 Heart Discase(Cleveland) 303 2 13
9 Hepatitis Prognosis 155 2 19
10 Horse Colic 368 2 22
11 House Votes 84 435 2 16
12 Hypothyroid Diagnosis 3163 2 25
13 Iris Classification 150 3 4
14 Labor Negotiations 57 2 16
15 LED 24(noise level=10%) 1000 16 24
16 Liver Disorders(bupa) 345 2 6
17 Lung Cancer 32 3 56
18 Lymphography 148 4 18
19 Mfeat-mor 2000 10 6
20 Pima Indians Diabetes 768 2 8
21 Post-Operative Patient 9 3 8
22 Primary Tumor 339 22 17
23 Promoter Gene Sequences 106 2 57
24 Segment 2310 7 19
25 Sign 12546 3 8
26 Solar Flare 1389 2 9
27 Sonar Classification 208 2 60
28 Soybean Large 683 19 135
29 Tic-Tac-Toe End Game 958 2 9
30 Vehicle 846 4 18
31 Wine Recognition 178 3 13
32 Zoology 1001 7 16

of each classifier on each domain is obtained by run-
ning 10-fold cross validation, and the random seed for 10-
fold cross validation takes on the default value in Weka
system. We also use the default discretization method
“weka.filters.DiscretizeFilter” as the discretization method
for continuous values, which is offered by the Weka system,
All experimental results for classification accuracies of the
algorithms are shown in Table 3.

Tables 4, 5 and 6, present the WIN/LOSS/DRAW
records for LBR, TAN and LazyT AN, respectively. This
is a record of the number of data sets for which the nom-
inated algorithm achieves lower, higher, and equal error to
the comparison algorithm, measured to two decimal places.
The tables also include the outcome of a two-tailed binomial
sign test. This indicates the probability that the observed

outcome or more extreme should occur by chance if wins
and losses were equiprobable. LBR and T AN demonstrate
comparable levels of error rate.

LBR has a lower error rate than the naive Bayes clas-
sifier in fourteen out of the twenty-seven data sets, and a
higher error rate in only three data sets. This outcome is
statistically significant at the 0.05 level. LBR and TAN
demonstrate comparable levels of error rate. LBR has a
higher error rate than T AN classifier in thirteen data sets,
and lower error rate in ten. LazyT AN also has similar error
performance to LBR and TAN, but the LazyT AN algo-
rithm is not so efficient as LB R classifier.

In the thirty-twe databases, there are fifteen databases
which TAN has higher classification accuracy than Naive
Bayes, and eight for which it has lower classification accu-
racy. On these data sets T AN has failed to improve upon
the error of naive Bayes with significant frequency. It is re-
markable that the pattern of the databases for which each of
TAN and LBR cutperforms naive Bayes differs substan-
tially. It is clear that they find different Bayesian networks
topologies.

There are nineteen databases which LazyT AN has
higher classification accuracy than the naive Bayes classi-
fier, and nine for which it has lower classification accuracy.
This resuit approaches but does not achieve statistical sig-
nificance at the 0.05 level (although if one-tailed tests were
applied, as it could be argued is appropriate in this case as
we expected LazyT AN to outperform naive Bayes, then
the result would be significant - 0.044). LazyT AN has
lower error than TAN for fourieen data sets and higher
for eleven. This difference is not statistically significant.
LazyT AN has similar error performance to the L B R clas-
sifier, These results give some suggestion that directly using
lazy learning techniques to build a tree-augmented Bayesian
network for a given test instance benefit classification accu-
racy.

The mean accuracy over all data sets for each algorithm
is given in Table 7. Due to the incommensurability of accu-
racy scores across different data sets this is a gross measure
to which it is not wise 1o pay too much attention. Nonethe-
less, it might be indicative that LBR achieves the highest
mean accuracy.

To further compare LB R and TAN we calculate the ge-
ometric mean accuracy ratio. For each data set the accuracy
of TAN is divided by the accuracy of LBR. The geomet-
ric mean of these values is 0.994. A value above 1.0 favors
TAN while a value below 1.0 favours LBR. A value of
0.994 indicates a very slight advantage toward LB R for the
data sets studied.

496

Table 3. Average Error Rate for Each Dataset

Domain Ngive LBR TAN LTAN

1 Annealing 546 546 4.01 345
2 Audiology 2920 29.20 2920 28.32
3 B Cancer 258 258 258 2.58
4 Chess 1236 357 5.07 5.07
5 Australia 1507 1464 1435 1464
6 Echocardiogram 27.48 2748 2824 28.24
7 Glass 11.68 981 6.07 9.31
8 Cleveland 16.50 1650 1650 1848
9 Hepatitis 16.13 1613 1613 1484
10 Horse Colic 20011 1929 1848 18.48
11 House Votes 989 7.3 690 9.66
12 Hypothyroid 294 278 288 2.66
13 Iris 667 667 6.00 4.67
14 Labor 351 3351 351 351
15 LED 24.50 2470 2450 2460
16 Bupa 36.81 36.81 4029 3739
17 L Cancer 46.88 43.75 5000 46.88
18 Lymphography 1419 1419 1554 1284
19 Mfeat-mor 3065 2995 3010 2995
20 PID 25.00 24.87 2539 2656
21 Post-Operative 28.89 2889 3000 3444
22 PT 48.97 4985 4985 4985
23 Promoter 849 849 849 9.43
24 Segment 11.08 641 6.28 6.54
25 Sign 38.58 2093 2685 28.71
26 Solar Flare 18.57 1569 1685 1548
27 Sonar 2548 2596 2356 23.08
28 Soybean 717 717 703 732
20 TTT 2954 14,61 28.8] 25.57
30 Vehicle 3948 31.44 3168 30.1
31 Wine 337 337 337 2.81
32 Zoology 584 594 594 594

Table 4. Comparison of LER to others

WIN LOSS DRAW P

Naive
TAN
LazyTAN

14
13
13

3
10
13

15
9
6

0.013
0.678
1.000

Table 5. Comparison of TAN to others

WIN LOSS DRAW P

Naive 15 8 9 0210
LBR 10 13 9 0678
LazyTAN 11 14 7 0690

Table 6. Comparison of LazyTAN to others

WIN LOSS DRAW P

Naive 19 9 4 0.087
LBR 14 " 7 0.690
TAN 13 13 6 1.000

7. Conclusion

Lazy Bayesian Rules and tree-augmented Bayesian net-
works are two extensions to naive Bayes that have previ-
. ously independently been shown to substantially reduce its
error. We have presented the first comparative evaluation of
these two approaches. Our evaluation suggests that the two
algorithms are most effective on quite different data sets.
Neither exhibits a general advantage over the other. To eval-
uate the impact of the lazy/eager differentiation between
the two algorithms we also implemented a lazy version of
TAN. The comparison indicated that LazyT AN enjoyed
at best a modest improvement upon TAN. These outcomes
suggest that the most important difference between LBR
and T AN is the difference in the topologies of the networks
that they construct. Due to its lazy approach, LBR enjoys
greater computational efficiency than TAN when few ob-
jects are to be classified from a single training set and TAN
enjoys a computational advantage when many objects are to
be classified. :

References

[1] D. W. Aha. Lazy learning: special issue editorial. Artificial
Intelligence Review, pages 7-10, 11 1997.

[2] J. Cerquides. Applying general Bayesian techniques to im-
prove TAN induction. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining -
KDD'1999, pages 292-296, 1999.

(3] J. Cheng and R. Greiner. Comparing Bayesian network cias-

sifiers. In Proceedings of the Fifteenth Conference on Un-

certainty in Artificial Intelligence (UAI-99), Sweden, 1999,

P. Domingos and M. Pazzani. Beyond independence: con-

ditions for the optimality of the simple Bayesian classifier.

In Proceedings of the Thirteenth International Conference

4

finar}

497

Table 7. The Mean Error Rate

Naive TAN LBR LazyTAN
ErrorRate 1947 1826 17.43 18.13

on Machine Learning, pages 105-112, San Francisco, CA,
1996. Morgan Kaufmann Publishers, Inc.

[5] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Mackine Learning, 29:131-163, 1997.

[6] N. Friedman, R. Kohavi, and Y. Yon. Lazy decision tree. In
Froceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, pages 717-724, Menlo Park, CA, 1996.
The AAAI PressMorgan Kaufmann Publishers, Inc.

{7]1 E. }. Keogh and M. J. Pazzani. Leaming augmented
Bayesian classifiers: a comparison of distribution-based and
classification-based approaches. In Proceedings of the Sev-
enth International Werkshop on Artificial Intelligence and
Statistics, pages 225-230, 1999,

[8] R. Kohavi. Scaling up the accuracy of naive-Bayes classi-
fiers: a decision-tree hybird. In E. Simoudis, J, W. Han,
and U. M. Fayyad, editors, Proceedings of the Second In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 202-207, Menle Park, CA, 1996. The AAAI
Press.

[9] R. Kohavi and G. H. John. Wrappers for feature subset se-
lection. Artificial Intefligence, pages 273-324, 1997.

[10] I. Kononenko. Semi-nave Bayesian classifier. In Pro-
ceedings of European Conference on Artificial Intelligence,
pages 206219, 1991.

[11] P.Langley and S. Sage. Induction of selective Bayesian clas-
sifiers. In Proceedings of the Tenth Conference on Uncer-
tainty in Artificial Intelligence, pages 339-406, Seattle, WA,
1994, Morgan Kaufmann Publishers.

f12] T. M. Miichell. Machine Learning. The McGraw-Hill Com-
panies, Inc., New York, 1997.

{13] M. Pazzani. Constructive induction of Cartesian product at-
tributes. In Proceedings of Information, Statistics and In-
duction in Science, Melbourne, Australia, 1996.

[14] M. Sahami. Learning limited dependence Buyesian clussi-
fiers, pages 335-338. AAAI Press, Porlland, OR, 1996.

[15) 1. H. Witten and E. Frank. Dara Mining; Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann Publishers, Seattle, WA, 2000.

[16] H. Zhang and X. Ling. Leamability of augmented naive
Bayes in nominal domains. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML-
2001), Williams College, 2001.

[17] Z. Zheng and G. L. Webb. Lazy learning of Bayesian rules.

- Machine Learning, 41(1):53-84, 2000.

[18] Z.Zheng, G. 1. Webb, and K. M. Ting. Lazy Bayesian Rules:
A lazy semi-naive Bayesian leaming technique competitive
to boosting decision trees. In Proceedings of the Sixteenth
Internationai Conference on Machine Learning (ICML-99),
pages 493-502, Bled, Slovenia, 1999. Morgan Kaufmann.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

