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ABSTRACT

Occam’s Razor is widely employed in machine learning to select between classifiers
with equal empirical support. This paper presents the theorem of decreasing inductive
power: that, all other things being equal, if two classifiers a and b cover identical cases from
the training set and a is a generalisation of b, a has higher probability than b of misclassifying
a previously unsighted case. This theorem suggests that, to the contrary of Occam’s Razor,
generality, not complexity, should be used to select between classifiers with equal empirical
support. Two studies are presented. The first study demonstrates that the theorem of
decreasing inductive power holds for a number of commonly studied learning problems and
for a number of different means of manipulating classifier generality. The second study
demonstrates that generality provides a more consistent indicator of predictive accuracy in
the context of a default rule than does complexity. These results suggest that the theorem of
decreasing predictive power provides a suitable theoretical framework for the development of
learning biases for use in selecting between classifiers with identical empirical support.

Introduction

One of the most important aspects of a computational learning system is the learning
bias! that it embodies. The learning bias is the set of the factors that influence the
system’s selection of a classifier given a training set of data. Many factors may enter this
bias, such as, the type of classifier that the system is capable of expressing.

Most machine learning systems perform heuristic search through the space of
classifiers that they are capable of expressing, seeking a classifier that maximises some
preference function. A major factor evaluated by any such preference function is how
well a given classifier fits the training data. Examples of such functions include the
entropy function2, various information measures3-#, the Laplace error estimated or a
preference for a classifier that correctly classifies the most positive cases while
misclassifying no negative cases®. Such a preference function can be considered an
explicit formulation of one of the learning system’s primary learning biases.

However, for most learning problems, there are large numbers of competing
classifiers all of which equally maximise any such function. To select between such
classifiers it is necessary to invoke a secondary learning bias. Most machine learning
systems explicitly or implicitly employ a bias toward the least complex of any two
classifiers that equally well explain the training data. This bias is called Occam’s Razor.

In addition to its almost universal use in machine learning, the principle of Occam’s
Razor is widely accepted in general scientific practice.

However, Occam’s Razor has been subjected to strong philosophical attack. To
summarise Quine’, the complexity of a theory (classifier) depends entirely upon the
language in which it is encoded. To claim that the acceptability of a theory depends upon
the language in which it happens to be expressed appears nothing short of ludicrous.

Several attempts have been made to provide theoretical support for the principle of
Occam’s Razor in the machine learning context8:9. However, these proofs apply equally
to any bias that favours a small random subset of the available classifiers!0.

A further issue is that the objectives of machine learning may vary greatly!l. It seems
surprising that a single secondary learning bias should always be appropriate irrespective
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of whether one is seeking to maximise sensitivity, specificity, positive predictive value,
negative predictive value or accuracy. It would appear more likely that a plausible
framework for developing secondary learning biases would alter the bias depending upon
the objective of a particular learning task.

In this context, it seems hard to understand a) why the principle of Occam’s Razor is
so wide spread in machine learning; and b) how so many successful systems could be
based on a principle with such poor theoretical foundations.

This paper provides a theoretical framework that suggests alternative secondary
learning biases based on classifier generality and which explains why the principle of
Occam’s Razor provides an appropriate secondary learning bias in some contexts.
Experimental support is provided for this framework.

The theorem of decreasing inductive power

It is common to conceptualise classification learning problems as tasks requiring the
division of a geometric space, called the instance space, into a number of discrete regions
each of which is labelled with a single class!2.

A common implicit underlying assumption in machine learning is the axiom of local
uniformity: that objects that are close to one another in an instance space have high
probability of belonging to the same class!2. This provides justification for developing
classifiers that partition the instance space into regions that are each predominantly
occupied by objects from the training set belonging to a single class.

However, while this principle is simple to express, it is extremely difficult to
operationalise due to obstacles to the definition of a domain independent measure of
distance within an instance space. One obstacle arises from the need to standardise
measurements for different attributes that may be based on incommensurable scales.
Standardising values based upon the observed range of values is wide spread, but is
subject to vagaries introduced by the adequacy of a sample. It is also very difficult to
adequately measure distances between cases on the basis of differing values for non-
ordinal attributes. Of even greater importance, even within a single ordinal attribute,
there is no guarantee that the scale employed should be linear. For example, it is arbitrary
whether an attribute should be recorded as an unfiltered value n or should be recorded as
logn or n* or indeed any other transformation. Clearly, the distances obtained by simple
Euclidean geometry at different points in each of these different types of scale will differ
substantially. For example, the distance between the unfiltered variable at values 0 and 1
will be identical to the distance at values 10 and 11. However, if the variable happens to
be recorded as n? the distance will appear to be twenty-one times as great (the recorded
values for O and 1 will be 0 and 1, an apparent distance of 1, but the recorded values for
10 and 11 will be 100 and 121, an apparent distance of 21).

These difficulties undermine attempts to compare classifiers by precise measurement
of distances between points in the regions of an instance space that they identify.

Nonetheless, despite these difficulties, it is possible to make certain general
observations about particular types of classifiers. In particular, it is possible to defend the
axiom of increasing distance: that if two classifiers a and b cover identical cases from the
training set and a is a generalisation of b, then, in the absence of evidence to the contrary,
this provides evidence that the average distance of a point in a from an instance in the
training set that belongs to the dominating class will be greater than the average distance
of a point in b from an instance of the dominating class.

This principle is illustrated in Figure 1. In this figure, the outer heavy line and inner
light line represent the boundaries of the region covered by the more general classifier (a)



and the more specific classifier (b), respectively. Positive instances are indicated by an
‘x’. If Euclidean geometry is applicable and the scales are linear then it is clear that the
average distance to a positive instance from points in the region of the instance space
covered by the more general classifier is higher than the average distance to a positive
instance from points in the area of the instance space covered by the more specific
classifier. However, it should be noted that while it is plausible that the average distance
is greater for the more general classifier, it is not necessarily so. For example, if the
space is distorted so that distances to points at the centre of the space are greatly
amplified in comparison to distances at the margins of the space, the average distance to a
positive instance from points covered by the more general classifier may be less than that
for the more specific classifier.

From the axioms of local uniformity and
a increasing distance it is possible to derive the
theorem of decreasing inductive power: that, all
d b other things being equal, if two classifiers a and b
cover identical cases from the training set and a is a
X generalisation of b, the probability of a
misclassifying previously unsighted cases is higher
than that of . In other words, in general, the
predictive accuracy of a more general classifier will

Figure 1: Regions covered by two be lower than that of a more specific classifier, as it

classifiers covering identical instances 1] cover cases located further from previously
from the training set. . .- . .
sighted positive cases. This will be balanced,
however, by the necessary outcome that the number of cases for which a more general
classifier forms a classification will be greater than for a more specific classifier.

Note that while the two axioms are based upon a geometric model of classification
learning, the theorem derived therefrom makes non-trivial predictions that are
independent of such a geometric model.

The remainder of this paper evaluates the theorem of decreasing inductive power and
examines its implications for classification learning.

Experimental conditions

To evaluate the theorem of decreasing inductive power, classifiers of varying
generality that covered exactly the same cases from the training set were examined. Two
alternative methods of generalisation were employed. Conjunct deletion increased
generality while decreasing classifier complexity. In contrast, disjunct addition increased
both generality and classifier complexity. These manipulations permitted experimental
comparison of learning biases based on each of generality and Occam’s Razor.

Both methods for developing alternative rule sets started by developing a set of
classification rules using the DLG algorithm with further generalisation!3. The
antecedent of each of these rules took the form of a conjunction of attribute-value tests.
For categorical attributes these tests took the form of a condition a&vy, vy, ..., v} where
a is an attribute and v; is a value for that attribute. Missing values for categorical
attributes were treated as distinct values. For ordinal attributes, five forms of condition
were allowed: as<v, a=v, a is missing, asv v a is missing and a=v v a is missing. The
consequent of each rule was a simple classification statement.

The use of DLG with least generalisation ensured that:

a) it was not possible to specialise the antecedent of any rule without decreasing the
number of cases from the training set that it covered; and



b) it was not possible to generalise the antecedent of any rule so as to increase the
number of positive cases that it covered without also increasing the number of
negative cases that it covered.

Rules were generated using the maximum consistent preference function. This
preference function calculates the value of a classification rule as follows:

if neg_cover > 0 then value = —neg_cover else value = pos_cover

where pos_cover represents the number of positive cases covered by a rule and neg_cover
represents the number of negative cases covered by that rule.

DLG employs heuristic search that attempts to find rules that maximise the primary
preference function. DLG with the maximum consistent preference function develops
classification rules that are consistent with the training set. Evaluation was also
performed using the Laplace preference function. This allows the development of rules
that are inconsistent with the training set when the positive examples are numerous and
the counter-examples few. The results of experiments with the Laplace preference
function correspond with those presented below. Those experiments are not presented
herein, due to space constraints, but are available in technical report form.

The alternative classifiers developed through conjunct deletion were generated as
follows. First the most specific rules (S) were developed. These were a set of highly
specific classification rules generated as described above. Next, the most general rules
(G) were developed by replacing each of the most specific rules by one of its greatest
identical cover generalisations. A classification rule g is a greatest identical cover
generalisation of classification rule s iff g is a generalisation of s; g covers exactly the
same cases from the training set as s; and there is no rule x that is a generalisation of g
and of which g is not a generalisation that also covers exactly the same cases from the
training set as s. For each most specific rule the OPUSS systematic search algorithm!4
was used to find all greatest identical cover generalisations from which one was selected
randomly. Note that only generalisations created by deleting conjuncts were considered
during this process. The two rule sets created by these means covered exactly the same
cases from the training set. In other words, the empirical evidence supporting both rule
sets was identical.

Alternative rules were generated using disjunct addition as follows. Most specific
rules were generated as above. Next, a variant of DLG was employed to develop an
alternative set of rules employing the same preference function but guaranteeing that no
rule from the first rule set was included in the new rule set. These rules were added to the
initial rule set to create the general rule set (D). D and S both classified all cases from the
training set identically. In other words, both rule sets had identical empirical support. It
should be noted, however, that the process used to create the additional rules affected the
type of rules created. For example, if the most specific rules contained the best rules, as
measured by the preference function, the additional rules would necessarily have lower
values as measured by this function unless rules of equivalent value also existed.

If complexity is measured as the sum of all conjuncts in all rules in a rule set, as it is
throughout the rest of this paper, conjunct deletion decreases complexity while disjunct
addition increases complexity. It is difficult to conceive of alternative complexity metrics
that alter this general pattern.

Experimental methods

The techniques were evaluated by application to the following ten machine learning
data sets from the UCI repository of machine learning data sets!3: breast cancer,
echocardiogram, glass type, hepatitis, house votes 84, hypothyroid, iris, lymphography,



primary tumor, and soybean large. For all of these data sets, the cases are divided into a
number of mutually exclusive classes. The induction task is to develop an expert system
that can classify a object by reference to the values of its attributes.

All experiments involved one hundred repetitions of the following:

a) the data was divided into a training (80%) and evaluation (20%) set.
b) all alternative induction strategies were applied to the training set.
c) each classifier so developed was evaluated by application to the evaluation set.

Study One

The first study provided experimental evaluation of the theorem of decreasing
inductive power by developing classifiers of varying generality and comparing their
predictive utility. Two experiments were performed. In the first experiment the conjunct
deletion generalisation technique was employed. In the second experiment the disjunct
addition generalisation technique was employed.

When applying the classification rules to cases in the evaluation sets, if multiple rules
applied to a case the rule with the highest value according to the preference function was
employed. If no rule applied to the case the case was considered unclassified.

Table 1 presents the mean predictive accuracies for experiments 1 and 2. Note that
both sets of results are presented with those for the more general rules on the right. Note
also that the results of a two-tailed matched pairs test of significance is presented for each
pair of results to determine the statistical significance, if any, of differences in
performance. Values of 0.05 or less are considered significant.

Table 1: Mean predictive accuracy.
Conjunct Deletion Disjunct Addition
Data| S G )4 S D p
breast cancer| 72.9( 72.1[ 0.00( 71.7| 72.0| 0.48
echocardiogram| 73.9| 71.2] 0.00| 76.0| 76.2| 0.81
glass| 82.5( 81.2] 0.00] 80.6( 78.9( 0.00
hepatitis| 88.1| 84.7[ 0.00] 88.0] 86.4| 0.00
house votes| 95.5| 95.2 0.00f 95.4] 95.2] 0.13
hypothyroid | 99.2] 99.1] 0.00( 99.2| 97.8] 0.00
iris| 94.7]1 94.7]1 0.85| 94.3| 94.3| 0.99
lymphography| 84.8] 81.8] 0.00( 84.1| 81.8] 0.00
primary tumor| 47.3| 399 0.00| 46.8] 46.3| 0.13
soybean large| 91.5| 83.8| 0.00f 91.9( 90.8( 0.00

These results support the theorem of decreasing inductive power. Irrespective of the
method used to increase generality, in the majority of cases an increase in generality leads
to a statistically significant decrease in mean predictive accuracy. An increase in
generality in no case leads to a significant increase in mean predictive accuracy.

Table 2 presents the mean cover for each treatment. In all cases an increase in
generality leads to a statistically significant increase in cover.

Study Two

While Study 1 provides powerful support for the theorem of decreasing inductive
power, it does so in a context that is rarely employed in machine learning research, one in
which not all cases from the evaluation set are classified by the classifier. In most
machine learning research, cases that are not covered by an inferred rule are assigned



Table 2: Mean cover.
Conjunct Deletion Disjunct Addition
Data| S G p S D p
breast cancer| 85.3| 89.8] 0.00| 84.7( 92.4] 0.00
echocardiogram| 67.9 85.5] 0.00| 62.2( 71.1( 0.00
glass| 68.6 88.2 0.00| 68.0] 76.7| 0.00
hepatitis| 76.3| 89.1[ 0.00| 75.7] 81.6| 0.00
house votes| 97.2] 98.2] 0.00] 97.4| 99.3| 0.00
hypothyroid | 98.6] 99.4| 0.00( 98.6] 99.0] 0.00
iris| 88.9] 984 0.00] 86.7| 88.3| 0.00
lymphography | 81.1] 89.5] 0.00( 81.6| 88.4] 0.00
primary tumor| 55.5| 83.9| 0.00| 55.5| 63.1| 0.00
soybean large| 74.2] 92.5] 0.00( 73.5| 77.3] 0.00

to the most common class in the training set, using the so called default rule.

The theorem of decreasing inductive power does not make strong predictions about
the performance of generalisation in this context. It predicts that more general rules will
make more predictions of lower quality. Whether this will increase or decrease predictive
accuracy in the presence of a default rule depends upon whether the accuracy of the
additional predictions is greater than that of the default rule on those cases. This leads to
a suggestion that the effect of generalisation upon predictive accuracy will be identical
irrespective of the means by which that generalisation is created. However, this
suggestion is a weak one in that the degree and form of generalisation wrought by each
treatment may differ substantially. This provides a strong contrast to Occam’s Razor
which favours generality produced through conjunct deletion but which does not favour
generality produced through disjunct addition. Whereas the theorem of decreasing
inductive power makes a weak prediction that generalisation will produce a single effect,
Occam’s Razor states that the less complex rule will outperform the more complex
irrespective of their relative generality.

To evaluate these predictions, the experimental treatments of Study 1 were replicated
with the sole alteration that the default rule was employed during classification. Table 3
presents the mean predictive accuracies that were obtained.

Table 3: Mean predictive accuracy with default rule.
Conjunct Deletion Disjunct Addition
Data| S G p S D p
breast cancer| 68.9| 70.0( 0.00| 69.2] 70.3[ 0.00
echocardiogram| 69.9| 70.5] 0.46| 699 70.2| 0.64
glass| 66.7 75.0( 0.00] 65.5] 68.0] 0.00
hepatitis| 82.8] 82.5[ 0.46| 82.8] 83.2( 0.07
house votes| 94.4| 94.8( 0.00] 94.1] 94.8| 0.00
hypothyroid | 98.6] 98.9] 0.00( 98.6] 97.4] 0.00
iris| 85.0] 93.6] 0.00( 85.6] 86.6] 0.00
lymphography | 77.6] 78.8] 0.01 77.5] 77.6] 0.89
primary tumor| 34.1| 35.0( 0.01| 34.2] 35.2| 0.00
soybean large| 69.6] 79.1] 0.00f 68.8] 70.9| 0.00

In most cases, an increase in generality leads to a significant increase in mean
predictive accuracy. In the case of generality through conjunct deletion, the exceptions
are for the echocardiogram and hepatitis data for which there is no significant change in
predictive accuracy. Increase in generality through disjunct addition mirrors increase in



generality through conjunct deletion with two exceptions. For the hypothyroid data it
leads to a significant decrease in predictive accuracy. For the lymphography data the
change, while in the same direction, is not statistically significant. Thus, the weak
prediction arising from the theorem of decreasing inductive power, that the effect of
generalisation in the context of a default rule should be insensitive to the means by which
generalisation is produced, is borne out in all but two cases and contradicted by
significant changes in opposite direction in only one case.

For fourteen out of fifteen significant differences in predictive accuracy, the more
general classifier outperforms the more specific. This suggests that maximisation of
generality is an effective secondary learning bias for this type of learning.

Where complexity is measured in terms of the sum of conjuncts in a rule set, in all
cases the experimental manipulation leads to a significant change in rule set complexity.
Conjunct deletion always decreases mean complexity while disjunct addition always
increases mean complexity. A detailed table of complexities cannot be presented due to
space constraints, but is available in a technical report form. It is interesting to note that
for the hypothyroid data disjunct addition is almost trebling the complexity of the rule set.
This suggests that it is not possible to create alternative rules of equivalent value as
measured by the preference function to those in the initial rule set. Instead, large
numbers of rules each covering fewer cases appear to have been generated. This may
account for the manner in which an increase in generality through disjunct addition leads
to a decrease in predictive accuracy while an increase in generality through conjunct
deletion does not.

In contrast to the manner in which the prediction based on the theorem of decreasing
inductive power was borne out, the strong prediction of Occam’s Razor, that less
complex rules should be preferred, is contraindicated by seven out of the ten cases of
generalisation through disjunct addition and only supported by one of these ten cases, the
hypothyroid data.

Conclusion

This paper has presented the theorem of decreasing inductive power: that, in the
absence of other evidence to the contrary, if two classifiers a and b cover identical cases
from the training set and a is a generalisation of b, the expected misclassification rate of a
is higher than that of 5. Countering this effect is the increase in cover that results from an
increase in generality. Study 1 supported the prediction that the predictive accuracy of
classification rules would decrease as generality increased irrespective of the means by
which generality was created.

The theorem of decreasing inductive power suggests that generality should be a major
criterion for selection between classifiers with identical empirical support. Whether
greater or lesser generality should be preferred must depend upon the desired outcome.
Where the maximisation of predictive accuracy is desired in the presence of a default
rule, the desirability of generalisation should depend upon the relative predictive accuracy
of the default rule and of the more general rules in the regions covered by the more
general rules and not the more specific rules. Unfortunately, this information cannot be
obtained from a training set as the regions of the instance space in question are not
represented therein.

However, the theorem does suggest that generality should have the same effect on
predictive accuracy whether the generality is introduced by increasing or decreasing the
complexity of the classifiers. This result was observed in the majority of the
experimental conditions. By contrast, Occam’s Razor prefers the least complex classifier



irrespective of its generality. This preference was found to be counterproductive in the
majority of cases where increased complexity resulted in increased generality. However,
it should be noted that for the types of classifier usually employed in computational
learning, there is usually a direct correlation (either positive or negative) between
generality and complexity. Thus, if it is desirable to manipulate generality (as the studies
presented above suggest) it will also be desirable to manipulate complexity. This,
perhaps, goes some way toward explaining the persistence of Occam’s Razor despite an
apparent lack of theoretical or empirical support.

The results of these studies provide strong support for the theorem of decreasing
inductive power. This theorem provides a theoretical framework for investigating
secondary learning biases. Where maximisation of predictive accuracy at the possible
expense of cover is of primary importance, the theorem of decreasing inductive power
indicates that a bias toward more specific classifiers is desirable. The results of Study 2
suggest that if the objective is to maximise predictive accuracy in the presence of a
default rule, that maximisation of generality should be employed as a secondary learning
bias. It is hoped that the theorem will provide a framework in which learning biases
suited to other learning objectives may also be derived.
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