Not so naive Bayesian classification

Geoff Webb

Monash University,

Melbourne, Australia

http://www.csse.monash.edu.au/ \sim webb

Overview

- Probability estimation provides a theoretically well-founded approach to classification
- Naive Bayes is efficient but suffers the attribute independence assumption
- LBR and TAN temper the naivety of naive Bayes
 - accurate, but high computational complexity
- AODE
 - relaxes the attribute independence assumption
 - increases prediction accuracy
 - retains much of naive Bayes' efficiency
 - attains LBR & TAN's accuracy with less computation
 - supports incremental, parallel and anytime classification

Classification learning

- Given a sample from XY want to select $y \in Y$ for new $\mathbf{x} = \langle x_1, \dots, x_n \rangle \in X$
 - eg Xs = symptoms, Ys = diseases
- Error minimized by $argmax_y(P(y | \langle x_1, \dots, x_n \rangle))$
 - but do not know probabilities
- Can estimate using
 - $P(W) \approx F(W)$
 - $P(W \mid Z) \approx \frac{F(W, Z)}{F(Z)}$
 - but usually too little data for accurate estimation for $P(\langle x_1, \dots, x_n \rangle)$ or $P(y | \langle x_1, \dots, x_n \rangle)$

Bayes' theorem

- $P(y \mid \mathbf{x}) = \frac{P(y)P(\mathbf{x} \mid y)}{P(\mathbf{x})}$
- $P(y | \mathbf{x}) \propto P(y)P(\mathbf{x} | y)$
- can estimate P(y) from data so have replaced estimating $P(y | \mathbf{x})$ with estimating $P(\mathbf{x} | y)$
- Attribute independence assumption

$$P(\langle x_1, \dots, x_n \rangle \mid y) = \prod_{i=1}^n P(x_i \mid y)$$

• eg $P(temp=high, pulse=high \mid ill) = \\ P(temp=high \mid ill) \times P(pulse=high \mid ill)$

Naive Bayesian Classification

- use Bayes theorem, attribute independence assumption, and estimation of probabilities from data to select most probable class for given x
- simple, efficient, and accurate
- direct theoretical foundation
- can provide probability estimates

not necessarily Bayesian!

Attribute independence assumption

- Violations of the attribute independence assumption can increase expected error.
- Some violations do not matter (Domingos & Pazzani, 1996).
- Violations that matter are frequent
 - NB is often sub-optimal

Semi-naive Bayesian classification

- Kononenko (1991) joins attributes
- Recursive Bayesian classifier (Langley, 1993)
- Selective naive Bayes (Langley & Sage, 1994)
- BSEJ (Pazzani, 1996)
- NBTree (Kohavi, 1996)
- Limited dependence Bayesian classifiers (Sahami, 1996)
- TAN (Friedman, Geiger & Goldszmidt, 1997)
- Adjusted probability NB (Webb & Pazzani, 1998)
- **LBR** [Lazy Bayesian Rules] (Zheng & Webb, 2000)
- Belief Net Classifiers (Greiner, Su, Shen & Zhou, 2005)
- PDAGs (Acid, de Campos & Castellano, 2005)
- TBMATAN (Cerquides & de Mantaras, 2005)

Tree Augmented Naive Bayes

● All attributes depend on class and at most one other attribute (Friedman, Geiger & Goldszmidt, 1997)

•
$$P(y \mid \langle x_1, \dots, x_n \rangle) \propto P(y) \prod_{i=1}^n P(x_i \mid parent(x_i) \land y)$$

- Parent function selected by mutual conditional information
- Keogh & Pazzani (1999) use wrapper to select parent function
 - Computationally intensive but provides considerable decrease in prediction error

LBR

$$P(y \mid \mathbf{x'}, \mathbf{x''}) = \frac{P(y \mid \mathbf{x''})P(\mathbf{x'} \mid y, \mathbf{x''})}{P(\mathbf{x'} \mid \mathbf{x''})}$$

$$P(y \mid \mathbf{x'}, \mathbf{x''}) \propto P(y \mid \mathbf{x''}) P(\mathbf{x'} \mid y, \mathbf{x''})$$

 \blacksquare make \mathbf{x}' and \mathbf{x}'' a disjoint partition of \mathbf{x}

- defines a space of 2^n formulae all equal to $P(y \mid \mathbf{x})$
- classification task transformed to selection of one of many equivalent formulae for which probabilities can best be estimated from available data
- weakened attribute independence assumption

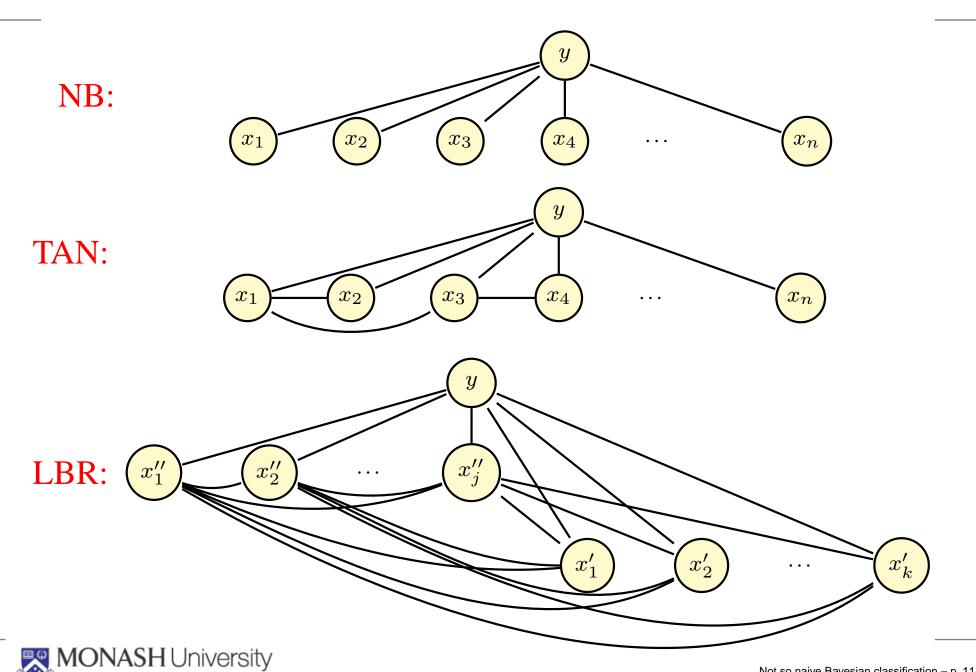
$$P(\mathbf{x}' \mid y, \mathbf{x}'') = \prod_{x \in \mathbf{x}'} P(x \mid y, \mathbf{x}'')$$

- wrapper used to select formula at classification time
 - lazy learning

LBR and TAN performance

- LBR and TAN reduce the error of NB
 - by reducing bias
 - at cost of small increase in variance.
- For classification from discrete-valued data LBR has comparable error to AdaBoost, and slightly better than bagging
- LBR is very efficient for few test cases per training set
- LBR and TAN have comparable error, but different computational profiles.
- Both LBR and TAN are computationally intensive

Markov net perspective



Weaker independence assumption

- Both TAN and LBR
 - assume independence between fewer attributes
 - independence only assumed under stronger conditional constraints
- LBR also
 - estimates fewer conditional probabilities
- So long as base probability estimates are accurate, incorrect inter-dependence assumptions should do no harm.
- Risk: base probabilities estimated from less data

Improving LBR and TAN

- Objective
 - Maintain accuracy of LBR and TAN while lowering computation
- Computation results from
 - calculation of conditional probabilities
 - selection of interdependencies
- If allow at most class +k attribute interdependencies per attribute, probabilities can be estimated from an k+2 dimensional lookup table of joint frequencies
 - $P(x_i \mid y, x_j) \approx F[x_i, y, x_j] / F[x_j, y, x_j]$

AODE

- For efficiency, use 3d table, each attribute depends on class and one other attribute
 - in theory can accommodate any pair-wise attribute interdependencies
- For efficiency and to minimize variance, avoid model selection
 - use all interdependencies for which there is sufficient data for probability estimation
- Conflict: cannot represent multiple interdependencies if only one interdependency per attribute
- Solution: average all models that have a single attribute as parent to all others
- Qualification: restrict parents to frequent attribute values

AODE (cont.)

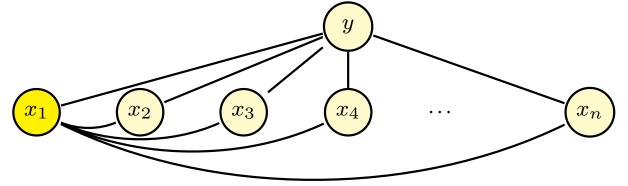
$$P(y \mid \langle x_1, \dots, x_n \rangle) = \frac{P(y, \langle x_1, \dots, x_n \rangle)}{P(\langle x_1, \dots, x_n \rangle)}$$

$$P(y, \langle x_1, \dots, x_n \rangle) = P(y, x_i) P(\langle x_1, \dots, x_n \rangle | y, x_i)$$

$$= \frac{\sum_{i:|x_i|>k} P(y,x_i) P(\langle x_1,\ldots,x_n\rangle \mid y,x_i)}{|\{i:|x_i|>k\}|}$$

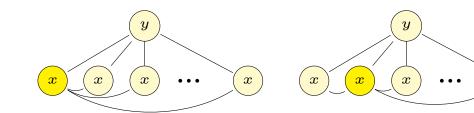
$$P(\langle x_1, \dots, x_n \rangle \mid y, x_i) \approx \prod_{j=1}^n P(x_j \mid y, x_i)$$

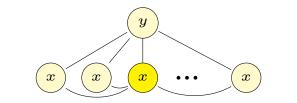
Markov net:



AODE interpretations

- Bayesian average over all dual parent models
 - uniform prior
- Ensemble of all dual parent models





Complexity

alg.	train time	train space	class time	class space
NB	O(ni)	O(nvc)	O(nc)	O(nvc)
AODE	$O(n^2i)$	$O((nv)^2c)$	$O(n^2c)$	$O((nv)^2c)$
TAN	$O(n^3ci)$	$O((nv)^2c + ni)$	O(nc)	$O(nv^2c)$
LBR	O(ni)	O(ni)	$O(n^3ci)$	O(ni + nvc)

n = no. of attributes

v = ave. no. attribute values

c = no. classes

i = no. training instances

Evaluation

- 37 data sets from UCI repository
 - data used in previous related research
 - minus pioneer for which we could not complete computation
- Algorithms implemented in Weka
- NB, AODE, TAN, LBR, J48, boosted J48
- MDL discretisation for NB, AODE, TAN and LBR
- Laplace estimate
- 10-fold cross-validation

Error

Mean error:

 AODE
 NB
 TAN
 LBR
 J48
 Boosted J48

 0.209
 0.223
 0.214
 0.212
 0.229
 0.206

Geometric mean error ratio:

 NB
 TAN
 LBR
 J48
 Boosted J48

 1.104
 1.038
 1.030
 1.187
 1.006

Win–draw–loss table with 2-tail *p*:

NB TAN LBR J48 Boosted J48 21-6-10 22-2-13 18-3-16 23-0-14 20-0-17 0.0354 0.0877 0.4321 0.0939 0.3714

Compute time

Mean training time in seconds

AODE	NB	TAN	LBR	J48	Boosted J48
3.8	3.4	516.9	4.2	26.6	390.4

Mean testing time in seconds

AODE	NB	TAN	LBR	J48	Boosted J48
1.1	0.2	0.1	15456.1	0.1	0.6

Bias

Mean bias:

AODE	NB	TAN	LBR	J 48	Boosted J48
0.148	0.164	0.148	0.145	0.130	0.111

Geometric mean ratio:

NB	TAN	LBR	J48	Boosted J48
1.136	1.005	0.978	0.952	0.741

Win–draw–loss table with 2-tail *p*:

NB	TAN	LBR	J48	Boosted J48
21-6-10	14-2-21	14-3-20	11-0-26	7-0-30
0.0354	0.1553	0.1958	0.0100	< 0.0001

Variance

Mean variance:

AODE	NB	TAN	LBR	J48	Boosted J48
0.060	0.058	0.065	0.066	0.097	0.093

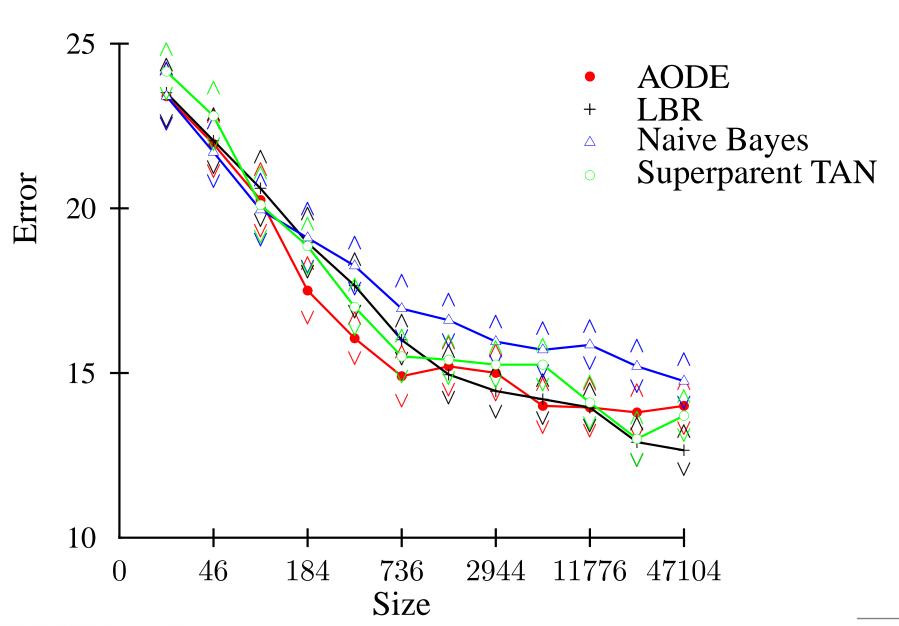
Geometric mean ratio:

NB	TAN	LBR	J48	Boosted J48
0.960	1.096	1.121	1.711	1.680

Win–draw–loss table with 1-tail *p*:

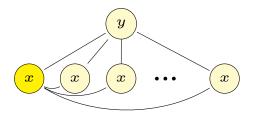
NB	TAN	LBR	J48	Boosted J48
11-6-20	24-1-12	21-3-13	31-0-6	32-0-5
0.0748	0.0326	0.1147	< 0.0001	< 0.0001

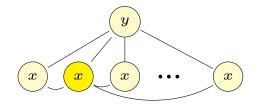
Learning curves for adult

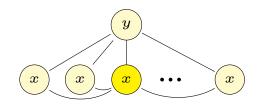


Further features

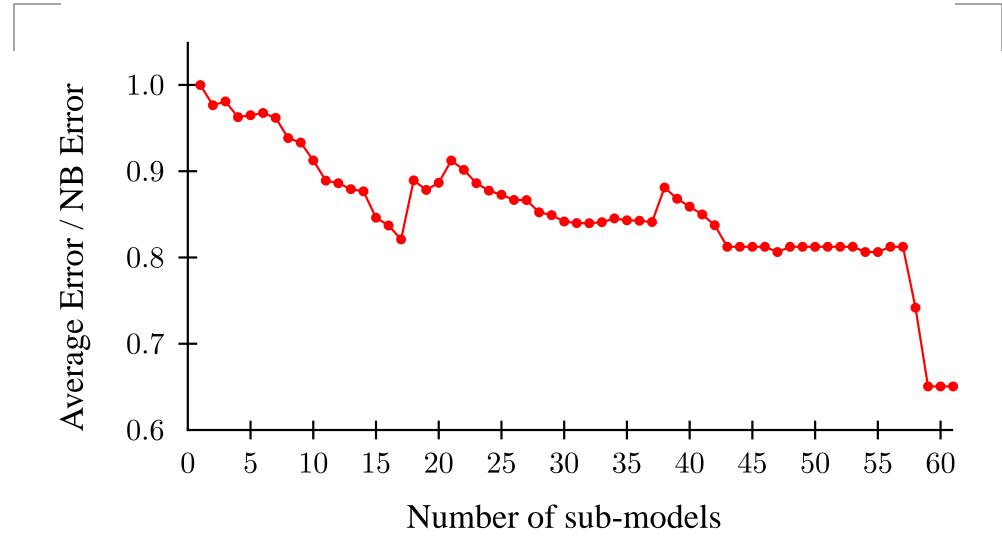
- Incremental
- Parallelizable
- Anytime classification







Anytime classification



Cerquides and de Màntaras, 2005

- Minimum frequency = 1 outperforms minimum frequency = 30
- MAPLMG, learns maximum a posteriori weights.
 - substantial reduction in error at substantial computational cost

Lazy Elimination

- Delete x_i values such that for some x_j , $P(X_i \mid x_j) = 1.0$
- Eg, $P(y \mid \text{pregnant}) = P(y \mid \text{pregnant}, \text{female})$

```
pregnant femalenot-pregnant femalenot-pregnant male
```

Substantial reduction in error

Conclusions

- AODE classifies by conditional probability estimation
- Averages over all single-parent one-dependence models
- Computationally efficient learning at some cost in classification time
 - learning time is linear on number of training objects
- Error appears comparable to LBR and TAN
 - slightly higher bias but lower variance
- Error appears comparable to Boosted J48 for small data sets
 - substantially lower variance
- Supports incremental, parallel and anytime classification

