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Overview

Probability estimation provides a theoretically well-founded
approach to classification

Naive Bayes is efficient but suffers the attribute independence
assumption

LBR and TAN temper the naivety of naive Bayes
accurate, but high computational complexity

AODE
relaxes the attribute independence assumption
increases prediction accuracy
retains much of naive Bayes’ efficiency
attains LBR & TAN’s accuracy with less computation
supports incremental, parallel and anytime classification
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Classification learning

Given a sample fromXY want to selecty ∈ Y for new
x = 〈x1, . . . , xn〉 ∈ X

egXs = symptoms,Y s = diseases

Error minimized byargmaxy(P (y | 〈x1, . . . , xn〉))

but do not know probabilities

Can estimate using
P (W ) ≈ F (W )

P (W |Z) ≈ F (W, Z)
F (Z)

but usually too little data for accurate estimation for
P (〈x1, . . . , xn〉) or P (y | 〈x1, . . . , xn〉)
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Bayes’ theorem

P (y |x) = P (y)P (x | y)
P (x)

P (y |x) ∝ P (y)P (x | y)

can estimateP (y) from data so have replaced estimating
P (y |x) with estimatingP (x | y)

Attribute independence assumption

P (〈x1, . . . , xn〉 | y) =
n∏

i=1

P (xi | y)

eg
P (temp=high, pulse=high | ill) =

P (temp=high | ill) × P (pulse=high | ill)
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Naive Bayesian Classification

use Bayes theorem, attribute independence assumption, and
estimation of probabilities from data to select most probable
class for givenx

simple, efficient, and accurate

direct theoretical foundation

can provide probability estimates

not necessarily Bayesian!
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Attribute independence assumption

Violations of the attribute independence assumption can
increase expected error.

Some violations do not matter (Domingos & Pazzani, 1996).

Violations that matter are frequent
NB is often sub-optimal
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Semi-naive Bayesian classification
Kononenko (1991) joins attributes

Recursive Bayesian classifier (Langley, 1993)

Selective naive Bayes (Langley & Sage, 1994)

BSEJ (Pazzani, 1996)

NBTree (Kohavi, 1996)

Limited dependence Bayesian classifiers (Sahami, 1996)

TAN (Friedman, Geiger & Goldszmidt, 1997)

Adjusted probability NB (Webb & Pazzani, 1998)

LBR [Lazy Bayesian Rules] (Zheng & Webb, 2000)

Belief Net Classifiers (Greiner, Su, Shen & Zhou, 2005)

PDAGs (Acid, de Campos & Castellano, 2005)

TBMATAN (Cerquides & de Mantaras, 2005)
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Tree Augmented Naive Bayes

All attributes depend on class and at most one other attribute
(Friedman, Geiger & Goldszmidt, 1997)

P (y | 〈x1, . . . , xn〉) ∝ P (y)
n∏

i=1

P (xi | parent(xi) ∧ y)

Parent function selected by mutual conditional information

Keogh & Pazzani (1999) use wrapper to select parent
function

Computationally intensive but provides considerable
decrease in prediction error
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LBR

P (y |x′,x′′) = P (y |x′′)P (x′ | y,x′′)
P (x′ |x′′)

P (y |x′,x′′) ∝ P (y |x′′)P (x′ | y,x′′)

makex
′ andx

′′ a disjoint partition ofx

defines a space of2n formulae all equal toP (y |x)

classification task transformed to selection of one of many
equivalent formulae for which probabilities can best be
estimated from available data

weakened attribute independence assumption

P (x′ | y,x′′) =
∏

x∈x
′

P (x | y,x′′)

wrapper used to select formula at classification time
lazy learning
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LBR and TAN performance

LBR and TAN reduce the error of NB
by reducing bias
at cost of small increase in variance.

For classification from discrete-valued data LBR has
comparable error to AdaBoost, and slightly better than
bagging

LBR is very efficient for few test cases per training set

LBR and TAN have comparable error, but different
computational profiles.

Both LBR and TAN are computationally intensive
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Markov net perspective

NB:

y

x1 x2 x3 x4 . . . xn

TAN:

y
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Weaker independence assumption

Both TAN and LBR
assume independence between fewer attributes
independence only assumed under stronger conditional
constraints

LBR also
estimates fewer conditional probabilities

So long as base probability estimates are accurate, incorrect
inter-dependence assumptions should do no harm.

Risk: base probabilities estimated from less data
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Improving LBR and TAN

Objective
Maintain accuracy of LBR and TAN while lowering
computation

Computation results from
calculation of conditional probabilities
selection of interdependencies

If allow at most class +k attribute interdependencies per
attribute, probabilities can be estimated from ank + 2
dimensional lookup table of joint frequencies

P (xi | y, xj) ≈ F [xi, y, xj ]/F [xj , y, xj ]
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AODE
For efficiency, use 3d table, each attribute depends on class
and one other attribute

in theory can accommodate any pair-wise attribute
interdependencies

For efficiency and to minimize variance, avoid model
selection

use all interdependencies for which there is sufficient data
for probability estimation

Conflict: cannot represent multiple interdependencies if only
one interdependency per attribute

Solution: average all models that have a single attribute as
parent to all others

Qualification: restrict parents to frequent attribute values
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AODE (cont.)

P (y | 〈x1, . . . , xn〉) =
P (y, 〈x1, . . . , xn〉)

P (〈x1, . . . , xn〉)

P (y, 〈x1, . . . , xn〉) = P (y, xi)P (〈x1, . . . , xn〉 | y, xi)

=

∑
i:|xi|>k P (y, xi)P (〈x1, . . . , xn〉 | y, xi)

|{i : |xi| > k}|

P (〈x1, . . . , xn〉 | y, xi) ≈
∏n

j=1 P (xj |y, xi)

Markov net:

y

x1 x2 x3 x4 . . . xn
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AODE interpretations

Bayesian average over all dual parent models
uniform prior

Ensemble of all dual parent models

y

x x x ... x

y

x x x ... x

y

x x x ... x . . .
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Complexity

alg. train time train space class time class space
NB O(ni) O(nvc) O(nc) O(nvc)

AODE O(n2i) O((nv)2c) O(n2c) O((nv)2c)

TAN O(n3ci) O((nv)2c + ni) O(nc) O(nv2c)

LBR O(ni) O(ni) O(n3ci) O(ni + nvc)

n = no. of attributes
v = ave. no. attribute values
c = no. classes
i = no. training instances
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Evaluation

37 data sets from UCI repository
data used in previous related research
minus pioneer for which we could not complete
computation

Algorithms implemented in Weka

NB, AODE, TAN, LBR, J48, boosted J48

MDL discretisation for NB, AODE, TAN and LBR

Laplace estimate

10-fold cross-validation
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Error

Mean error:
AODE NB TAN LBR J48 Boosted J48
0.209 0.223 0.214 0.212 0.229 0.206

Geometric mean error ratio:
NB TAN LBR J48 Boosted J48

1.104 1.038 1.030 1.187 1.006

Win–draw–loss table with 2-tailp:
NB TAN LBR J48 Boosted J48

21-6-10 22-2-13 18-3-16 23-0-14 20-0-17
0.0354 0.0877 0.4321 0.0939 0.3714
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Compute time

Mean training time in seconds
AODE NB TAN LBR J48 Boosted J48

3.8 3.4 516.9 4.2 26.6 390.4

Mean testing time in seconds
AODE NB TAN LBR J48 Boosted J48

1.1 0.2 0.1 15456.1 0.1 0.6
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Bias

Mean bias:
AODE NB TAN LBR J48 Boosted J48
0.148 0.164 0.148 0.145 0.130 0.111

Geometric mean ratio:
NB TAN LBR J48 Boosted J48

1.136 1.005 0.978 0.952 0.741

Win–draw–loss table with 2-tailp:
NB TAN LBR J48 Boosted J48

21-6-10 14-2-21 14-3-20 11-0-26 7-0-30
0.0354 0.1553 0.1958 0.0100 <0.0001
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Variance

Mean variance:
AODE NB TAN LBR J48 Boosted J48
0.060 0.058 0.065 0.066 0.097 0.093

Geometric mean ratio:
NB TAN LBR J48 Boosted J48

0.960 1.096 1.121 1.711 1.680

Win–draw–loss table with 1-tailp:
NB TAN LBR J48 Boosted J48

11-6-20 24-1-12 21-3-13 31-0-6 32-0-5
0.0748 0.0326 0.1147 <0.0001 <0.0001
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Learning curves for adult
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Further features

Incremental

Parallelizable

Anytime classification

y

x x x ... x

y

x x x ... x

y

x x x ... x . . .

Not so naive Bayesian classification – p. 24/28



Anytime classification
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Cerquides and de Màntaras, 2005

Minimum frequency = 1 outperforms minimum frequency =
30

MAPLMG, learns maximum a posteriori weights.
substantial reduction in error at substantial computational
cost
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Lazy Elimination

Deletexi values such that for somexj, P (Xi | xj) = 1.0

Eg,P (y | pregnant) = P (y | pregnant, female)

pregnant female
not-pregnant female
not-pregnant male

Substantial reduction in error
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Conclusions

AODE classifies by conditional probability estimation

Averages over all single-parent one-dependence models

Computationally efficient learning at some cost in
classification time

learning time is linear on number of training objects

Error appears comparable to LBR and TAN
slightly higher bias but lower variance

Error appears comparable to Boosted J48 for small data sets
substantially lower variance

Supports incremental, parallel and anytime classification
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