
FIT3094 AI, ALife and Virtual Environments, by Alan Dorin.

Practical sheet: Pacman and FSMs 

Part A : Pacman 

1. Log on to an online Pacman game e.g. http://www.webpacman.com/ 
 

 
Watch over the shoulder of a class mate as they play the first game level a few times. 
Carefully observe the behaviour of the ghosts. Do they all behave in the same way? 
Observe your classmate’s game play too. Then swap roles. 

2. Discuss with your classmate, then experiment and write down alone, for each ghost, the 
algorithms you think they might be following. (Some brief information is provided on 
the pages of the webpacman.com website that might help.) What does the designer, 
Toru Iwatani, say about the reasons for making these algorithms as he did? 

3. Construct a Finite State Machine (FSM) for your favourite ghost. (Blinky is provided in 
the lecture notes as an example.) Choose a different ghost to your classmate and the 
lecturer’s notes. What are the triggers that govern changes in your ghost’s behaviour? 

4. Discuss with your classmate their observations of your game play. Then, write down 
(alone) the algorithm that you employed to complete a level of the game. 

5. Construct a FSM for your own game play strategy. 
 

Part B : FSM Implementation 

1. Implement the FSM you devised for your ghost in C++ class. You don’t need to make 
any graphics code to visualise the ghost’s state. Instead, every time the FSM changes 
state, just print out the name of the new state to the screen. For example, “Running 
away”, “Chasing Pacman”, “Returning home”. 

2. Discuss and design with your classmate a consistent way to implement a test-harness 
for your ghost FSMs. This should allow a human user to enter ASCII characters to 
generate the triggers that cause the FSMs to change state. For example, C => Chase 
ghost, T => Touch ghost, F => Flee! 

3. Together, implement your test harness. 

4. Incorporate both of your ghost FSMs into one C++ program and play Textman!

http://www.webpacman.com

