
FIT3094 AI, ALife and Virtual Environments, by Alan Dorin.

Practical sheet: Pirate search

Part A : Pirate Grid World

1. Design (not implement!) a class for building a 2D, square grid world of different widths
ranging from 3 to 8. For example, the noughts and crosses board is a 2D square grid of
width 3, a chess board is a 2D square grid of width 8. 
 
The class should contain a constructor, destructor and an output() method. The output()
method should draw the world by printing out a grid of characters or symbols. 
 
Each grid cell can be in one of 4 states: unoccupied, occupied-by-treasure, occupied-by-
obstacle, occupied-by-pirate. You could represent this visually as follows: 

 

2. Add to the constructor a means to: 

(a) Randomly position 4 Obstacles at different locations on the grid.
(b) Randomly position 1 Treasure at an unoccupied position on the grid.
(c) Randomly position 1 Pirate at an unoccupied position on the grid. 

3. Devise algorithms (not software) for determining: 

(a) If there is an unobstructed path from the pirate to the treasure.
(b) The length of the shortest path from the pirate to the treasure. 
 

Part B : Implementation  

4. Implement your design for questions 1 and 2.
5. Implement a random walk for the pirate that ensures it avoids obstacles and notifies the

user when the treasure has been found.
6. Implement a simple algorithm that walks the pirate around performing a thorough and

complete search, avoiding obstacles and notifying the user when the treasure has been
found. Hint: keep track of which cells the pirate has visited during her search. 
 

Part C : Advanced (optional)

7. Implement your algorithms for question 3.

- - - -

- O - O

T O - -

- O P -

