6 Combinational circuits

6.1 Introductory concepts

- A combinational circuit (block, component) consists of logic gates and processes \(n \) input signals \(x(n-1), \ldots, x(0) \) into \(m \) output signals \(y(m-1), \ldots, y(0) \) using a function \(y = f(x) \), in such a way that output signals depend only on the current input signals.

\[
y_i = f_i(x_{n-1}, \ldots, x_0) \quad \text{for} \quad i = 0, \ldots, n-1 \quad \text{or} \quad y = f(x)
\]

where each \(f_i \) is a logic function.

- Past values of the input signals do not have any influence on the current values of the output signals.

- Description of any combinational circuit with \(n \) inputs and \(m \) outputs can be ultimately reduced to a truth table with \(2^n \) rows and \(m \) column.

- From the point of view of their internal structures combinational blocks can be classified into two groups:
 - un-structured circuits, that is a “random” collection of gates,
 - structured circuits forming 1-D and 2-D arrays of components.

The simplest combinational blocks are collections of gates. For example, an n-bit NAND gate:

- A slightly more complicated example includes the collection of gates driven by a common control signal, say \(s \), to perform two operations:

- We are already familiar with a \(n \)-to-\(2^n \) decoder as a minterm/maxterm generator. Typically the decoder has an additional enable signal \(s \) such that the minterms are generated only for \(s = 1 \), whereas for \(s = 0 \) outputs are in an inactive state, typically 0.

- The decoder can be also used as a Demultiplexer. The 1-bit demultiplexer receives 1-bit data on a single input and re-directs it into one-out-of-\(m = 2^n - 1 \) outputs selected by an n-bit number \(x \).
6.2 Example of a VHDL code for a 2-to-4 decoder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY dec2to4 IS
 PORT(
 x : IN std_logic_vector (1 DOWNTO 0);
 y : OUT std_logic_vector (3 DOWNTO 0)
);
END dec2to4 ;

ARCHITECTURE struct OF dec2to4 IS
 SIGNAL xb : std_logic_vector(1 DOWNTO 0);
BEGIN
 y(0) <= xb(1) AND xb(0);
 y(1) <= xb(1) AND x(0);
 y(2) <= xb(0) AND x(1);
 y(3) <= x(1) AND x(0);
 xb <= NOT(x);
END struct;

• A VHDL program represents a digital circuit.
• It can represent: signal flow, behaviour or structure of the circuit.
• The program can be used to simulation/test, or to synthesize the digital circuit.
• The above program describes signal flow.
• All assignment statements are interpreted/executed concurrently, therefore can be written in any order.

6.3 Multiplexers

• A n-to-1 multiplexer connects its output y to one of n = 2^m inputs a_0, a_1, ..., a_n selected by an m-bit control/select signal s.
• In other words the multiplexer output is a sum of products of input signals with respective minterms:

\[y = a_0 \cdot m_0 + a_1 \cdot m_1 + \ldots + a_{n-1} \cdot m_{n-1} = \sum_{i=0}^{n-1} a_i \cdot m_i \]

• A 4-to-1 multiplexer can be implemented in the following way:

Function Table:
6.4 Describing a multiplexer in VHDL

There are a number of ways to describe a multiplexer in VHDL. The following two methods use various concurrent assignment statements. We use a 4-to-1 multiplexer as an example.

\[
\begin{array}{cccc}
0 & a(0) \\
1 & a(1) \\
2 & a(2) \\
3 & a(3) \\
\end{array}
\]

\[
\begin{array}{cccc}
s(1:0) & \text{MUX} \\
0 & 1 \\
1 & 0 \\
\end{array}
\]

\[
y = f(x_2, x_1, x_0) = \sum (1, 3, 5, 6)
\]

6.4.1 Conditional Signal Assignment Statement

\[
<= \ldots \text{when} \ldots \text{else}
\]

ARCHITECTURE condSA OF mux4to1A IS
BEGIN
y <= a(0) WHEN s = "00" ELSE
a(1) WHEN s = "01" ELSE
a(2) WHEN s = "10" ELSE
a(3) ;
END condSA ;

6.4.2 Selected Signal Assignment Statement

\[
<= \text{with} \ldots \text{select} \ldots \text{when} \ldots , \ldots ;
\]

ARCHITECTURE selSA OF mux4to1A IS
BEGIN
WITH s SELECT
y <= a(0) WHEN "00" , -- comma
a(1) WHEN "01" ,
a(2) WHEN "10" ,
a(3) WHEN OTHERS ; -- semicolon
END selSA ;

Multiplexer as a universal logic element

- Typically multiplexers are used to re-direct signals from different sources onto a common output.
- However, when we compare expression for canonical implementation of a logic function with expression for a multiplexer we note that they are structurally identical.
- It means that a multiplexer with \(m \) select signals can be used as a universal logic block implementing any logic function of \(m \) variables specified by constants (from a truth table) at the multiplexer inputs.
- As an example consider implementation of a 3-variable function using an 8-to-1 multiplexer:

\[
y = f(x_2, x_1, x_0) = \sum (1, 3, 5, 6)
\]

- If we allow inputs to the multiplexer to be not only constants \((0, 1)\), but also variable(s) (or their complements), then, in particular, using a \(2^m \)-to-1 multiplexer, we can implement any logic function of \(m + 1 \) variables.
- In such a case \(m \) variables are applied to the select inputs of the multiplexer, whereas the remaining variable, its complement and constants \((0, 1)\) are applied to the multiplexed inputs.
Example

Implement a 3-variable function
\[y = f(x_2, x_1, x_0) = \sum (1, 3, 4, 5) \]
using a \(2^2\)-to-1 multiplexer

- Variables \((x_1, x_0)\) are used as the select variables in a 4-to-1 multiplexer
- The remaining variable \(x_2\) will be used at the multiplexer inputs.

- To do this we modify the truth table comparing values of the output signal \(y\) for two values of the variable \(x_2\)

6.5 Unstructured combinational circuits

- The name “unstructured” refers to implementations of a \(n\)-input \(m\)-output combinational circuit build from simple gates which are not grouped into any sub-blocks.
- To illustrate the concept let us consider the following implementation of a 2-bit multiplier.
- It is a 2-bit by 2-bit multiplication circuit that forms a 4-bit product:

\[a \cdot b = \underbrace{a(a, a_0) \cdot b(b, b_0)}_{2 \times 1} = \underbrace{(c, c_2, c_1, c_0)}_{2 \times 2} \]

such that \(c = a \cdot b = f(a, b) \)

4 Boolean functions of 4 variables must be derived:

\[f_3 = f_3(a, a_0, b, b_0) \]
\[f_2 = f_2(a, a_0, b, b_0) \]
\[f_1 = f_1(a, a_0, b, b_0) \]
\[f_0 = f_0(a, a_0, b, b_0) \]
The next step is to convert the truth table into the Karnaugh maps:

Multiplication table:

From the Karnaugh maps we can obtain the following SoP expressions:

\[
\begin{align*}
C_3 &= a_1a_0b_1b_0 \\
C_2 &= a_1b_1\overline{b_0} + b_1a_0 = a_1b_1(\overline{a_0} + \overline{b_0}) \\
C_1 &= a_1\overline{b_1}b_0 + a_0\overline{b_1}b_0 + b_1\overline{a_1}a_0 + b_1\overline{a_0}a_0 \\
&= a_1b_0(\overline{a_1} + \overline{b_0}) + b_1a_0(\overline{a_1} + \overline{b_0}) \\
C_0 &= b_0a_0
\end{align*}
\]

A possible implementation with “mixed” gates: AND, OR NAND

Note that equation for \(c_1\) has been simplified so that it is no longer a standard form but a 3-level implementation:

\[
\begin{align*}
C_3 &= a_1a_0b_1b_0 \\
C_2 &= a_1b_1\overline{b_0} + b_1a_0 = a_1b_1(\overline{a_0} + \overline{b_0}) \\
C_1 &= a_1\overline{b_1}b_0 + a_0\overline{b_1}b_0 + b_1\overline{a_1}a_0 + b_1\overline{a_0}a_0 \\
&= a_1b_0(\overline{a_1} + \overline{b_0}) + b_1a_0(\overline{a_1} + \overline{b_0}) \\
C_0 &= b_0a_0
\end{align*}
\]

The above implementation is an example of an unstructured combinational circuit.