7 Arithmetic combinational circuits

7.1 Introductory concepts

- Arithmetic combinational circuits are the most typical example of structured or array combinational circuits.
- Typically an \(n \)-bit arithmetic circuit can be decomposed into \(n \) 1-bit circuits connected in an appropriate way.
- Most typical example is an \(n \)-bit adder that can be thought of as a 1-dimensional array of 1-bit adders.
- Examples of arithmetic circuits that form 2-dimensional arrays of 1-bit cells include fast multiplication circuits and vector rotators.
- Even simple arithmetic circuits cannot be implemented in an unstructured way:
 Consider a 16-bit adder adding two 16-bit numbers.
 It is equivalent to a combinational circuit with 32 inputs and 16 outputs.
 The truth table of such a circuit has \(2^{32} = 4,294,967,296 \) rows and 16 columns.
- Unstructured implementation of such a big circuit is rather impossible.

7.2 An Incrementer

- An incrementer performs operation \(y \leq a + 1 \) which can be implemented as a 1-dimensional array of 1-bit incrementers.
- A 1-bit incrementer has a 1-bit input \(a \) and an input carry \(c \), and generate 1-bit output \(y \) and an output carry \(d \).
- The signals are related by the following arithmetic equation
 \[
 2 \cdot d + y = a + c \quad \text{or} \quad \frac{a + c}{2} = d + \frac{y}{2}
 \]
 It says that the result of 1-bit incrementation, \(y \), and an output carry \(d \) are remainder and the quotient, respectively, from division of \(a + c \) by 2.
- The truth table can now be easily created.

<table>
<thead>
<tr>
<th>c</th>
<th>a</th>
<th>d</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- From the truth table it is easy to write equations for the output signal \(y \) and the output carry \(d \):
 \[
 y = a \oplus c, \quad d = a \cdot c
 \]
 The equations can be implemented as follows:

- The presence of the XOR gate is characteristic to all arithmetic circuits.
An n-bit Incrementer

- In order to obtain an n-bit incrementer, we arrange n 1-bit incrementers in a 1-D array, connecting their output carry ports to respective input carry ports.

- If A and Y are numbers represented by the n-bit binary words, \(a(n-1:0) \) and \(y(n-1:0) \), respectively, then the n-bit incrementer performs the operation

\[
2^n d + Y = A + c_0
\]

where \(d = c_n \) is the 1-bit output carry, and \(c_0 \) is the 1-bit input carry.

- Note that when \(c_0 = 0 \) then \(Y = A \), that is, no increment is performed.

- Note also that the output carry \(c_n = 1 \) if and only if all \(a_i \) and \(c_0 \) are 1.

7.3 Adders

7.3.1 1-bit adder

- Adders are fundamental building blocks of all arithmetic circuits.

- Following considerations of the previous section we conclude than an n-bit adder can be built using an array of 1-bit adders.

- A 1-bit adder has three inputs, \(a, b, c \), and two outputs, \(d, s \), known as the output carry and the sum, respectively.

- The 1-bit adder counts the number of ones at its three inputs and represents the result as a two-bit binary number.

- Hence, the defining arithmetic relationship between inputs and outputs can be written as:

\[
a + b + c = (d, s)_2 = 2 \cdot d + s \quad \text{or} \quad \frac{a + b + c}{2} = d + \frac{s}{2}
\]

- All three inputs are equivalent, but normally \(c \) is called the input carry.

- The arithmetic equation can be converted into a truth table which describes the relationship between three adder inputs \(c, b, a \) and two adder outputs, \(d, s \), and then into the logic equations:

\[
s = a \oplus b \oplus c
\]

\[
d = a \cdot b + b \cdot c + c \cdot a
\]
1-bit adder

Karnaugh Maps:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum(3, 5, 6, 7)$</td>
<td>$\sum(1, 2, 4, 7)$</td>
</tr>
</tbody>
</table>

Logic equations:

\[
d = a \cdot b + b \cdot c + a \cdot c = a \cdot b + c \cdot (a + b)
\]

Generic implementation:

\[
s = \overline{c} \cdot (a \cdot \overline{b} + \overline{a} \cdot b) + c \cdot (\overline{a} \cdot \overline{b} + a \cdot b)
\]

\[
s = a \oplus b \oplus c
\]

7.3.2 An n-bit adder

- An n-bit adder adds two n-bit binary numbers $a = (a_{n-1} \ldots a_0)$ and $b = (b_{n-1} \ldots b_0)$ and a 1-bit input carry c_0 and produces an n-bit sum $b = (s_{n-1} \ldots s_0)$ and a 1-bit output carry d.

- This can be formally described in the following way:

\[
s = a + b + c_0 = \sum_{i=0}^{n-1} a_i 2^i + \sum_{i=0}^{n-1} b_i 2^i + c_0 = \sum_{i=0}^{n-1} (a_i + b_i) 2^i + c_0
\]

Starting from the least significant position ($i = 0$) we can convert

\[
a_0 + b_0 + c_0 = 2c_1 + s_0 \quad \text{or in general for } i = 0, \ldots, n-1: \quad a_i + b_i + c_i = 2c_{i+1} + s_i
\]

Substituting we have

\[
s = \sum_{i=0}^{n-1} (a_i + b_i) 2^i + c_0 = c_n 2^n + \sum_{i=0}^{n-1} s_i 2^i
\]

- Ripple-carry implementation of an n-bit adder built from 1-bit adders:

- Time taken for the carry to propagate from c_0 to c_n is proportional to n: $t_n = n \cdot t_1$
7.4 2’s complement representation of numbers

- The 2’s complement number system is an extension of a binary system to representation of also the negative numbers.
- In the 2’s complement system the most significant weight is negative, or alternatively the most significant digit (the sign digit) takes values $a_{n-1} \in (-1, 0)$.
- Hence, an n-bit numeral $a = (a_{n-1}, a_{n-2} \ldots, a_0)$ represents the number:

$$a = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i2^i$$

All 3-bit 2’s complement numbers:

- The range of numbers represented is from $(10 \ldots 0)_{\overline{2}} = -2^{n-1}$ to $(01 \ldots 1)_{\overline{2}} = 2^{n-1} - 1$.

Example:

$$a = [10110]_{A_{4:0}} = \begin{bmatrix} 2^4 \\ 2^3 \\ 2^2 \\ 2^1 \\ 2^0 \end{bmatrix} = -2^4 + 2^2 + 2^1 = -(10)_{10}$$

7.5 Changing sign of a 2’s complement number

- Complementing every digit of a 2’s complement number: (Note that $\overline{a_i} = 1 - a_i$)

$$\overline{a} = -(1 - a_{n-1})2^{n-1} + \sum_{i=0}^{n-2} (1 - a_i)2^i = -2^{n-1} + \sum_{i=0}^{n-2} 2^i + a_{n-1}2^{n-1} - \sum_{i=0}^{n-2} a_i2^i$$

Re-grouping the terms and noting that $\sum_{i=0}^{n-2} 2^i = 2^{n-1} - 1$, we have

$$\overline{a} = -1 - (-a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i2^i) = -a - 1$$

or

$$-a = \overline{a} + 1$$

- Hence, to change the sign of a 2’s complement number we complement each digit and add 1:

- Sign extension:

Note that increasing the number of bits we have extend to the left the bit sign.

For example: $(10011)_{2} = (1111110011)_{2}$ and $(010011)_{2} = (0000010011)_{2}$
7.6 Adding 2’s complement numbers

- 2’s complement \(n \)-bit numbers can be added using a standard binary adder. The \(n \)-bit result will be correct provided that the overflow does not occur.

- Formal proof:

\[
s = a + b + c_0 = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i - b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i + c_0 = -(a_{n-1} + b_{n-1})2^{n-1} + \sum_{i=0}^{n-2} (a_i + b_i)2^i + c_0
\]

Substituting the 1-bit addition law

\[
a_i + b_i + c_i = 2c_{i+1} + s_i,
\]

we have

\[
s = -(a_{n-1} + b_{n-1})2^{n-1} + 2c_{n-1}2^{n-2} + \sum_{i=0}^{n-2} s_i 2^i = c_{n-1}2^n - (a_{n-1} + b_{n-1} + c_{n-1})2^{n-1} + \sum_{i=0}^{n-2} s_i 2^i
\]

Finally, we have

\[
s = a + b + c_0 = (c_{n-1} - c_n)2^n - s_{n-1}2^{n-1} + \sum_{i=0}^{n-2} s_i 2^i
\]

- When \(c_{n-1} = c_n \) the above expression gives the proper 2’s complement sum of \(a \) and \(b \) (and \(c_0 \))

- When \(c_{n-1} \oplus c_n = 1 \) overflow occurs and the result is “incorrect”, that is, \(\pm 2^n \) must be added for proper the interpretation of the result

A.P. Papliński

7–9

Ripple-carry implementation of an \(n \)-bit 2’c complement adder:

Examples:

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c_0)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-16 84 21</td>
<td>1 0 1 1</td>
<td>= -5</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>= 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>= 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>= -13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>= -14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td>(\oplus)</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>= +9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that:

- An overflow can only occur when we are adding numbers of the same sign.

- In this case the \(c_n \) carry is equal to the sign bit but the \(c_{n-1} \) carry can be both 0 or 1.

- Adding numbers of opposite sign the \(c_{n-1} \) carry propagates through the sign position and \(c_n = c_{n-1} \)

A.P. Papliński

7–10
7.7 Carry propagation and generation

- Designing adders it is useful to formulate the following carry propagation/generation conditions.
- Consider again a 1-bit adder in which input and output variables are related by the following equation:
 \[2d + s = a + b + c \]

- **Carry propagation:** when \(a \oplus b = 1 \) (\(a \) and \(b \) are different) \(d = c \) output carry is equal to the input carry.
- We say that the carry \(c = d \) is **propagated through** this position of the adder.

- **Carry generation:** when \(a \oplus b = 0 \) (\(a \) and \(b \) are identical) \(d = a \), \(s = c \) output carry is equal to the addend bit \(a = b \) and is independent of the input carry \(c \).
- We say that the carry \(d = a \) is **generated** at this position of the adder.

- Using two intermediate signals:
 \[g = a \cdot b \quad \text{— carry “1” generate} \]
 \[p = a \oplus b \quad \text{— carry propagate} \]

- The logic **equations for the 1-bit adder** can be written as:
 \[s = p \oplus c \quad \text{— the sum} \]
 \[d = g + p \cdot c \quad \text{— the output carry} \]

7.8 Carry Lookahead adder

- The ripple-carry \(n \)-bit adder is relatively slow, because the initial carry \(c_0 \) must travel through all \(n \) 1-bit adders.
- The can be avoided if we unfold the recursive way of calculating carry.
- This can be conveniently done using carry generate/propagate signals:
 \[c_1 = g_0 + p_0 \cdot c_0 \]
 \[c_2 = g_1 + p_1 \cdot c_1 = g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0 \]
 \[c_3 = g_2 + p_2 \cdot c_2 = g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0 \]
 \[\ldots \]
- Note from the logic diagram that the number of gates to produce the carry signal for the given position and their number of inputs grows with the adder position number.
- Such an adder implementation is called a carry look-ahead adder an is the typical way of speeding up the adder operations.
7.9 Subtrators

- Subtractors are typically used in the 2’s complement system.
- Implementations of a subtractor involves the change of sign of the subtrahend through the complementation of its bits and an increment, according to the formula:

\[s = a - b = a + \bar{b} + 1 \]

- The resulting block/logic diagrams:

![Block diagram](image)

- It is also possible to build a (i-bit) subtractor according to the formula:

\[-2d + s = a - b - c \]

- Note that the weight associated with carry is negative.

Give the truth table and logic equation for such a subtractor. Compare it with a 1-bit adder.

7.10 VHDL specification of a 1-bit adder

The 1-bit adder entity specifies input output ports:

```vhdl
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;
ENTITY add_1b IS
    PORT (a, b, c : IN bit ;
          s, d : OUT bit ) ;
END add_1b ;
```

Many architectures are possible. Consider the following two:

```vhdl
-- dataflow architecture for add_1b
ARCHITECTURE d_flow_a OF add_1b IS
BEGIN
    s <= a XOR b XOR c ; -- a SIGNAL assignment
    d <= (a AND b) OR ((a OR b) AND c) ;
END d_flow_a ;

-- another dataflow architecture for add_1b
ARCHITECTURE d_flow_b OF add_1b IS
    SIGNAL e : std_logic ; -- internal signal declaration
BEGIN
    e <= a XOR b ;
    s <= e XOR c ;
    d <= (a AND b) OR (e AND c) ;
END d_flow_b ;
```

- In the d_flow_b architecture we use an internal signal e which is specified as being of the type std_logic.
- The internal signals are always bi-directional and are used to simplify the description of the circuit.
Two more architectures:

In this architecture we specify the 1-bit adder in the form of its truth table. The truth table can be specified as a constant array of binary words:

```
ARCHITECTURE ttbl OF add1_b IS
  TYPE arr_vec IS ARRAY (natural range <>)
    OF std_logic_vector(1 downto 0);
  CONSTANT add1bit : arr_vec(0 to 7) := (  
    "00", -- 0 0
    "01", -- 1 1
    "01", -- 2 1
    "10", -- 3 2
    "01", -- 4 1
    "10", -- 5 2
    "10", -- 6 2
    "11"), -- 7 3
  SIGNAL cba : std_logic_vector (2 downto 0) ;
  SIGNAL ds : std_logic_vector (1 downto 0) ;
BEGIN
  -- concatenation of three signals into one 3-bit word
  cba <= c & b & a ;
  -- reading from the truth table
  ds <= add1bit(conv_integer(unsigned(cba)));
  d <= ds(1) ;
  s <= ds(0) ;
END ttbl ;
```

The 1-bit adder can be also specified arithmetically, leaving all the design/synthesis problems to the CAD tools:

```
ARCHITECTURE cnt1 OF add_1b IS
  SIGNAL ds : std_logic_vector (1 downto 0) ;
BEGIN
  ds <= unsigned('0' & a) +
       unsigned('0' & b) +
       unsigned('0' & c) ;
  d <= ds(1) ;
  s <= ds(0) ;
END cnt1 ;
```

- Note the various type conversion functions: `unsigned` and `conv_integer`.
- Type conversion informs the tools about desired method of conversion of binary vectors into numbers.

A.P. Papliński

7.11 Arithmetic-Logic Units

- In practical applications adders and subtractors are group together with logic functions performed on \(n \)-bit binary words.

- As an example we consider an ALU performing eight different arithmetic and logic operations selected by a 3-bit operation code, \(\text{opc}(2:0) \)

- The \(i \)-th bit of the ALU can have the following logic structure:

<table>
<thead>
<tr>
<th>opc</th>
<th>function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>(a + b + c_0)</td>
</tr>
<tr>
<td>0 0 1</td>
<td>(a \oplus b)</td>
</tr>
<tr>
<td>0 1 0</td>
<td>(a \lor b)</td>
</tr>
<tr>
<td>0 1 1</td>
<td>(a \cdot b)</td>
</tr>
<tr>
<td>1 0 0</td>
<td>(a - b - c_0)</td>
</tr>
<tr>
<td>1 0 1</td>
<td>(a \oplus b)</td>
</tr>
<tr>
<td>1 1 0</td>
<td>(a \cdot b)</td>
</tr>
<tr>
<td>1 1 1</td>
<td>(a \lor b)</td>
</tr>
</tbody>
</table>

The operations performed are described by the following table:
7.12 VHDL implementation of n-bit arithmetic circuits. The “generate” statement.

- In VHDL 1-bit arithmetic circuits are replicated to form a n-bit circuit using the **generate** statement of the form:
 \[
 \text{for } \ldots \text{ generate}
 \]

- The **generate** statement is a loop which replicates the **circuitry** specified by its body.

- Consider again a 4-bit incremenrer as an illustrative example

- The **generate** loop will be repeated 4 times, and its body will describe the 1-bit incremenrer in the following way:

```vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY incr4b IS
  GENERIC (N : natural := 3);
  PORT (a : IN std_logic_vector (N downto 0);
        c0 : IN std_logic;
        y : OUT std_logic_vector (N downto 0);
        d : OUT std_logic);
END incr4b;
ARCHITECTURE GnrtStt OF incr4b IS
  SIGNAL c : std_logic_vector (N+1 DOWNTO 0);
BEGIN
  c(0) <= c0;
  gnrt: FOR i IN 0 TO N GENERATE
    y(i) <= a(i) XOR c(i);
    c(i+1) <= a(i) AND c(i);
  END GENERATE gnrt;
  d <= c(N+1);
END GnrtStt;
```

A.P. Papliński 7–17

- Note that the architecture consists of three **concurrent** statements (two assignment statements and one generate statements) that can be written in any order.

- Similarly, two assignment statements inside the generate statement can be also written in any order.

7.13 Structural specification of digital circuits

- In the previous examples VHDL statements described signal flow inside a component (logic circuit).

- It is possible to describe a digital circuit as interconnection of other components.

- Each constituent component is a black box with an unspecified, at this stage, function or behaviour, but with precisely defined ports.

- In the declarative part of the architecture we specify input-output ports of all components used in the architecture body in a way identical to the respective entity declarations for these components.

- The components may already exist in libraries, or can be specified later.

- Such structural specification of digital circuits is made in VHDL with the **Component Instantiation Statement** of the general form:

 \[
 \text{port map (} \ldots \text{)}
 \]

We use the n-bit incremenrer to clarify the concept of structural specification.
We start with specification of a 1-bit incrementer as a separate component:

```
ENTITY inc1b IS
  PORT ( a, c : IN std_logic ;
         d, y : OUT std_logic ) ;
END inc1b ;
```

```
ARCHITECTURE arch1 OF inc1b IS
BEGIN
  y <= a XOR c ;
  co <= a AND c ;
END arch1 ;
```

The 4-bit incrementer instantiate the 1-bit component in the following way:

```
ARCHITECTURE strctrl OF incr4b IS
COMPONENT inc1b
  PORT ( a, c : IN std_logic ;
         d, y : OUT std_logic ) ;
END COMPONENT inc1b ;
SIGNAL c : std_logic_vector (N+1 downto 0) ;
BEGIN
  c(0) <= c0 ;
  gnrt : FOR i IN a'RANGE GENERATE
    u1 : inc1b PORT MAP ( a(i), c(i), c(i+1), y(i) ) ;
  END GENERATE strctrl ;
  d <= c(4) ;
END strcrl ;
```

Note that

- In the architecture body the library components are instantiated as many times as specified by the schematic describing the architecture using a port map component instantiation statement.
- Each component instantiation statement is labeled as its schematic equivalent. In the example, the 1-bit component is labeled `u1`.
- Interconnections between components are specified by the port map statement. For it to work, every net in the schematic, that is, all external and internal signals, must be assigned a name.
- Every port map statement is associated by positions with the respective component declaration.

Note also

- In the `generate` statement we used expression “`a'range`” to describe the scope of the generate loop. Ut is an example of an attribute that we will study in some depth latter. Here we simply have:

 \[
 a'\text{range} \equiv 3 \text{ downto } 0
 \]

- In the `port map` statement every signal is associated with the respective formal component port by position, in this case according to the following table:

 \[
 \begin{array}{cccc}
 \text{component:} & a & c & d & y \\
 \text{port map:} & \text{a(i)} & \text{c(i)} & \text{c(i+1)} & \text{y(i)} \\
 \end{array}
 \]

- There is another, more explicit form of the `port map` statement where association of the formal component ports and the instantiated component signals is by names, not by position.

 We can write

  ```
  PORT MAP ( a => a(i), c => c(i), d => c(i+1), y => y(i)) ;
  ```