Knowledge Engineering with Bayesian Networks (KEBN)

(Laskey, 1999).

- Objective: Construct a model to perform a defined task
- Participants: Collaboration between domain expert(s) and BN modelling expert(s), including use of automated methods.
- Process: iterate until “done”
 - Define task objective
 - Construct model
 - Evaluate model

KEBN

Production of Bayesian/decision nets for

- **Decision making:** Which policy carries the least risk of failure?
- **Forward Prediction:** Hypothetical or factual. Who will win the election?
- **Retrodiction/Diagnosis:** Which illness do these symptoms indicate?
- **Monitoring/control:** Do containment rods need to be inserted here at Chernobal?
- **Explanation:** Why did the patient die? Which cause exerts the greater influence?
- **Sensitivity Analysis:** What range of probs/utilities make no difference to X?
- **Information value:** What’s the differential utility for changing precision of X to ε?
KEBN Lifecycle Model

1. **Building the BN**
 - i) Structure
 - ii) Parameters
 - iii) Preferences

2. **Validation**
 - Sensitivity Analysis
 - Accuracy Testing

3. **Field Testing**
 - Alpha/Beta Testing
 - Acceptance Testing

4. **Industrial Use**
 - Collection of Statistics

5. **Refinement**
 - Updating Procedures
 - Regression Testing

Notes on Lifecycle Model

Phase 1: Building Bayesian Networks.
- Major network components: structure, parameters and utilities.
- Elicitation: from experts, learned with data mining methods, or some combination of the two.

Phase 2: Evaluation.
- Networks need to be validated for: predictive accuracy, respecting known temporal order of the variables and respecting known causal structure.
- Use statistical data (if available) or expert judgement.

Phase 3: Field Testing.
- Domain expert use BN to test usability, performance, etc.

KEBN Spiral Model

From Laskey & Mahoney (2000)
Idea (from Boehm, Brooks): prototype-test cycle

![KEBN Spiral Model Diagram](image_url)
For Bayesian Networks, identifying:

1. What are the variables? What are their values/states?
2. What is the graph structure? What are the direct causal relationships?
3. What are the parameters (probabilities)? Is there local model structure?

When building decision nets, identifying:

4. What are the available actions/decisions?
5. What are the utility nodes & their dependencies?
6. What are the preferences (utilities)?

The major methods are:

- Expert elicitation (1-6)
- Automated learning from data (1-3, 5-6?)
- Adapting from data (1-3, 5-6?)

Which are the most important variables?
- “Focus” or “query” variables
 - variables of interest
- “Evidence” or “observation” variables
 - What sources of evidence are available?
- “Context” variables
 - Sensing conditions, background causal conditions
- “Controllable” variables
 - variables that can be “set”, by intervention

Start with query variables and spread out to related variables.
NB: Roles of variables may change.

Variable values/states

- Variable values must be exclusive and exhaustive
 - Naive modelers sometimes create separate (often Boolean) variables for different states of the same variable

- Types of variables
 - Binary (2-valued, including Boolean)
 - Qualitative
 - Numeric discrete
 - Numeric continuous

- Dealing with infinite and continuous variable domains
 - Some BN software (e.g. Netica) requires that continuous variables be discretized
 - Discretization should be based on differences in effect on related variables (i.e. not just be even sized chunks)

Graphical structure

Goals in specifying graph structure

- Minimize probability elicitation: fewer nodes, fewer arcs, smaller state spaces
- Maximize fidelity of model
 - Sometimes requires more nodes, arcs, states
 - Tradeoff between more accurate model and cost of additional modelling
 - Too much detail can decrease accuracy
- Drawing arcs in causal direction is not “required” BUT
 - Increases conditional independence
 - Results in more compact model
 - Improves ease of probability elicitation
- If mixing continuous and discrete variables
 - Exact inference algorithms only for the case where discrete variables are ancestors, not descendants of continuous variables
Relationships between variables

Types of qualitative understanding can help determine local/global structure

- Causal relationships
 - Variables that could cause a variable to take a particular state
 - Variables that could prevent a variable taking a particular state
- Enabling variables
 - Conditions that permit, enhance or inhibit operation of a cause
- Effects of a variable
- Associated variables
 - When does knowing a value provide information about another variable?

Dependent and independent variables

- D-separation tests
- Which pairs are directly connected?
 Probabilities dependent regardless of all other variables?

Matilda - software tool for visual exploration of dependencies (Boneh, 2002)

Temporal ordering of variables

Explaining away/undermining

Causal non-interaction/additivity

Causal interaction
 - Positive/negative Synergy
 - Preemption
 - Interference/XOR

Screening off: causal proximity

Explanatory value

Predictive value

Probabilities

- The parameters for a BN are a set of conditional probability distributions of child values given values of parents
- One distribution for each combination of values of parent variables
- Assessment is exponential in the number of parent variables
- The number of parameters can be reduced by taking advantage of additional structure in the domain (called local model structure)

Probability Elicitation

- Discrete variables
 - Direct elicitation: “p=0.7”
 - Odds (esp. for very small probs): “1 in 10,000”
 - Qualitative assessment: “very high probability”
 * Use scale with numerical and verbal anchors (van der Gaag et al., 1999)
 * Do mapping separately from qualitative assessment
- Continuous variables
 - bi-section method
 * Elicit median: equally likely to be above and below
 * Elicit 25th percentile: bisects interval below median
 * Continue with other percentiles till fine enough discriminations
 - Often useful to fit standard functional form to expert’s judgements
 - Need to discreteize for most BN software
Probability Elicitation

Graphical aids are known to be helpful

- pie charts
- histograms

![Pie chart and histograms](image)

Probability Elicitation (cont.)

- Combination of qualitative and quantitative assessment
- Automated correction of incoherent probabilities (Hope, Korb & Nicholson, 2002)
 - Minimizing squared deviations from original estimates
- Automated maxentropy fill of CPTs (Hope, Korb & Nicholson, 2002)
- Automated normalization of CPTs (Hope, Korb & Nicholson, 2002)
- Use of lotteries to force estimates (also useful for utility elicitation)

Local model structure

Not every cell in CPT is independent from every other cell. Examples:

- **Deterministic nodes**
 - It is possible to have nodes where the value of a child is exactly specified (logically or numerically) by its parents

- **Linear relationships**:
 \[X_i = a_0X_0 + \ldots + a_nX_n + \epsilon_i \]

- **Logit model (binary, 2 parents)**:
 \[
 \log \frac{P(X_2|X_0, X_1)}{P(\neg X_2|X_0, X_1)} = a + bX_0 + cX_1 + dX_1X_2
 \]

- **Partitions of parent state space**
- **Independence of causal influence**
- **Contingent substructures**

Elicitation by Partition

(See Heckerman, 1991)

- Partition state set of parents into subsets
 - set of subsets is called a partition
 - each subset is a partition element
- Elicit one probability distribution per partition element
- Child is independent of parent given partition element
- **Examples**
 - \(P(\text{reportedLoc}|\text{loc, sensor-type, weather}) \) independent of sensor type given weather = sunny
 - \(P(\text{fever}=\text{high}|\text{disease}) \) is the same for disease \(\in \{\text{flu, measles}\} \).
Independence of Causal Influence (ICI)

- Assumption: causal influences operate independently of each other in producing effect
 - Probability that C1 causes effect does not depend on whether C2 is operating
 - Excludes synergy or inhibition
- Examples
 - Noisy logic gates (Noisy-OR, Noisy-AND, Noisy-XOR)
 - Noisy adder
 - Noisy max
 - General noisy deterministic function

Noisy-OR nodes

- Adds some uncertainty to logical OR.
 Example: Fever is true if and only if Cold, Flu or Malaria is true.
 Assumptions:
 - each cause has an independent chance of causing the effect.
 - all possible causes are listed
 - inhibitors are independent
 E.g.: whatever inhibits Cold from causing Fever is independent of whatever inhibits Flu from causing a Fever.
- Inhibitors summarised as “noise parameters”.

Noisy-OR parameters

E.g. if \(P(\text{Fever}|\text{Cold}) = 0.4, P(\text{Fever}|\text{Flu}) = 0.8, \) and \(P(\text{Fever}|\text{Malaria}) = 0.9, \) then noise parameters are 0.6, 0.2 and 0.1 respectively.

Probability that output node is False is the product of the noise parameters for all the input nodes that are true.

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flu</th>
<th>Mal</th>
<th>(P(F_{\text{ev}}))</th>
<th>(P(\neg F_{\text{ev}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>0.02 = 0.2 \times 0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.94</td>
<td>0.06 = 0.6 \times 0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.88</td>
<td>0.12 = 0.6 \times 0.2</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.988</td>
<td>0.012 = 0.6 \times 0.2 \times 0.1</td>
</tr>
</tbody>
</table>

Savings: for binary noisy-OR

CPT requires \(2^{10} = 1024 \) parameters;
noisy-OR requires 11 parameters

Classification Tree Repn

(Boutilier et al. 1996).

Example: Suppose node X has 3 parents, A, B and C (all nodes Boolean).

Savings: CPT = 8, tree rep = 4 parameters.
Object-oriented BNs

- Facilitate network construction wrt both structure and probabilities
- Allow representation of commonalities across variables
- Inheritance of priors and CPTs

OOBNs are not supported by the Netica BN software package at all; a version recently in Hugin. As yet, not widely used.

Decision Analysis

Since 1970s there have been nice software packages for decision analysis:

- Eliciting actions
- Eliciting utilities
- Eliciting probabilities
- Building decision trees
- Sensitivity analysis, etc.

See: Raiffa's *Intro to Decision Analysis* (an excellent book!)

Main differences from KEBN:

- *Scale*: tens vs thousands of parms!!
- *Structure*: trees reflect state-action combinations, not causal structure, prediction, intervention

Eliciting Decision Networks

- **Action nodes**: What actions can be taken in domain?
- **Utility node(s)**:
 - What unit(s) will “utile” be measured in?
 - Are there different aspects to the utility that should each be represented in a separate utility node?
- **Graph structure**:
 - Which variables can decision/actions affect?
 - Does the action/decision affect the utility?
 - What are the outcome variables that have preferences about?

Model Evaluation

- **Elicitation review**
 - Review variable and value definition
 * clarity test, agreement on definitions, consistency
 - Review graph and local model structure
 - Review probabilities
 * compare probabilities with each other
- **Sensitivity analysis** (Laskey, 1993)
 - Measures effect of one variable on another
- **Case-based evaluation**
 - Run model on test of test cases
 - Compare with expert judgement or “ground truth”
- **Validation methods using data (if available)**
 - Predictive Accuracy
 - Expected value
 - Kullback-Leibler divergence
 - (Bayesian) Information reward
The need to prototype!

Why prototype?

- It's just the best software development process overall (Brooks). Organic growth of software:
 - tracks the specs
 - has manageable size (at least initially)
- Attacks the comprehensiveness vs. intelligibility trade-off from the right starting point.
- Few off-the-shelf models; prototyping helps us fill in the gaps, helps write the specs

Prototypes

- Initial prototypes minimize risk
 - Don't oversell result
 - Employ available capabilities
 - Simplify variables, structure, questions answered
 - Provide working product for assessment
- Incremental prototypes
 - Simple, quick extension to last
 - Attacks high priority subset of difficult issues
 - Helps refine understanding of requirements/approach

More recent KEBN methodologies

KEBN Summary

- Various BN structures are available to compactly and accurately represent certain types of domain features.
- There is an interplay between elements of the KE process: variable choice, graph structure and parameters.
- No standard knowledge engineering process exists as yet.
- Integration of expert elicitation and automated methods still in early stages.
- There are few existing tools for supporting the BN KE process.
 - We at Monash are developing some! (e.g. VerbalBN, Matilda)