DEPARTMENT OF COMPUTER SCIENCE
MONASH UNIVERSITY

Clayton, Victoria 3168 Australia


TECHNICAL REPORT 97/328


Bayesian Models for Keyhold Plan Recognition in an Adventure Game

D W Albrecht, I Zukerman and A E Nicholson

ABSTRACT

We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian) network to represent features of the domain that are needed to identify users' plans and goals. The application domain is a Multi-User Dungeon adventure game with thousands of possible actions and locations. We propose several network structures which represent the relations in the domain to varying extents, and compare their predictive power for predicting a user's current goal, next action and next location. The conditional probability distributions for each network are learned during a training phase, which dynamically builds these probabilities from observations of user behaviour. This approach allows the use of incomplete, sparse and noisy data during both training and testing. We then apply simple abstraction and learning techniques in order to speed up the performance of the most promising dynamic belief networks without a significant change in the accuracy of goal predictions. Our experimental results in the application domain show a high degree of predictive accuracy. This indicates that dynamic belief networks in general show promise for predicting a variety of behaviours in domains which have similar features to those of our domain, while reduced models, obtained by means of learning and abstraction, show promise for efficient goal prediction in such domains.