
Dorin, A., “Boolean Networks for the Generation of Rhythmic Structure”, in Proceedings ACMC 2000,
Brown & Wilding (eds), Australian Computer Music Conference, July 2000, pp38-45

Boolean Networks for the Generation of Rhythmic Structure

Alan Dorin
School of Computer Science & Software Engineering,
Monash University, Clayton, Australia 3800
aland@cs.monash.edu.au http://www.cs.monash.edu.au/~aland

Abstract

This paper describes an interactive multi-track
MIDI sequencer for generating polyrhythmic
patterns. Patterns are determined by the state of a
set of autonomous Boolean networks, each node
of which corresponds to a single musical event.
This event will be triggered if the Boolean node
is active and the sequencer step corresponds to its
location in the pattern. Users may alter the
networks which generate the patterns and change
the note information they trigger whilst a
sequence plays. Thus the sequencer may be used
in live performance or in a studio. Additionally
the sequencer may be left to generate its own
patterns based on the behaviour of the Boolean
networks.

Introduction

The generation of complex patterns from simple
rules is a constant source of fascination for
practitioners in the fields of computer generated
imagery and sound [1,2,3,4,5,6,7,8]. This interest
takes root in a deeper drive to comprehend the
world around us. Where we may, we reduce
complex outcomes to the combination of simple
principles. We look for causal connections
between otherwise mysterious and unpredictable
events. We seek order in chaos and, in our own
work, seek complexity for free.

This paper describes a musical event generator
which has application as a multi-track interactive
sequencer and generator of polyrhythms. The
complex patterns it generates emerge from the
neighbourhood interactions of binary switching
elements. The tool is intended to work as an
instrument for composition or as a stand-alone
rhythm generator which, once established, runs
without interference from a human user.

The combination of multiple independent
rhythmic patterns gives an emergent and intricate
shimmer with a “life” of its own. This
phenomenon is quite irreducible to its component
parts. It is this aspect of rhythm which first
attracted the author to the idea of generating

interwoven processes in a manner reminiscent of
the functioning of a living thing.

Steve Reich hits the nail on the head when he
states “Sometimes everything just comes together
and suddenly you’ve created this wonderful
organism” [9, pp7] The resulting piece of music
is alive, an organism, in the sense that a
multitude of interacting processes combine to
produce a transient dynamic entity with an
energy not apparent on the dissecting table.
Michael Nyman [10, pp 149] also uses the term
musical “organism” in a discussion of the work
of Phillip Glass.

Xenakis’ percussion work Pleiades [11] and
Reich’s pieces (for example Drumming, Music
for 18 Musicians and Sextet [12,13,14]) are good
examples of the dynamism which may emerge
from the careful orchestration of simple patterns.
Of course Reich is best known for his use of
phasing- a term coined to describe the procedure
of playing repetitive patterns of different lengths
against one another so that they gradually shift
out of (and then back into) phase. Music from
African, Chinese and Cuban sources is also
frequently based around complex polyrhythmic
structures [15, pp 35].

Reich was, in his earlier days at least, specifically
interested in the process by which his music
arose. “Once the process is set up and loaded it
runs by itself” [10, p152] The simplicity of a
process such as playing a repetitious drum
pattern, or the operation of mechanical tape
players, contrasts strongly with the complexity of
the result. Here then the composer has
demonstrated a kind of power over sound which
is not a reflection of their ability to conceive of
intricate rhythms, so much as it illustrates an
understanding of the origins of complexity in
simplicity. A fascination with these ideas has
played a part in the production of the software
described shortly in this paper.

The behaviour of Wolfram’s one-dimensional
cellular automata (CA) [16] is also of relevance
to the present discussion. Wolfram established a
closed loop of automata which is usually

depicted as a row of cells. The two end cells are
assumed to be neighbours in the same way that
adjacent cells within the line neighbour one
another.

Wolfram’s cellular automata are binary state
machines–they may be in the state on or off. The
state a given automaton will be in at a discrete
time step immediately following the present one
is determined by its present state and the present
state of its two neighbours. All automata in a row
are updated synchronously.

It is possible to exhaustively document the
patterns Wolfram’s connected machine produces
by running through all the possible rules
governing the state changes of its automata.
Wolfram found four general types of behaviour
in his machines. He found machines which:
(i) move into a homogeneous state (limit-point);
(ii) move into simple, separated, periodic

structures (limit-cycle);
(iii) produce chaotic aperiodic patterns (strange

attractors);
(iv) produce complex patterns of localized

structures.

The relationship between these behaviours and
the production of music or imagery using
procedural means has been discussed in [17].
Various authors and composers have produced
systems which generate musical structures from
cellular automata [18, 19].

Wolfram’s CA’s are, like any dynamical system,
capable of producing patterns for use as rhythms
in music. However for various reasons cellular
automata were not suitable candidates for the
work presented in this paper. Instead, Boolean
networks were used as the source of rhythmic
complexity. The reasons for this are explained in
the next sections. Following this, the present
system for generating musical patterns is
explained in some detail. The tool’s visual
interface is also described since its production
required numerous decisions to be made
regarding the effective presentation of a large
amount of information. Finally, general thoughts
are given on the utility of the system, some future
work is proposed and conclusions drawn.

What are Boolean networks?

Boolean networks are a connected set of binary
state machines (nodes) similar to the automata in
Wolfram’s CA’s. Nodes in a Boolean network
may be in one of two states: on or off. In this
paper only synchronous Boolean networks will

be considered. These are networks in which the
node states are updated simultaneously, just as
they were with Wolfram’s CA’s.

The future state of a node depends on the states
of nodes in the network designated as that node’s
inputs. A node may feedback its own state as a
self-input. Additionally, inputs may be received
from outside the network. A Boolean network
which receives no input from the “outside world”
is an autonomous network. An autonomous,
synchronous Boolean network is clearly a special
case of the CA discussed in the previous section.

The state of a node in a Boolean network at a
future time is governed by a logical rule or
Boolean function which operates on the node’s
inputs. Examples include the NOT, AND, OR
and XOR functions which have become so
familiar in this digital age. The set of states a
system passes through as its nodes are updated is
known as its trajectory.

Kauffman [20, pp188] discusses the trajectories
of autonomous Boolean networks with exactly
two inputs to each node. The first important
concept to grasp is that any actual network has a
finite number of binary nodes. Therefore the
machine as a whole has a finite number of
possible states (specifically 2N where N is the
number of nodes). Since the network is
deterministic, if it returns to a state from which it
previously emerged (which it must do eventually
since there are a finite number of possible states),
the network must be in a limit cycle. The number
of steps in a limit cycle may range from one (a
limit point) to 2N.

The set of machine states which lead the network
to fall into a particular limit cycle is the basin of
attraction for that limit cycle. The limit cycle is
the attractor for the basin. A network must have
at least one limit cycle but some networks have
many, each with its own basin of attraction.
Some basins are very broad (a large number of
machine states lead to their attractor), others are
quite narrow. Whilst the machine is within the
basin of attraction but not yet within its limit
cycle the machine is said to be in a transient.

Besides basins of attraction, the other major
property of interest is the susceptibility of a
particular attractor to disturbance. Some limit
cycles are more stable than others. That is, even
if some nodes in the system have their state
flipped, the basin of attraction around the
attractor ensures the trajectory of the system
returns from its transient to the previous limit

cycle. Sometimes, even major structural
alterations to a network such as changes to node
connections or node transition rules do not upset
limit cycles.

Why use Boolean networks?

Of course multi-layered rhythms may be
constructed and edited by hand in a conventional
sequencer. There is no disputing the value of this
technique. However the current task is the
generation of such patterns using the computer as
an able assistant, even a master. A system is
sought which may be influenced or guided by a
user but which does not require complete user-
specification.

Some CA rule sets are known to be effective
producers of complex patterns and cyclic
activity. For example Conway’s Game of Life
falls into this category [4,5]. Some researchers
have used CA’s like this for music event
generation [18] or generated their own CA’s with
desirable properties [19], however the mapping
from CA to music is almost arbitrary. Why
should the CA rules produce music? The
researchers may as well revert to Cage’s dice or
coins [21, pp132] or any of a myriad of other
physical systems, and then attempt an arbitrary
mapping from arbitrarily chosen system to
musical events– an idea this author feels was
exhausted in the sixties.

Effective transition rules for cellular automata
are notoriously difficult to come up with.
Wolfram’s studies and the studies of Sims [22]
and Langton [23], as well as this author’s own
investigations, indicate that of the enormous
range of possible rules, the majority reliably lead
a system to a fixed point or short cycle, rather
than to one in which lengthy cyclic or complex
patterns emerge. Boolean networks reliably
produce repeating patterns which may be easily
altered without causing the system to fall into
uninteresting limit points–although these are not
completely eliminated, and nor should they be!

It is therefore primarily the properties discussed
in the previous section which make autonomous
Boolean networks appropriate for the present
task. As mentioned, Boolean networks reliably
fall into limit cycles. These may be used as
simple repeating patterns to generate musical
events. Transient changes may be introduced
which alter a limit cycle temporarily, thereby
adding variation to a pattern without removing it
altogether. Alternatively, changes to the network
may be introduced which produce more complex

effects on the cycle. These changes may be
readily carried out in real-time by a human
composer as the network is running, resulting in
the immediate feedback so helpful in musical
composition. They may also be carried out
automatically by the computer.

Changes to the transition rules of a Boolean
network do not dramatically change the kind of
behaviour of the system. This is not true for
cellular automata transition rules. For example,
even a minor change to the rule set of Conway’s
Game of Life may result in the total extinction of
all patterned activity on the grid. Such behaviour
is not (usually) desirable from a musical
standpoint.

The Boolean sequencer

The Boolean sequencer of this paper presents to
the user a variable number of tracks. Each track
contains a variable number of nodes, each of
which corresponds to a measure in a musical bar.
The system works like a conventional MIDI step-
sequencer in loop mode. Each track is assigned a
MIDI channel and each node a pitch, velocity
and duration. Tracks (and nodes) may be muted
or left to sound. The sequencer regularly steps
through each node in the bar playing its assigned
note at the appropriate time before looping back
to repeat the pattern.

Unlike the notes in a conventional sequencer, the
state of each node in the Boolean sequencer is
determined by the state of its neighbours in the
previous bar. Each node is connected to the two
nodes adjacent to it in the pattern (first and last
notes are also connected to one another) and
assigned a transition rule: OR; XOR; NOT or
AND. When the sequencer step corresponds to a
particular node, that node will only sound its note
if it is in the on state (and the track is not muted).
Off notes remain silent. Node states are updated
according to their individual transition rules at
the end of each bar.

In user-mode the sequencer’s node types and
note information may be altered interactively.
This allows the composer to experiment with
different Boolean networks and the rhythms they
produce. The user interface of the Boolean
sequencer is described in the following section.
The system may be left to run its own course in
an automatic mode which relies on random
perturbation of the Boolean networks to move the
system through complex wandering trajectories.

The Boolean sequencer’s U.I.

This section focuses on the visual design of the
sequencer interface. Users may interact with the
interface using the computer keyboard and
mouse. In future versions MIDI keyboard
operation will be incorporated also.

It was decided that a traditional piano-roll
interface such as that found on most off-the-
shelf-software would not be suitable for the
Boolean sequencer. Reasons for this included the
need to:
(i) represent node types (XOR, AND etc.);
(ii) have the sequencer loop rapidly across a

single bar whilst it is playing (This
accentuates the need to clearly indicate
which note is sounding at any given time,
allowing the user to distinguish a sound from
many others and identify its visual
representation);

(iii) indicate whether a given node was
sounded/will sound during the current bar.

In addition, some conventional interface
requirements were relevant to the Boolean
sequencer including the need to:
(i) represent pitch, velocity and duration;
(ii) represent node temporal ordering;
(iii) allow simple editing of node parameters

during sequence playback;
(iv) represent the current location in the bar;
(v) represent multiple tracks simultaneously.

Fig. 1: Snapshot of the Boolean sequencer interface

Figure 1 shows two sequencer tracks of four
nodes each. The (top) track indicated by the
bright red center-line is currently selected for
editing. The (top left) node indicated by the solid
red square is the currently selected node. Hollow
yellow squares indicate the nodes (right most) in
the sequence which are currently being triggered.
The rule determining the behaviour of a node (its
type) is indicated by the icon used to represent it.
There are presently four node types (fig. 2).

Fig. 2: Sequencer iconography

--[An unscientific aside: The “logic” for
developing these icons came from considering a
node’s behaviour in the context of the sequencer.
Whilst the reasoning requires a little creativity,
once learned the node representations are
(hopefully) easy to remember…

A NOT node switches on if neither of its
neighbours is on at the previous time step. Hence
its sides are hollow to indicate that the adjacent
nodes were not on. An XOR node requires either
of its neighbours to be on at the previous time
step (its sides are flat) but not both neighbours
(its top and bottom are hollow). An OR node
requires either of its neighbours to be on at the
previous time step (its sides are flat) but it is not
fussed if both are on (its top and bottom are flat).
The AND node requires both of its neighbours to
be on (its sides, top and bottom actively poke out
from the icon’s centre).

Hopefully the reader can find some sense in this
description. If not, he/she will just have to learn
the node icon shapes by heart to use the
sequencer effectively. Thus ends the unscientific
aside.]--

Fig. 3: Node components

The horizontal lines from the node tops (fig.
1&3) indicate a note’s duration. The grey-level
of a node indicates its MIDI velocity ranging
from black (velocity=0) to nearly white
(velocity=127). A track which has been muted
will display with a red X drawn in the play
square of each node. The play square is drawn in
yellow when a node is in the on state, otherwise
it is left vacant.

The horizontal line through each track indicates
middle C. The positions of nodes above and
below this indicate their relative pitch. Exact

pitches are not visualized–this sequencer was
intended primarily for users who listen.

As mentioned earlier, the yellow square in each
track surrounds the currently triggered step in the
sequence. The square shifts up and down with the
current node pitch as the sequence progresses.
This method of indication was used instead of the
vertical bar found in many sequencers because a
vertical bar (which travels horizontally as the
sequence progresses) gives no visual indication
of the musical event which it triggers. By having
the indicator move up and down with pitch and
horizontally with time, a visual indication of the
pattern’s flow is given.

Comments on using the sequencer, its present
and future interface

The number of tracks, number of nodes per track
and the playback speed of the sequencer can all
be determined by the user. In the current system
they cannot be varied after initiation but it is
anticipated this feature will be incorporated
eventually.

Although it is possible to operate the interface
with a mouse, the computer keyboard shortcuts
provided to alter the sequencer’s parameters are
simpler to activate during playback. All aspects
of nodes and tracks may be altered via the
appropriate keyboard commands in real-time.

Presently the pitch, duration and velocity of a
node may be altered incrementally up or down
using p/P, d/D and v/V shortcuts. This is clearly
an ineffective means of specifying note
parameters. Instead, these values might be read
directly from a MIDI keyboard as a user plays a
note. Nevertheless, to date MIDI keyboard
specification of note data has not been required
and the feature is presently unimplemented.

At present all sequencer tracks are updated
synchronously. The system therefore runs like a
conventional sequencer or drum machine in this
regard. It is hoped in future that each track will
have its own speed parameter so that patterns
may shift in and out of phase with one another in
the fashion of the rhythms used by Reich.

A further anticipated addition to the system is the
incorporation of an arpeggiator mode. Nodes in a
sequence might be taken as commands to raise or
lower a note (or notes) in a complex pattern
determined by the Boolean network.

Extensive experimentation with the present
system has revealed it to be a versatile tool for
rhythm construction. Whilst this author finds
careful tweaking to be needed, especially of note
pitches, other composers might find pleasing
patterns form almost at random.

With percussive sounds the sequencer excels at
complex rhythm production and is easily
tweaked to maintain interest through variation.
Complex developing sounds and samples may
also be triggered by the sequencer. As these are
truncated, triggered and re-triggered in unusual
patterns complex timbral/rhythmic effects
emerge.

This author has found the use of the NOT and
AND node types alone to be sufficient to
generate a diversity of multi-bar patterns. An
individual track/network regularly falls into limit
cycles of two to four bars using only these node
types. The addition of node types which
distinguish between left and right neighbours is
also being considered to produce patterns which
trigger events that move left and right through
the bar.

Bar lengths of less than five nodes/beats per
network seem to fall into very short and
uninteresting limit cycles. More interesting
results may be achieved using networks with
more nodes than this although beyond about ten
nodes per network there is no noticeable increase
in the complexity of pattern produced. In the
future it would be interesting to document the
behaviour of networks with respect to the number
of nodes they contain.

Implementation

The Boolean sequencer was implemented on a
Macintosh G3 running MacOS 8.5. It was written
in C++ using Metrowerks Code Warrior, the
OpenGL library for Macintosh v1.1, and
Opcode’s OMS 2.3.8. OMS and OpenGL need to
be installed to run the sequencer.

Conclusion

Like any art-making tool, one view is that it is
inevitably up to the artist to make the most of its
capabilities. Like any algorithmic means of art
production, its output may be taken “as is” to
represent the process which underlies it. In this
case the result may be worthy in and of itself, or
simply irrelevant. Take your pick!

Whichever view you hold, Boolean networks
have been shown to be a viable means of
producing complex patterns which are
nevertheless easily manipulated by a user. These
patterns may be usefully employed in the
production of complex, changing rhythmic
structure.

Bibliography

1 Prusinkiewicz, P., Lindenmeyer, A., “The
Algorithmic Beauty Of Plants”, Springer
Verlag, 1990

2 Turk, G., “Generating Textures on Arbitrary
Surfaces Using Reaction - Diffusion”,
SIGGRAPH 91, Computer Graphics, Vol. 25
No. 4, July 1991, ACM Press, pp289-298

3 Turing, A.M., “The Chemical Basis of
Morphogenesis”, Philosophical Transactions
of the Royal Society, London, B, Vol. 237,
1952, pp37-72

4 Gardner, M. “Mathematical Games: The
Fantastic Combinations of John Conway’s
New Solitaire Game ‘Life’”, Scienti f ic
American, 1970, 223 (4), pp120-123

5 Gardner, M. “Mathematical Games: On
Cellular Automata, Self-Reproduction, the
Garden of Eden and the Game ‘Life’”,
Scientific American, 1971, 224 (2), pp112-117

6 Dahlstedt, P., Nordahl, M. “Living Melodies:
Co-evolution of Sonic Communication”, in
Proceedings, First Iteration, Dorin &
McCormack (eds), CEMA, Monash
University, Australia, 1999, pp56-67

7 Hiller, L., “Composing with Computers: A
Progress Report”, Computer Music Journal,
Vol. 5, No. 4, 1981

8 Laske, O., “Composition Theory in Koenig’s
Project One and Project Two”, Computer
Music Journal, Vol. 5, No. 4, 1981

9 Schwarz, K.R., “Music For 18 Musicians,
Revisited”, liner notes in CD, Music For 18
Musicians, Reich, S., Nonesuch
Records/Warner Music, 1997

10 Nyman, M., “Experimental Music, Cage and
Beyond”, 2nd edition, Cambridge University
Press, 1999

11 Xenakis, I., “Pleiades”, Grammofon AB BIS,
1990

12 Reich, S., “Drumming”, Elektra / Nonesuch
Records, 1987

13 Reich, S., “Music For 18 Musicians”,
Nonesuch Records, 1997

14 Reich, S., “Sextet . Six Marimbas”, Elektra /
Asylum / Nonesuch Records, 1986

15 Copland, A., “What To Listen For In Music”,
first published, McGraw-Hill, 1939, new
edition, Mentor Books, 1999

16 Wolfram, S., “Universality and Complexity in
Cellular Automata”, in Physica 10D, North-
Holland, 1984, pp1-35

17 Dorin, A., “Classification of Physical
Processes for Virtual-Kinetic Art”, in
Proceedings, First Iteration, Dorin &
McCormack (eds), CEMA, Monash
University, Australia, 1999, pp68-79

18 McAlpine, K., Miranda, E., Hoggar,
S.,”Making Music With Algorithms: A Case-
Study System”, Computer Music Journal, Vol.
23, No. 2, 1999, MIT Press, pp9-30

19 Dorin, A., “Liquiprism”, in Process
Philosophies, curated by Dorin &
McCormack, First Iteration Conference,
Monash University, Australia, 1999.

20 Kauffman, S.A., “The Origins of Order - Self
Organization and Selection in Evolution”,
Oxford University Press, 1993

21 Ford, A., “Illegal Harmonies, Music in the 20th

Century”, Hale & Iremonger, 1997
22 Sims, K., “Interactive Evolution of Dynamical

Systems”, Toward a Practice of Autonomous
Systems: Proceedings of the First European
Conference of Artificial Life, Varela &
Bourgine (eds), MIT Press, 1992, pp171-178

23 Langton, C.G., “Studying Artificial Life with
Cellular Automata”, Physica 22D, North-
Holland, 1986, pp120-149

