
A Dorin and K B Korb: Network measures of ecosystem complexity, Proceedings of the Twelfth International Conference on 
the Synthesis and Simulation of Living Systems (Artificial Life XII), 19 August 2010 to 23 August 2010, The MIT Press, 
Cambridge MA USA, pp. 323-328 

Network Measures of Ecosystem Complexity 

Alan Dorin and Kevin B. Korb 

Faculty of Information Technology, 
Monash University, Clayton, Australia  

[alan.dorin, kevin.korb] @ infotech.monash.edu.au 
 
 

Abstract 
We argue that the networks that can be constructed to represent 
ecosystems may inform us about the open-endedness of the 
evolutionary systems that underlie their dynamics. By adopting 
this approach we circumvent problems that arise from looking 
for open-endedness at the level of the organism, the more usual 
approach. We then examine various measures of ecosystem 
(niche web) complexity and propose a new information-
theoretic approach, Chaitin-Shannon Web Complexity. We 
compare its behaviour to that of the more common measures in 
ecology, in the light of common intuitions about complexity 
over a set of test networks and real ecosystem trophic webs. We 
also examine how the various measures accommodate 
intuitions about the complexity of these networks. 

Introduction 
The search for open-ended evolutionary simulations is 
compelling and has driven a sub-community of Artificial Life 
researchers to join philosophers and theoretical biologists in 
pondering the manner in which biological evolution is open-
ended. This has resulted in various simulation environments 
that attempt to replicate the behaviour of real ecosystems (e.g. 
see the review in (Dorin, Korb et al. 2008)) and open 
problems such as the call to, “create a formal framework for 
synthesizing dynamical hierarchies at all scales” (Bedau, 
McCaskill et al. 2000). 

To achieve the goal of open-ended evolutionary software, 
we must first unambiguously identify open-ended complexity 
increase when we see it – we require a measure. Typically, as 
we show below, the search has focused on the increasing 
complexity of organisms, their structure and behaviour. For 
reasons we outline, we believe this to be wrong-headed and 
the source of much confusion. Instead, we propose to measure 
the complexity of the ecosystems of which organisms are a 
part, and to show that these do increase in complexity over 
evolutionary time periods. We achieve this by looking at 
ecosystem networks. 

Ecosystem networks 
Biological evolution operates within ecosystems on changing 
populations that define for themselves new ways of 
accumulating and consuming energy and matter to be 
employed for reproduction. Through feedback loops, 
organisms construct their own niches, passively and actively 
organising their environment, modifying the selection 

pressures acting on themselves, their progeny, and their 
cohabiters (Odling-Smee, Laland et al. 2003). The moulding 
of self-selection pressures by a population shifts the 
constraints within which future generations are introduced. 
Ecosystems can be described by a variety of networks linking 
these biotic and abiotic physical, chemical and behavioural 
relationships. We, like many ecologists, focus our attention on 
such networks as a way of understanding the global properties 
of the systems they represent (Watts and Strogatz 1998; Barrat 
and Weigt 2000; Dunne, Williams et al. 2002; Proulx, 
Promislow et al. 2005; Blüthgen, Fründ et al. 2008). 

We examine several techniques employed in the ecological 
and other literature for measuring the properties of ecosystem 
food webs and networks, describing also the Chaitin-Shannon 
web complexity based on information theory (Boulton and 
Wallace 1969). We then assess how these measures stack up 
against one another and against our intuitions about the 
complexity of ecosystem networks in a set of examples. 

Open-Ended Complexity Increase 
A common opinion about evolution has been that it swims 
against the tide of entropy and in particular that evolution over 
time constructs more and more complex organisms (e.g., see 
(Bronowski 1970)). This idea of creative complexity increase 
equates at its most extreme, to the view that evolution is 
progressing from bacteria to invertebrates and thence to 
vertebrates and mammals and, finally, to the pinnacle of life 
forms, us.1 Such a view of Progress, however, ignores some 
quite basic features of evolution. For example, that the 
bacteria being “progressed from” still exist today and, indeed, 
have exactly as long an evolutionary history as we do, since 
we all have common ancestry. So, progress can hardly be 
characterized by endurance. Instead, progress has been recast 
as complexity, and complexity itself has been cast in terms 
favorable to ourselves; for example, as owning complex 
neural organizations — an account that fails to address the 
vast majority of earth’s life (Maynard-Smith and Szathmáry 
1995). An infatuation with ourselves is also behind the “C-
value paradox” — our chromosomes appear no more complex 
than those of other mammals and less complex than those of 
some plants. The two long-standing antagonists Dawkins and 
                                                             
1 For a skeptical review of this consensus opinion, identifying 
culprits, see (McShea, D. W. (1991)). 
  



Gould have together, and quite rightly, castigated this view as 
human chauvinism in an exchange in Evolution (Dawkins 
1997; Gould 1997). Gould preferred to see in every attempt to 
characterize complexity and attribute its increase to 
evolutionary processes this hidden agenda of congratulating 
ourselves on our own unique wonderfulness. Dawkins, on the 
other hand, considers the evolutionary increase in complexity 
to be not just compatible with evolution, but intrinsic to it. 
Evolution climbs “Mount Improbable” (Dawkins 1996). 
Dawkins’ line of defence for ongoing complexity increase is 
to suggest that, whereas adaptive processes responding to the 
abiotic environment may just track meandering changes in the 
climate, coevolutionary processes acting between species 
work to develop coadaptations in trajectories that can be 
regarded as progressive in an engineering sense. Arms races 
lead to better weaponry and better defences, including better 
speed, flight, hearing and vision, for example. 

In the Artificial Life literature, Bedau takes up the debate, 
offering his evolutionary activity statistics to assess whether 
or not an evolutionary system is evolving in an open-ended 
fashion (Bedau, Snyder et al. 1998) and an Arrow of 
Complexity Hypothesis that evolutionary systems show a 
systematic tendency to increase the complexity of organisms 
over time (Bedau 2009). Some Artificial Life researchers, 
notably (Ray 1990), have attempted to replicate this apparent 
evolutionary complexity increase in software, thus far, 
without any consensus of success, although some claim a 
limited success whilst improving Bedau et al’s measures of 
open-endedness (Channon 2006). The fundamental problem 
we have with the activity statistics, however, is that whatever 
they measure is not what we want to measure: they make no 
attempt to assess the complexity of organisms or ecosystems, 
but only the volume of new, adaptive "components" within an 
evolutionary system. By contrast, Adami has considered the 
level of the individual organism to be his target and has 
provided a measure of its complexity that accounts for the 
amount of information an organism stores about its (assumed 
to be static) niche (Adami 2002). Nevertheless, Adami notes 
the importance of extending the measure for application to 
complete ecosystems of dynamic, interacting niches, an 
approach we also prefer. 

An attempt to dismiss complexity increases in individual 
species' organisation and behaviour over evolutionary time 
periods invokes a metaphoric “passive diffusion” (McShea 
1994) through species design space, rather than a directed 
drive towards greater complexity. While diffusion may well 
contribute to increases in species complexity, it is unlikely to 
explain it entirely (Korb and Dorin 2010). In any case, we 
prefer to sidestep the issue and focus on complexity at a 
higher level: in the organization of niches in the ecosystem. 
Niche web complexity is not subject to the diffusion effects 
cited by McShea and others (ibid.); furthermore, it, and its 
correlate, species biodiversity, have with little controversy 
shown sustained increases over geological time. If we wish to 
understand the behaviour of niche web complexity, whatever 
its trajectory, we require a principled way of measuring it. 

Complexity Measures for Ecosystems 
A measure of complexity for (virtual or real) ecosystems must 
correspond to our (educated) intuitions about what constitutes 
the complexity of a network (such as a food web). A few 
useful intuitions influenced by our readings of the literature 
(e.g. (Strogatz 2001)) are listed next. We then present some 
measures of network properties that have been employed in 
this literature and our own suggestion. 

Intuitions about network complexity 
Intuition 1 (simple): A network with a regular, repeating 
structure is simple (e.g. a lattice or a fully-connected 
network). 
Intuition 2 (simple): Networks with few links are simple (e.g. 
a single long chain or a fully disconnected network). 
Intuition 3 (simple): A random network is simple (with a 
high probability; but since random processes can produce any 
structure, such a net will sometimes accidentally be 
complex!). 
Intuition 4 (simple): Small world networks − those with low 
"degrees of separation" − are simple. 
Intuition 5 (complex): A complex network has organisations 
(clusters, loops) of multiple sizes. 
Intuition 6 (complex): A bigger network is more complex 
than a small one. 
These intuitions, while widely commented upon in the 
ecological literature, are not universal; nor are they 
unambiguous. For one thing, they only make sense with 
ceteris paribus clauses − other things remaining equal. And 
there are potential interactions between some of them. For 
example, Intuition 6 may be undermined by increasing the 
size of the network while simultaneously deleting arcs and 
bringing in Intuition 2. We use them here not as premises, but 
as initial considerations. They may also work as heuristic 
guides to assessing networks and their complexity measures. 

Intuition 5 is likely to capture some aspects of the major 
transitions in evolution, which can lead to tightly organized 
groups of niches. 

Whilst the small-world networks2 of Intuition 4 have been 
shown to exhibit complex dynamical behaviour (e.g., see 
(Lago-Fernández, Huerta et al. 2000; Sporns, Tononi et al. 
2000)) we are suggesting here that the networks themselves 
are structurally simple, whatever dynamical properties they 
may have – complex structure and behaviour do not 
necessarily go hand-in-hand (e.g., see (Strogatz 2001)). Others 
may, of course, have different intuitions about this! 

Intuitions 1 and 2 have an interesting joint consequence 
which we will make use of later: networks of low density are 
simple, but so too are networks of high density (fully 
connected or worse). We infer that there may well be some 
kind of “Goldilocks effect”, i.e., that there is a maximum of 
                                                             
2 By small world we simply mean networks with a relatively low 
“degree of separation” — i.e. the diameter of the network is small 
relative to the number of nodes it contains (Proulx, Promislow et 
al. 2005). Some of the literature adds requirements to do with 
loopiness, clustering, etc. 



network complexity achieved at some middle level of density, 
which tapers off when there are either too many or too few 
arcs. The same effect applies to Intuition 4 as well: very small 
worlds mean very high interconnection, while very large 
worlds imply very low interconnection. 

Measures of network properties 
Networks have been widely studied in biology and several 
measures have been used to inform us about their properties in 
general (Watts and Strogatz 1998; Dunne, Williams et al. 
2002; Proulx, Promislow et al. 2005; Neutel, Heesterbeek et 
al. 2007; Blüthgen, Fründ et al. 2008). Here we list some of 
relevance,3 gauging the extent to which each informs us about 
network complexity. We conclude this list by introducing our 
own proposal. 

Number of nodes: n 
Ceteris paribus, smaller networks are simpler networks (cf. 
Intuition 2). 

Number of edges: e 
Having fewer edges is another way in which networks can be 
smaller and therefore simpler (Intuition 2). 

Weight: n + e 
The simple combination of the above two measures, reflecting 
the actual weight of a physical model of the network. 

Density: D = e / n2 
Given that there are n2 potential directed arcs in a network 
(where a node may have an arc directed back to itself), this is 
the frequency of arcs (relevant to Intuitions 1, 2, 4 and 5). 

Density-Mass: D × n = e / n 
This combines Intuitions 2 and 6. Given that denser networks 
are more complex (other things being held equal and up to a 
point of diminishing returns) and larger networks are more 
complex, it’s reasonable to suppose that a measure of 
complexity might be proportional to both simultaneously, so 
we multiply the two measures. 

Characteristic path length (CPL):  

CPL =

€ 

sij
pi=1

n

∑
j=1

n

∑  

where sij is the shortest path between nodes i and j (0 in case 
the shortest path is infinite) and p is the number of finite 
shortest paths between two nodes in the network (i.e., p < n2 
just in case some shortest paths are infinite). Thus, CPL is the 
average shortest path length (“degree of separation”) between 
nodes. Low values would normally indicate a highly 
connected network, i.e., high edge density, or perhaps 
strategically placed edges allowing for shortcuts, 
corresponding to Intuitions 1 and 4. We also measure the 
variance of the shortest path lengths in the network in the 
                                                             
3 The literature contains many measures and variations. We focus 
on a few popular unweighted measures but omit several others 
that will be of interest for future studies. Measures such as the 
maximum omnivourous loop weight (Neutel, Heesterbeek, et al. 
2007) are useful in some ecological applications but obviously 
not applicable to networks with unweighted edges. 

hope it will indicate the presence of loops of different sizes 
(Intuition 5). 

Clustering Coefficient (CC): 

CC = 

€ 

1
n

Si
Nii

∑  

where Ni is the number of i’s neighbours and Si is the number 
of shared neighbours, i.e., neighbours which are also 
neighbours of neighbours. This measures, on average, how 
“cliquey” the neighbours are across a network. 

In a niche web a high clustering coefficient shows the 
presence of tightly coupled clusters of niche-dependencies. 
So, this is a partial indicator of the clusters and loops of 
Intuition 5. We also calculate the variance of the number of 
shared neighbours to reveal these structures at different sizes. 

Shannon web complexity (SWC) 
This is a new use of a prior information-theoretic complexity 
measure, measuring niche web complexity by the number of 
bits needed to efficiently encode a network with n nodes, 
where the web may be any directed graph between the nodes. 
The code should be Shannon efficient for specifying the 
network structure to a receiver. In our first, naïve, version of 
SWC we make the simplifying assumption that the density of 
arcs in the network is uniform; i.e., the number of arcs in any 
two subgraphs of the same size is approximately the same. 
This assumption admittedly will be untrue for many networks, 
when the measure will no longer be Shannon efficient; below 
we indicate how to elaborate SWC to deal with such 
networks. 

First, we need to identify (label, number) all the nodes. We 
can do this simply by specifying how many there are, i.e., 
coding the number n, assuming the labels will be 1, 2, …, n. 

log2 n 

Now we need to specify all arcs. We can do this in two steps. 
First we encode an estimate p of the probability that an arc 
exists between any two nodes; call this code length M(p). 
Given knowledge of p, specifying an existing arc takes  
−log2 p bits and specifying the absence of an arc takes  
−log2 (1 − p) bits. The number of possible arcs (going in either 
direction between nodes) is n2 (since nodes may be parents of 
themselves), so 

p = e / n2 

where e is the number of arcs in the graph (i.e., this is the 
density measure from above). 

Hence, we can identify the arc structure in the following 
number of bits: 

e (−log2 p) + [n2 − e] (−log2 (1 − p)) 

The first summand is the bit cost of specifying e arcs; the 
second is the bit cost of specifying all other potential arcs are 
missing. So, our final measure is: 

M(p) + log2 n + e (– log2 p) + [n2 – e] (– log2 (1 – p)) 

This has the reasonable Goldlilocks property above: a low 
density web is counted as simple; complexity increases as the 
number of arcs increase; but as the web becomes very dense – 
as, for example, an ecosystem turns into an indiscriminate 



mush – it starts losing complexity. Maximal complexity is 
reached when p ≈ 0.5. This measure is shown by (Boulton and 
Wallace 1969) to be effectively the same as the following 
adaptive code, which is simpler to compute (meaning, e.g., we 
don’t actually have to measure M(p)): 

€ 

log2
(n2 +1)!
e!(n2 − e)!

 

This measure doesn’t respond directly to Intuition 5 that 
loopiness implies complexity, however as the arc density goes 
from low towards 0.5, loopiness is inevitable. Loopiness is 
improbable at low arc densities, while in some way 
meaningless at very high arc densities. 
 While we think this naïve SWC is interesting, as it stands it 
is clearly defective. In particular, it violates Intuition 3 in an 
egregious way: all networks of the same size and with the 
same density receive the same measure, regardless of the 
order or disorder of those interconnections. This is related to 
the fact, remarked upon above, that SWC treats the network as 
a homogenous whole. 

Chaitin-Shannon web complexity (CSWC) 
An approach which assesses subgraphs of different diameters, 
based upon Chaitin (1979), is a promising approach for 
extending SWC to heterogenous networks. Chaitin proposed a 
novel information-theoretic way of measuring the complexity 
of a system X of a size n by comparing the number of bits 
required to describe that system (H(X), where H stands for an 
entropy measure) with the number of bits required to describe 
X when partitioned into subsets of maximum diameter d<n 
(Hd(X)). When the descriptions are diameter-limited they are 
forced to forgo invoking large-scale structure to simplify the 
description. By looking at all possible diameter limits (and all 
possible partitions for each diameter) and finding the 
maximum discrepancy between description lengths with and 
without partitioning we obtain a natural measure of the 
complexity of the system. As Chaitin wrote: "If X has 
structure, then Hd(X) will rapidly increase; as d decreases and 
one can no longer take advantage of patterns of; size > d in 
describing X… Hd(X) will increase as d decreases past; the 
diameter of significant patterns in X, and if X is organized; 
hierarchically this will happen at each level in the hierarchy." 
The final measure finds the maximum (searching over 
diameter sizes d) for: 

Hd(X) - H(X) 

This approach is related to Wallace's (2005) minimum 
message length inference. 

So far we have only taken a very short step towards a 
proper implementation of Chaitin's idea, which implemented 
naïvely would be intractable. In an approach reminiscent of 
(Tononi, Sporns et al. 1999) we have aimed at only a single 
diameter d, namely n-1, looking simply at binary partitions of 
that size and a singleton set. Tononi et al. use a standard 
entropy measure over joint random variables, which does not 
apply to network structures as such; we use SWC to measure 

the structural entropy of both the original network and each 
partition, with: 

€ 

Hd (X ) = min(H (α)+ H (Xi )
i
∑ ) 

where the Xi are subgraphs of size n-1 and H(α) is the number 
of bits required to describe the way in which the omitted 
singleton is connected to the rest of the network. This 
implementation is limited, of course, by not looking at smaller 
diameters, but also by not looking at more than the simplest 
partitions of the given diameter. We shall extend the measure 
to overcome both of these limitations in future work, even 
though a full search of the partition space is exponentially 
complex. Despite this limitation, in our results below we call 
this the Chaitin-Shannon web complexity (CSWC). 

Another alternative of considerable potential is that of 
Standish (2009). This uses a standard algorithmic complexity 
approach to assessing the complexity of networks. 

Testing Our Measures 

Sample graphs 
Figure 1 shows four test graphs C1…4 that we have designed 
with a constant number of nodes but increasing number of 
edges to highlight the behaviour of the network measures. 
 

 
Figure 1. Five-node graphs with increasing number of edges. 

A set of networks showing successional stages of a 
subterranean food web redrawn from (Neutel, Heesterbeek et 
al. 2007) is given in figure 2. To the authors of that paper and 
this alike, these networks appear to be of increasing 
complexity. They therefore provide us with a convenient, (if 
small) collection of networks about which we have intuitions 
and upon which to test our measures of network complexity. 
In the following section we present the results of our 
measurement of the properties of these two sets of graphs. 
 



 
Figure 2. Graphs of subterranean food webs after (Neutel, 
Heesterbeek et al. 2002). 

Results 
Figure 3 allows us to read the trends of the measures given 
above for graphs C1-4. Apart from the variance measures, 
naïve SWC and the CPL, all rise with the number of edges in 
the network. This certainly corresponds with a simplistic 
interpretation of Intuition 2. But this suggests the ever-
increasing measures are actually poor indicators of complexity 
as the sustained increase contradicts Intuitions 1 and 4 that as 
the network becomes more fully connected, it is becoming 
more homogeneous, less likely to have long loops and distinct 
clusters, and therefore less complex. In contrast, we see here 
that naïve SWC and CPL both take the requisite dive after C3 
(which has density ≈ 0.5) as the network connectedness 
climbs “too far”. The variance measures also dip at either end 
as expected given the addition of loops that occurs from C1 to 
C2 and C3 and the massive reduction in path lengths that then 
occurs by adding many doubly directed edges in C4. The 
CSWC does not drop as we would like at C4. Quite possibly 
this is because it is unable to detect the kinds of structures it is 
intended to measure whilst exploring only diameter n-1 in C4. 
In this graph no single node acts as a “key”. CSWC is similar 
in this regard to betweenness centrality – a measure that 
gauges the significance of each vertex by counting the number 
of shortest paths between node pairs that pass through it 
(Freeman 1977). 

 Figure 4 shows the CPL, clustering coefficient and their 
associated variance measures applied to the webs of figure 2. 
The CPL drops in the middle stages, before rising once again. 
As the ratio of the number of arcs to number of nodes 
increases (i.e., the edge density increases), the chance of 
having differentiated sub-networks actually decreases – the 
network will become one large structure with many internally 
connecting arcs. Depending on how these edges are added, the 
characteristic path length may drop, as is the case here where 
the networks (e.g. Hul 2) have additional nodes (increasing 
the denominator of the calculation) with no new, sizeable 
clusters or loops. We detected this behaviour in figure 3 
between networks C3 and C4 that have identical node counts. 
If more nodes are later added (e.g. Hul 2-3 and 4) in such a 
way as to add lengthy loops, then the CPL too rises. The 
variance measure of the shortest path lengths used in 
computing the CPL mimics this measure’s behaviour. 

The clustering coefficient and the variance of the 
neighbourliness of the networks’ nodes both rise as we would 
expect, indicating the increase in loops and clusters from 
network Sch to Hul 1. In moving to Hul 2 we see a drop in 
complexity by these measures – no new loops or clusters have 
been added, only nodes 11 and 12 in a single branch. Is this 
sufficient to consider the addition to be a complexity 
increase? By these measures, and by our intution, there is 
none. Onwards to Hul 4 the measures continue to rise as we 
would expect since new loops are added whilst the network 
density remains low. 

Figure 5 shows the trends of the naïve SWC and CSWC 
measures applied to the webs of Figure 2. The naïve SWC 
demonstrates a continued increase in complexity across the 
webs as we, and the ecologists, would have expected. The 
CSWC trends in the direction we would expect, however our 
intuition that the move from Sch to Hul 1 is a far greater 
increase in complexity than that from Hul 1 to Hul 2 (as 
discussed above) is not indicated by this measure. Similarly, 
the increase from Hul 2-3 to Hul 4 is counter-intuitively small 
by this measure. 



 
Figure 3. Trends of the various dimensionless measures across 
test graphs, C1-4. (Vertical axis has a log scale.) 

 
Figure 4. The drop in characteristic path length of the food 
webs from Sch to a level below the initial complexity is 
counter to our intuition about the webs’ complexity. The 
clustering coefficient and its variance measure (shared 
neighbours) rise sharply, then dip in the middle in parallel 
with the networks’ densities. 

 
Figure 5. The increase in the Shannon web complexity of the 
food webs matches our intuitions about their complexity. The 
Chaitin-Shannon web complexity trends in the right direction 
but does not indicate the magnitude of complexity increase 
between stages that we intuit. (Vertical axis has a log scale.) 

Discussion and Future Work 
Our proposed variance measures and the Shannon and 
Chaitin-Shannon web complexity measures of niche web 
complexity improve on Bedau’s evolutionary activity plots for 
identifying open-ended evolution – in particular, they measure 
the right thing, biological complexity, at at least one of the 
right levels of organisation, the niche web. While limited, the 
naïve SWC measure is at least better than the measures 
actually employed in the ecological literature. In particular, 
we have shown that naïve SWC corresponds to basic 
intuitions regarding complexity and, at least in our test cases, 
tells us more than its competitors in this regard. Unfortunately 
however, any network, even a random network, that possesses 
the same number of nodes and edges would show the same 
complexity increase by the naïve SWC. This is undesirable, 
hence we look to the Chaitin-Shannon web complexity to 
tackle this issue. Our work here with CSWC is strictly 
preliminary; a proper implementation that explores beyond 
diameter n-1 in future should, we hope, resolve its problems. 

An alternative approach for measuring network complexity 
we also think worthy of future consideration examines the 
number of iterations required to reduce a non-planar graph to 
planarity by subtraction of maximal planar subgraphs. 

We plan to apply improved measures to the networks 
generated by various artificial-life ecosystems, especially our 
own (Korb and Dorin 2009) and those measured by others 
using their own statistics (e.g. (Ray 1990; Bedau, Snyder et al. 
1998; Channon and Damper 2000)) to see what they may tell 
us about the simulations' open-endedness. Should they prove 
to support open-endedness, one significant hurdle must still be 
overcome – accommodating the “major transitions” of 
evolution (Maynard-Smith and Szathmáry 1995) that play a 
key role in the open-endedness of real evolution. Can these be 
replicated in simulation? Would our measures detect them if 
they did occur? 

The major transitions such as the evolution of eukaryotes 
and the development of sexual reproduction, relate in part to 
changes in how information is passed between generations. 



Niche webs do not explicitly model such behaviour; however, 
another prominent feature of many of these transitions is the 
incorporation of one entity in the life cycle of another (e.g., 
bacteria in digestion or the development of mitochondria) or, 
again, the differentiation of subparts into specialising modules 
(e.g., new organs and tissues). These kinds of transitions have 
impacts on niche webs, either explicitly or implicitly, and will 
often show up in the ways in which subgraphs of niches are 
interrelated. So, while examining niche webs is limited in 
what it can reveal about major transitions, there are also 
potential impacts of the transitions on niche webs that should 
not go unexamined. 

Conclusions 
Niche web complexity is a promising focus for understanding 
biological complexity growth and so for assessing also the 
complexity of Artificial Life simulations. While there is a 
long tradition in ecology of considering this kind of 
complexity, most of the literature uncritically adopts one or 
another measure on the basis of intuitive arguments. We have 
codified these intuitions, formalized a variety of measures 
corresponding to them, as well as an information-theoretic 
measure, and tested them using a range of networks simple 
enough for us to form intuitions based on inspection. We think 
the information-theoretic measure has considerable promise 
for assisting us in understanding biological complexity growth 
and, therefore, open-ended evolution. 
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