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Abstract.  This paper presents a model of the co-evolution of transmissible dis-
ease and a population of non-randomly mixed susceptible agents. The presence
of the disease elements is shown to prevent the onset of genetic convergence of
the agent population. The epidemiological model also acts in a distributed fash-
ion to counter the tendency of the agent population to occupy spatially close-
knit communities. The simulation applies a modified mathematical SIR epi-
demiological model of disease transmission in combination with the well-
studied technique of artificial ecosystems. It includes various aspects of disease
transmission that are not usually modelled due to the effort required to incorpo-
rate them into mathematical models. These include a distributed agent popula-
tion with non-uniform infectiousness and immunity as well as a mutable disease
model with evolving latency and infections that evolve to prey on diverse agent
characteristics.
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1 Motivation and Past Work

Digital evolutionary simulations may converge with the population predominantly of
similar genetic composition. This convergence is undesirable if it occurs (for exam-
ple, due to the presence of local maxima in the fitness landscape) before a solution to
an optimisation problem has been discovered. Hence where the desired simulation
result is an exploration of diverse solutions within some constraints, early conver-
gence needs to be avoided. This is also the case when the problem is to generate an
interesting, evolving agent population of sonic or visual forms for an artwork or inter-
active installation [1]. For this latter reason it was decided to explore a strategy for
preventing the convergence of a population that would be applicable generally to
agent simulations.

To meet its aim, this paper prefers an elegant, emergent, decentralized approach over
that of a hard-coded or centralized controller. Hence, it focuses primarily on a notable
omission from many Artificial Life models and publications, disease. Typical Artifi-
cial Life ecological simulations model creatures competing for food, mating, fighting,
and dieing. Yaeger’s PolyWorld is a seminal example in which agents interact utiliz-
ing colour vision [2]. Todd has noted strategies for removing creatures from a popu-
lation subject to a genetic algorithm but stops short of exploring different reasons for
their death [3] (for example disease or suicide). Mascaro et al. have dealt specifically



with suicide in a population of simple agents [4]. Ray’s Tierra simulation eliminates
elderly or ineffective population members with a “reaper”. Also of interest is the em-
ergence of “parasitic” code in his system [5]. The usual methods of removing mem-
bers of a population may also have been employed – culling random agents, unfit
agents or replacing parents with their offspring for example. These standard ap-
proaches do not improve the diversity of the population at any one time, in fact if
carelessly applied they may be responsible for its convergence.

The Artificial Life literature has much to say on co-evolution as a means of improving
a genetic algorithm’s performance through increased population diversity [6, 7]. This
work is similarly inspired, only the simulation models virtual worlds and does not
optimise explicit fitness functions. The co-evolutionary model presented here is novel
also since the disease/parasite that co-evolves with the agent population is wholly
dependent for its position in space (and in fact its existence) on the susceptible agents.

1.1 An Introduction to Models From Epidemiology

A fully-cited history of the mathematical theory of epidemics is beyond the scope of
this paper. The history leading to the classic model discussed below is provided in [8,
9].

At least since the 1920’s, stochastic models of epidemics have been utilized. The
standard model is based on a population of individuals who are either susceptible to a
specific disease (susceptibles denoted S) or infected with the disease and capable of
transmitting it to others (infectives denoted I). Population members who overcome a
disease may become immune to further infection1 or may become susceptible once
again depending on the particular disease. Population members who are immune to a
disease or remain infected but through isolation cannot transmit it, are considered
removed (denoted R). The model as described is known as an SIR model. It may be
modified slightly to provide fresh susceptibles through birth or immigration.

Some pertinent parameters of epidemic models are as follows. The period of time
during which a disease exists entirely within an organism is known as the disease’s
latent period. The organism is not infective during this period. An incubation period
often follows latency. During incubation the organism may not show outward sign of
infection but is nevertheless infective. Usually once the incubation period is over, the
victim of the disease is clearly marked by symptoms and can therefore be avoided by
susceptibles.

Probabilistic epidemiological models that operate in discrete time steps are particu-
larly suited to implementation in software.2 At any time step, the probability of a new
case of the disease appearing is proportional to the number of susceptibles multiplied

                                                  
1 Following a bout of a disease a victim may be deceased, alternatively their immune system

may prevent repeat infiltration by the same virus.
2 It is interesting to note that in the 1920’s two American epidemiologists Reed and Frost dem-

onstrated a discrete mechanical model in which coloured balls represented susceptibles and
infectives.



by the number of infectives. This basic model assumes random mixing of individuals
in the population and does not allow for the complex interactions between physically
separated sub-populations, nor for variable incubation or latent periods of a disease.
The problems inherent in models that make simplifying assumptions concerning the
nature of spatial distributions are discussed in [10]. Various extensions to the SIR
model to allow for these phenomena have been added over the last fifty years. Some
mathematical models and computer simulations deal with the spatial distribution of
susceptibles along a line, across a lattice or over a network to overcome the inaccura-
cies due to the assumption of random mixing of the population. Cellular-automata and
other discretized versions of the SIR method have been utilized also [11, 12]. Some of
these models have also incorporated disease carriers (e.g. some viruses are trans-
ferred by mosquito), and non-homogeneous populations. The model presented in the
current paper allows all of these phenomena to emerge from the simulation without
hard-coding their behaviour.

The current threats of biological warfare and terrorism have raised the stakes in West-
ern society for epidemiology. The U.S. National Institute of General Medical Sci-
ences has devoted $1.6 billion to a fledgling agent-based study of epidemics [13].
Like the U.S. project, this paper adopts agent modelling to represent the principles of
epidemiology in an intuitive but realistic fashion. As shall be shown, the process of
epidemic spread offers a means of increasing the genetic and phenotypic diversity of
a population and of capping its density.

1.3 Relevant Consequences of Basic Epidemic Theory

There are two theories of epidemiology that are particularly relevant here. The first of
these is known as the Threshold Theorem [14]: a disease cannot take hold in a popu-
lation of susceptibles unless the population density is above a particular threshold.
This value relates to the infectivity of a disease and the death and recovery rates it
induces. If population density passes beyond the threshold, the disease will reduce the
population to a level as far below the threshold as it was above it prior to the epi-
demic.

The Threshold Theorem has many consequences, one of which has come to be known
as Herd Immunity [8, pp. 27-31]. This theory indicates that a calculable number less
than the full population needs to be immunized to prevent an epidemic. Unfortunately
the theory has been shown to provide inaccurate figures in practice, due to its as-
sumption of random mixing in a population. Nevertheless, it highlights an important
aspect of epidemics, namely that the spread of a disease is not dependent on the per-
centage of a population who are immune, but on the contact between susceptibles and
infectives. When a population does not mix uniformly, the supply of susceptibles may
be similarly irregular.3 The model presented in this paper does not assume random

                                                  
3 For example, if a socio-economic group is immunized against a disease, and these people do

not mix randomly with people from other groups, an epidemic may still occur within the lat-
ter groups whilst the former is immunized. I.e. sub-group mixing is important in considering
the spread of a disease.



mixing of a population, rather the agent interactions are emergent from the simula-
tion.

2 An Agent-Based Simulation of Infectious Disease Epidemics

The present simulation runs in discrete time steps during which a population of agents
moves freely about a continuous-space, virtual world. The model was originally de-
vised as a part of a generative, interactive artwork (described elsewhere [15]) that
exhibits numerous emergent features typical of Artificial Life simulations. The
model’s essential features are described below.

2.1 Agent Composition, Behaviour and Evolution

Agents are represented visually as coloured boxes. These have a position and velocity
on a continuous toroidal surface. Each agent may wander randomly over the space at
a speed inversely proportional to its volume. During each time step of the simulation,
agents expend an amount of energy proportional to their volume to move and me-
tabolise. At each simulation time step, energy is gained by an agent from the envi-
ronment in an amount proportional to its upper surface area as if each box-top was
equipped with a solar cell charging a battery. Agents exhausting their energy supply
“die” and are removed from the simulation. Agents also age throughout a simulation
and are removed if they reach the end of their lifespan.

Agents perceive their neighbours’ positions, dimensions and colours within a limited
visual range. An agent may accelerate towards (or away from) a neighbour that it
finds attractive (or repulsive) as determined by reference to colour and dimension
templates it stores. Each agent stores colour and dimension templates marking prop-
erties it finds attractive in its partners and templates marking repulsive properties. The
closer the match of a particular template the greater the tendency of the agent to seek
or flee the neighbour that exhibits it. These tendencies are used to adjust the velocity
of the agent as it moves.

If two agents’ bodies intersect one another, find one another attractive, and pass a
maturity/age threshold test, they may produce a single offspring agent per time step at
their current location. The offspring is initiated with energy donated by each of the
parents. This donation costs parents an amount of energy specified in their property
list. The characteristics of the offspring are specified by the crossover and mutation of
the parents’ genotypes. This is an array of floating-point values coding the properties
listed in Table 1. The system employs a single crossover point and mutation of one
gene in every offspring by a random amount between +/- 5%.

New births are subject to an overflow test of the available simulation space. If a birth
would cause an overflow the request is refused. Following an unsuccessful request, a
random member of the population may be eliminated from the simulation to make
room for future requests.



Colour (R,G,B) Colour preference Colour abhorrence
Dimension (X,Y,Z) Dimension preference Dimension abhorrence
Visual range Offspring energy donation Lifespan

Table 1. Floating-point agent genotype contents (italics indicate vector quantities).

2.2 Disease Behaviour and Evolution

The agents in the model may carry virtual diseases, transmit them to other agents and
succumb to infection themselves. The diseases in the simulation co-evolve alongside
the agent population but may only exist within a host agent i.e. disease does not per-
sist in the environment. A susceptible agent is exposed to a disease when it intersects
with an infective agent. An agent that is carrying a disease cannot be infected by a
second disease (i.e. an active disease blocks secondary infection).

If an agent is not carrying a disease, its susceptibility is determined by the match be-
tween its own colour and the colour-signature of the carried disease to which it is
brought into contact. The closer the match between the agent’s colour and the colour-
signature template of the disease, the higher the probability the disease will infect the
susceptible agent during a time step of contact. Simulation diseases also possess a
devastation value that measures the virulence of a disease. This parameter is used to
scale the probability of infection and the amount of energy required of a host to sur-
vive a time step of infection.

A parameter determines the lifespan of a simulation disease in each host. Long-lived
diseases require a host to invest substantial amounts of energy to overcome infection.
If a disease is overcome without the death of the host, the agent acquires immunity to
the strain of the disease by adding it to an immunity list. Any further contact with this
disease will result in an immune response that prevents the disease from infecting the
agent a second time. If a disease kills its host, or the host dies for any reason, the dis-
ease it carries dies also, irrespective of its lifespan.

Each disease has parameters determining its latent and incubation periods (see section
1.1). A latent disease does not require energy of its host and is not infectious. During
the incubation period the agent is infective but does not exhibit symptoms. Agents
may visually detect disease symptoms in neighbours, potentially allowing them to
steer clear, however this feature was not utilized in the current experiments.

Real diseases such as viruses replicate and mutate within a host much more rapidly
than the hosts themselves reproduce, circumventing the host’s auto-immune response.
Consequently, it is possible for humans to repeatedly catch viruses such as the com-
mon cold and flu. To model this, a simulation disease undergoes reproduction during
every time step of its lifespan. Disease reproduction is asexual and may result in mu-
tation of the disease parameters: colour-signature; devastation; lifespan; incubation
and latent periods. A parameter that sets the frequency of a disease’s mutation during
reproduction may itself be mutated. Together these parameters allow the diseases to
co-evolve with the more slowly evolving agent population.



Diseases are represented in the simulation as coloured shapes rendered within the box
bodies of the agents. Fig. 1 illustrates the visualization scheme employed.

Fig. 1. The visualization scheme for agents and infection.

The parameters for the disease and agents outlined fully specify the features of a epi-
demic models discussed above. A complex and flexible simulation has been devised
that allows for studies of epidemics in non-homogeneous populations with non-
random mixing. This agent-based model eliminates many of the problems inherent in
earlier epidemiological models.

3 Results

As indicated in the motivation for this work, it had been noted that ecological simula-
tions in which agents competed for resources (including mates and energy) often re-
sulted in a genetically impoverished, homogeneous population. It was hoped that by
introducing a novel co-evolutionary model of disease, diversity might be encouraged
and uniformity exploited and eliminated by infection.

3.1 Qualitative Discussion

It was found that the disease did indeed exploit the population’s uniformity when it
arose. Disease also exploited populations of agents that clustered tightly together. In
the absence of disease, agents of particular colours and sizes often dominated a simu-
lation, forming large colonies of potential mates. A typical screen shot after 14,000
time steps of the simulation without disease is reproduced in fig. 2(a). Fig. 2(b) il-
lustrates a run after 14000 time steps with identical initial conditions, but in which the
disease model was introduced. The diversity in dimensions, colour and spread of the
population is far greater in fig. 2(b) than in fig. 2(a). In fact, after as few as 2500 time
steps, the non-diseased model often converges to homogeneity and does not break
from this condition but drifts gently through genetic space. The population model
incorporating disease maintains its diversity indefinitely.

A disease simulation run involves the spontaneous appearance of a disease on average
once every one-hundred-thousand agent updates. This new disease is generated with a
colour-signature that matches the colour of a randomly selected agent. The agent is
infected with the disease and left to continue its travels. Apart from the colour-
signature, all other disease parameters for the new infection are randomly generated.



  
Fig. 2. Two simulation screenshots after 14,000 time steps:

(a) without the epidemiological model; (b) with the epidemiological model.

Depending on the parameters of the new disease, the traits of the infected agent and
the population as a whole, the new disease may or may not cause an epidemic. The
likelihood of an epidemic is specified by the Threshold and Herd Immunity theories
described above. Some observed outcomes are described below along with the condi-
tions giving rise to them in the present simulation environment.

Disease elimination (immediate). If the disease is insufficiently long-lived, or the
population is insufficiently dense, or the host does not co-habit with others of a simi-
lar colour to itself, then the disease may fail to contact any susceptibles before it dies
within the host. The disease will be eliminated from the population immediately.

Disease spread (immediate). A disease may mutate sufficiently within a host to in-
fect susceptibles of a colour significantly different to the original host. If the host
mixes amongst others of its kind they may become infected with the disease also.
Occasionally the stochastic mechanism allows for a disease to infect a host coloured
differently to its own signature. In this case, the devastation of the disease will be low
in the infected host but the host nevertheless is able to infect other susceptibles. Such
a host may be considered a “carrier” of the disease.

Disease elimination (eventual). If the disease manages to take a hold in the popula-
tion it may nevertheless die out eventually if the number of susceptibles is reduced.
This may happen when a sizeable proportion of the agents encountered by infectives
is immune to the disease (even though the population as a whole may not have a sig-
nificant number of immune members – see footnote 3 above). Circumstances like this
arise when agents overcome the disease and acquire immunity, or when the disease is
so devastating that it rapidly wipes out the supply of susceptibles before the agents
are able to produce many offspring.

Disease spread (continual). A disease well-suited to its environment has sufficient
lifespan to ensure it is passed from one susceptible agent to another. Such a disease
also needs to be sufficiently devastating that it can be transferred successfully, but not
so devastating that it kills off its supply of susceptibles. Diseases that fit these criteria



also have to be sufficiently stable to avoid unwanted mutations that would render
them ineffective, but sufficiently mutable so that they can keep infecting an evolving
population of hosts. The simulation has given rise to diseases that meet all of these
criteria and persist in the population for long periods of time.

Of particular interest are diseases that sustain themselves indefinitely when they are
able to utilize susceptibles that are prolific breeders. Such diseases are able to spread
through contact between mates who seek one another out (sexually transmitted dis-
eases?) and also by contact between a parent and its newly born. Newly born agents
may have traits slightly different to their parents so that occasionally one tends to
wander off to seek its own preferred companions, taking the disease to infect others.
As long as the disease remains latent for a sufficiently long interval, it will not kill or
weaken the agent prior to its immigration to a further enclave.

3.2 Gene Diversity Plot Analysis

Figure 3 gives example plots of the red colour gene value of each agent in the popu-
lation, versus the simulation time step for (a) a healthy agent population and (b) a
population in which disease is present. Each simulation commences with a population
of randomly generated agents, and therefore figures 3(a) and 3(b) show red gene
values to be widely spread at time step 0.

  
Fig. 3. Plots of all agents’ red colour gene values against simulation time step:

(a) without the epidemiological model; (b) with the epidemiological model.

Time step 2500 of plot 3(a) commences a long-term decline in the diversity of the red
gene in the population. Without the presence of disease, the combination of colour
genes an agent possesses determines its mating success based on the presence of po-
tential mates who find the colour of the agent attractive. Thus, agent colour in the
disease-free population is driven purely by its ability to attract mates. The decline in
diversity is visible as the vertical dispersal of the red colour gene in the population is
reduced over time. The few “outliers” at each time step are excursions into new



colours brought out by a momentary success of a sub-population with a specific
colouration. Such events may be the result of spontaneous mutations during repro-
duction. The main population drift in figure 3(a) has red gene values focussed from
0.5 to 0.8.

Figure 3(b) shows the red gene diversity in the diseased population. After the initial
random spread of red gene values, the diversity in the population declines dramati-
cally by time step 2500 to a range limited between 0.6 and 0.7. This was the result of
a few randomly introduced diseases culling a population that had not yet adapted to
existence without the presence of disease, i.e. they could not yet locate mates and
produce offspring efficiently. A few rapidly acting random diseases therefore wiped
out much of the population before it had a chance to evolve strategies for sustaining
itself. The system has been programmed to generate several offspring automatically
from two randomly selected parents (even if they are not close to one another) in
situations like this in order to “jump start” the simulation. This has the drawback of
starting a population with a limited gene pool.

The situation depicted in figure 3(b) is especially interesting because with the pres-
ence of disease, even this limited gene pool (at time step 2500) does not simply drift
about genetic space as did the disease-free simulation when it encountered homoge-
neity. Instead, as can be seen from subsequent time steps of figure 3(b), the diversity
of the population actually expands. The co-evolutionary pressure between the disease
and the agents ensures that this situation is maintained indefinitely.

Figure 3 can therefore be seen to confirm the discussion at the beginning of this sec-
tion and the interpretation of figure 2 given above. In summary, the disease acts to
maintain colour diversity in the population, despite pressure applied by mating pre-
ferences to the contrary. The disease also forces the population to spread across the
available space and it allows the agents to explore a wider variety of shapes than the
pressure of the environment alone would have permitted. Both these latter results are
clearly depicted in figure 2.

4 Conclusions and Future Work
A model of epidemics has been introduced to an evolutionary, agent-based simula-
tion. The model improved the overall diversity of the population as desired and also
encouraged its spread across the available virtual space. A wide variety of disease
outcomes emerged from the simulation, each an apparently plausible model of real-
world outbreaks.

Future work of interest to the author is a full investigation of the impact of the Thres-
hold Theorem utilizing the present simulation. Can its behaviour be predicted math-
ematically and demonstrated successfully using this model? It would also be inter-
esting to conduct experiments that model known infectious diseases and their dis-
persal based upon known interactions of animal or human populations.
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