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Abstract 

Foraging bees use color cues to help identify rewarding from unrewarding flowers. 

As environmental conditions change, bees may require behavioral flexibility to 

reverse their learnt preferences. Learning to discriminate perceptually similar colors 

takes bees a long time, and thus potentially poses a difficult task to reverse-learn. We 

trained free-flying honeybees to learn a fine color discrimination task that could only 

be resolved (with about 70% accuracy) following extended differential conditioning. 

The bees were then tested for their ability to reverse-learn this visual problem. 

Subsequent analyses potentially identified individual behavioral differences that 

could be broadly classified as: ‘Deliberative-decisive’ bees that could, after several 

flower visits, decisively make a large change to learnt preferences; ‘Fickle-

circumspect’ bees that changed their preferences by a small amount every time they 

received a reward, or failed to receive one, on a particular color; and ‘Stay’ bees that 

did not change from their initially learnt preference. To understand the ecological 

implications of the observed behavioral diversity, agent-based computer simulations 

were conducted by systematically varying parameters describing flower reward 

switch oscillation frequency, flower handling time, and fraction of defective ‘target’ 

stimuli that contained no reward. These simulations revealed that when the frequency 

of reward reversals is high, Fickle-circumspect bees are more efficient at nectar 

collection, but as reward reversal frequency decreases, the performance of 

Deliberative-decisive bees becomes most efficient. As the reversal frequency 

continues to fall, Fickle-circumspect and Deliberative-decisive strategies approach 

one another in efficiency. In no tested condition did Stay bees outperform the other 

groups. These findings indicate there is a fitness benefit for honeybee colonies 

containing individuals exhibiting different strategies for managing changing resource 

conditions. 

 

Keywords: individual behavior, learning, flower, pollinator, visual ecology, 

honeybee, individual-based simulation 

 

Highlights: 

- Explores individual behavioral differences in plant-pollinator interactions 

- Reveals behavioral differences for real bees’ complex colour decision-making 
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- Bee / flower model reveals conditions where specific decision strategies are 

superior 

- Model reveals conditions that could have led to evolution of intra-colony variety 

 

1 Introduction 
To understand decision-making in bees for difficult visual tasks, it is useful to 

combine approaches of behavioral testing with computer modeling. This 

multidisciplinary approach allows for the interpretation of the ecologically relevant 

factors that may influence how and why individuals make certain decisions, and how 

this potentially benefits the colony (Burns, 2005; Burns and Dyer, 2008). In 

particular, situations in which behavior varies between individuals, or local 

environmental conditions influence individual decision-making, agent-based models 

(ABMs; also called individual-based models) offer a powerful approach for 

understanding the intricate interactions and emergent outcomes of complex systems 

in the context of behavioral ecology (DeAngelis and Mooij, 2005; Dorin et al., 2008; 

Grimm, 1999; Grimm and Railsback, 2005; Grimm et al., 2005; Huston et al., 1988; 

Judson, 1994). ABMs have been used to understand the ecology of bee behavior 

since the 1980s (Hogeweg and Hesper, 1983). For example, ABMs have been used to 

understand bee foraging strategies with respect to recruitment, homing and memory 

of food source location, with the assumption of a homogeneous population (de Vries 

and Biesmeijer, 1998). 

 

Agent-based models have also demonstrated that the benefits of recruitment by 

honeybees are dependent on the density and distribution of flowers within an 

environment. For instance, individual honeybees use a symbolic dance language to 

communicate the likely vector location of profitable food resources to nest mates 

(Leadbeater and Chittka, 2007; Seeley, 1985). There are individual differences in 

how nest mates within a hive respond to a signaled dance language. These depend on 

factors like a bee’s individual experience and the strength of the signal that can 

indicate resource quality (Biesmeijer and Seeley, 2005; Leadbeater and Chittka, 

2007). Understanding the potential hive benefits of the symbolic dance language 

communication has been possible with ABMs, revealing that effects like flower 

resource distribution and density have significant influences on whether it is 
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beneficial for a hive to have bees that follow communication signals, or individuals 

that rely on individual foraging capacity (Dornhaus et al., 2006).  

 

Foraging for nutrition in the form of nectar in natural environments presents a variety 

of potential dilemmas for free-flying bees. For example, whereas there may be a 

number of flowers possessing similar identifying cues that offer nectar as a 

nutritional reward (Dyer and Chittka, 2004a), there could also be mimics like orchids 

that offer no reward (Dafni, 1984). It is also possible that the amount of reward 

offered by a certain species of flower varies over time (Chittka et al., 1997; 

Townsend-Mehler and Dyer, 2012; Waddington et al., 1981; Waddington and 

Heinrich, 1981), and that plants that usually have rewarding flowers will present 

empty flowers, simply because they have been recently visited by other foragers 

(Chittka and Schürkens, 2001; Giurfa et al., 1994; Heinrich, 1979; Townsend-Mehler 

and Dyer, 2012). An additional complexity for foraging bees is introduced by the 

flowers of the legume Desmodium setigerum, as these flowers even have a capacity 

to change color within 2 hours to potentially manipulate the behavior of pollinators 

(Willmer et al, 2009). 

 

Many social bees, like honeybees and bumblebees, tend to exhibit flower constancy 

and typically remain constant to one type of rewarding flower, as long as it continues 

to present rewards (Chittka et al., 1999; Raine and Chittka, 2007b), although in 

complex natural environments flower constancy may break down (Raine and Chittka, 

2007b). This type of pollinator behavior can be evaluated in reverse-learning 

experiments (Mota and Giurfa, 2010; Pavlov, 1927), and has been investigated in 

honeybees using discrimination tasks based on olfactory cues (Komischke et al., 

2002; Mota and Giurfa, 2010), tactile cues (Scheiner et al., 1999; Scheiner et al., 

2001) and saliently different color discrimination (Menzel, 1969; von Helversen, 

1974) tasks; and for bumblebees on both color (Raine and Chittka, 2012) and 

sensorimotor learning tasks (Chittka, 1998). When considering different colors like 

‘orange’ and ‘blue’, free-flying honeybees can quickly learn within five trials to 

choose a rewarding color with accuracy greater than 80%, and then quickly switch 

these learnt preferences after a further 1-2 trials if the reward contingency is reversed. 

However, with this short training, honeybees can only reverse decisions up to three 

times before discrimination falls to chance levels (Menzel, 1969). This finding was 



 5 

confirmed in a separate study that trained honeybees to discriminate between 

saliently different ‘blue’ and ‘yellow’ color stimuli that were learnt in three trials to 

an accuracy greater than 80%, and the bees could then quickly switch preferences 

after 1-2 further trials when the reward paradigm was switched (von Helversen, 

1974). In this case of a short learning opportunity, honeybees also chose between the 

color stimuli at random levels if the reverse training continued for more than three 

reversals; however, if the training was extended to 10 rewards on a particular color 

stimulus then reverse-learning was very robust for at least nine reversals (von 

Helversen, 1974). This indicates that length of training is important to the capacity of 

honeybees to robustly reverse-learn a salient color task. 

 

Recent work examining how harnessed honeybees reverse-learn olfactory stimuli has 

revealed that different individual bees may possess different strategies for reverse 

learning (Mota and Giurfa, 2010). If harnessed honeybees are presented with two 

different odorants to discriminate between using a standard proboscis extension 

reaction (PER) experimental setup (Bitterman et al., 1983), some honeybees can 

reverse-learn the discrimination up to three times (Mota and Giurfa, 2010), which is 

consistent with the work on salient color discrimination with free-flying honeybees 

(Menzel, 1969; von Helversen, 1974). However, an important difference in the recent 

work on olfactory reverse learning was the observation of individual differences 

between how honeybees were able to perform the reverse switching task (Mota and 

Giurfa, 2010). It has been proposed that there are three categories of honeybees: 

‘efficient’ reversers that could quickly change preferences when experimental 

conditions changed; bees that did learn the initial discrimination task but then 

appeared unable to reverse learn the task; and a third category that failed to learn the 

initial olfactory discrimination task (Mota and Giurfa, 2010). The existence of the last 

category of bees implies that there was a reasonable degree of perceptual difficulty 

involved in the learning of this olfactory discrimination task. This finding of 

individual differences for perceptually difficult olfactory learning in harnessed 

honeybees agrees with other recent work reporting differences in performance levels 

when individual free-flying honeybees solve perceptually difficult color 

discrimination tasks (Burns and Dyer, 2008; Muller and Chittka, 2008). 
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When considering color stimuli, recent work on honeybees (Avarguès-Weber et al., 

2010; Giurfa, 2004; Reser et al., 2012) and bumblebees (Dyer and Chittka, 2004c) 

has revealed that the difficulty of a task can be controlled by varying the perceptual 

similarity of color stimuli. Specifically, the probability with which color differences 

can be judged by bees follows a sigmoidal-type function (Dyer, 2012b; Dyer and 

Neumeyer, 2005; Dyer et al., 2008b). Color differences can be conveniently specified 

in a color space like a Hexagon color model, which allows for the Euclidean distance 

between stimuli to be quantified (Chittka, 1992). Recent research has shown that 

when either honeybees (Avarguès-Weber et al., 2010; Avarguès-Weber et al., 2011; 

Dyer, 2012b; Giurfa, 2004) or bumblebees (Dyer and Chittka, 2004c; Dyer et al., 

2011) learn color information in isolation (termed absolute conditioning), they only 

demonstrate a coarse level of color discrimination [between colors separated by about 

1.5 hexagon units (Dyer and Chittka, 2004c; Dyer and Murphy, 2009)]. In 

comparison, when bees learn a target color in the presence of perceptually similar 

distractor stimuli (termed differential conditioning), they can master relatively fine 

color discriminations [<0.10 hexagon units (Dyer and Chittka, 2004c; Dyer and 

Murphy, 2009)]. However, learning color discrimination with differential 

conditioning takes considerably longer for bees, than with absolute conditioning. For 

example, learning a color distance of about 0.04-0.08 hexagon units with 75% 

accuracy typically takes honeybees or bumblebees about 50-60 visits (Burns and 

Dyer, 2008; Dyer and Chittka, 2004a; Dyer and Chittka, 2004b, c; Dyer and Murphy, 

2009). There is evidence that this type of perceptually difficult discrimination places 

increased load on the information processing since individual bees will slow down to 

maintain accuracy when facing fine color discrimination problems (Chittka et al., 

2003; Dyer and Chittka, 2004b), and will not perform at a high level of accuracy 

unless incorrect choices are punished with a bitter tasting substance (Avarguès-

Weber et al., 2010; Chittka et al., 2003; Dyer, 2012a; Rodriguez-Gironés et al. 2013). 

Since perceptually similar color stimuli potentially place increased cognitive load on 

bee color judgments, it is important to understand the extent to which bees can 

reverse-learn such fine discrimination tasks, and to determine if there are differences 

in decision-making behavior between individuals processing similar colors. 
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In this current study we combine behavioral testing of free-flying bees that had to 

solve perceptually difficult color reversal tasks, with the use of ABMs, to interpret 

the potential colony level benefits of the diversity of observed behaviors. 

2 METHODS: Behavioral experiments 

Behavioral experiments were conducted with free-flying honeybees (Apis mellifera 

Linnaeus) at the biological gardens of Johannes Gutenberg University (Mainz, 

Germany) between July and September 2009. A hive of honeybees was maintained 

10 m from a gravity feeder that provided 5% (vol.) sucrose solution. Individual bees 

were collected from the feeder site on a small Plexiglas spoon, and were transferred 

to a test site situated 15 m from the feeder, and 20 m from the hive. At the test site 

individual bees were marked with a color code on their thorax. Each bee was tested 

individually, and testing typically took 5-6 h/bee. 

 

The training apparatus consisted of a vertical rotating screen of 50 cm diameter. A 

photograph of the rotating screen is presented in a previous study (Dyer et al., 2005). 

This apparatus presented stimuli on four 6×8 cm hangers (e.g. ibid figure 1), each 

with a small landing platform. The spatial position of stimuli was continuously 

changed during training, and hangers were exchanged for fresh ones to exclude 

olfactory cues (Dyer et al., 2005; Dyer et al., 2008a). Two of the hangers presented 

target stimuli, and two hangers presented distractor stimuli, in random positions. This 

apparatus represents a complex natural scenario where bees have to forage from 

several flowers of potentially similar color; however, the hangers enable well-defined 

data collection by counting choices (touches to the landing stage of stimuli). In an 

experiment, bees were rewarded with 25% sucrose for making correct choices on a 

designated target stimulus (a rewarded stimulus during a particular component of an 

experiment), whilst a distractor stimulus only presented plain water. When a bee 

landed on a target stimulus it was presented with an additional sucrose drop on a 

Plexiglas spoon so that it could be moved 1 m away to behind a small screen, so that 

stimuli could be exchanged (Dyer et al., 2005; Dyer et al., 2008a).  

 

Stimuli were 6×6 cm colored cards that were of turquoise and blue appearance 

(Tonpapier no.s 32 & 37 respectively, Baehr, Germany) to a human observer, 

respectively. Stimuli spectral properties were measured with a spectrophotometer 
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(Spectro 320; Instrument Systems, München, Germany), in the range between 300 

and 650 nm. The color visual system of the honeybee is different to human vision, 

and is based on three spectrally different types of photoreceptors maximally sensitive 

in the ultraviolet (UV), blue (B) and green (G) regions of the electromagnetic 

spectrum (Dyer et al., 2011). To quantify the color difference between the turquoise 

and blue stimuli we used a color hexagon model designed for hymenopteran 

trichromatic vision (Chittka, 1992), considering the previously measured 

electrophysiological recordings for honeybee photoreceptors (Peitsch et al., 1992), 

data for standard daylight conditions converted to photon flux units (Wyszecki and 

Stiles, 1982), and assuming the visual system was adapted to the grey plastic 

background of the training apparatus (Chittka, 1992). The color distance was 0.06 

hexagon units. This color discrimination task thus involves colors that are sufficiently 

close so as to require differential conditioning to be learnt by bees (Avarguès-Weber 

et al., 2010; Dyer and Neumeyer, 2005). 

 

A total of 32 bees were tested. The experiment was counterbalanced in a randomized 

fashion so that the ‘turquoise’ and ‘blue’ stimuli were each initial targets for half of 

the bees. Each bee was first provided with a form of absolute conditioning to the 

target stimulus for 30 decisions, where the distractor hangers only presented the grey 

background material. This ensured the bees were familiar with the experimental 

apparatus, and also enabled within-subject testing of whether absolute conditioning 

enabled any color learning of the perceptually difficult color discrimination task. 

 

Following this initial absolute conditioning, each bee received differential 

conditioning to the similar turquoise and blue stimuli for 60 decisions. At the 

conclusion of the 60th decision, each test bee was satiated on the initial target 

stimulus and allowed to return to the hive. When a bee returned to the apparatus, all 

four hangers next presented it with the initial distractor stimulus to which this 

particular bee was exposed (e.g. blue or turquoise), now offering a reward, to allow 

for priming to the reverse contingency. The bee was allowed to collect sucrose from 

four landings and was satiated on the 4th hanger, so that it would return to the hive. 

When the test bee returned again it received differential conditioning with the initial 

reward situation switched, i.e. what was a distractor is now a target and vice versa. 

This reverse training lasted for 20 decisions. The bee was primed, satiated and the 
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rewards reversed again for another 20 decisions as described above. Next, in the final 

phase of the experiment, the rewards were reversed once more for 60 decisions. Thus 

each bee had to solve a complex set of reverse-learning tasks that involved 

perceptually difficult discriminations where individual discrimination decisions were 

potentially ambiguous. For statistical analysis data were checked for normal 

distribution and arcsine transformed where necessary. Graphical representations of 

the reversal described above are provided with the results. 

 

3 RESULTS: Behavioral experiments 
To evaluate if the bees had learnt the target stimulus following the initial absolute 

conditioning for 30 decisions, we considered the frequency of correct choices for the 

target in the first 10 decisions of the differential conditioning phase. For the 

‘turquoise’ target group the frequency of correct choices for the target was 52.4% (± 

16.9 s.d.), which was not significantly different from chance levels (1-sample t-test, 

N=16 bees, t= 0.560, df15, p= 0.584). For the ‘blue’ target group the frequency of 

correct choices for the target was 47.9% (± 15.5 s.d.), which was not significant (1-

sample t-test, N=16 bees, t= 0.533, df15, p= 0.602). Finally, these pooled results were 

not significantly different from chance expectation (independent sample t-test, 

t=0.774, df30, p=0.455). Thus the two color stimuli were initially perceived or treated 

as very similar by the bees. 

 

With differential conditioning, the bees learnt the visual task gradually, to the point 

where the mean frequency of correct choices in the interval from choice 50 – 60 was 

73.5% ± 14.2 s.d. (Fig. 1). With the first reversal there was an indication that some 

bees could switch their decisions quickly (Fig. 1, 2), but the choices for the initial 

target (45.0% ± 23.7 s.d.) were not what would be expected if the bees had 

completely switched their initially learnt color preference (100-73.5 = 26.5%). Thus, 

considering previous evidence that there could potentially be individual differences 

between honeybees in how they reverse learn a perceptually difficult task (Mota and 

Giurfa, 2010), we next tested for evidence of bees having different abilities to 

reverse-learn. 
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To analyze the decision making of the bees we considered the variation in choices at 

a particular reversal (R1-3, where R1 denotes the first reversal etc.) for a given color, 

when it changed from being rewarding (a target) to being unrewarding (a distractor). 

For each bee a value representing the change in its individual frequency of correct 

choices was calculated for the three respective reversals (R1 for 60-70, R2 for 80-90 

and R3 for 100-110 choices). To statistically examine the magnitude of the reversal 

values (R1-3) we considered the standard deviation (s.d.) of all bees during the last 10 

decisions of the initial learning phase (decisions 1-60) of the visual task (s.d. was 

14.1 and 14.2 for the ‘turquoise’ and ‘blue’ groups respectively) as the measure of 

behavioral variability. We then considered three categories of decision-making. 

Category 1 was no significant variation in choices (R1-3) following a particular 

reversal, defined as within 1.645 s.d. (90% probability of a trained bee having data 

within this range by chance); these bees were termed ‘Stay’ bees. Category 2 was a 

change greater than 1.645 s.d. and less than 1.960 s.d.; these bees were termed 

‘Fickle-circumspect’ bees. Category 3 was a change greater than 1.960 s.d. in choices 

during a reversal; these bees were termed ‘Deliberative-decisive’ bees. We used these 

values because they are well-accepted and robust statistical criteria such that 90% of 

data should lie within 1.645 sd. from the mean, and 95% of data within 1.960 s.d. of 

the mean (Sokal and Rohl, 1981). 

 

Subsequent analysis of the experiment revealed that 12% of bees (4/32) were 

consistent Deliberative-decisive bees (Fig. 2). There were four bees that did not 

reverse-learn. When the first experimental reward reversal occurred these four still 

chose the initial target with a mean accuracy of 72.6% ± 9.0 s.d.. If these bees were 

Deliberative-decisive their choices for the initial target should have dropped to less 

than 30%.  Therefore 12% of bees (4/32) ended up being classified as consistent 

‘Stay’ bees. Throughout the three (multiple) reversals, these remained loyal to the 

color they initially learned (Fig. 3). 

 

There were 24 bees that did not always remain faithful to just one strategy. Of these, 

seven bees initially exhibited a Stay bee strategy but moved to a Deliberative-

decisive bee strategy, and nine bees were initially Deliberative-decisive and moved to 

a Stay bee strategy. There were eight bees that showed no clear pattern of loyalty to a 

strategy, some of which sometimes fell into the Fickle-circumspect strategy. Figure 
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4a shows a plot of the rank order of all the 32 bees tested considering the mean 

percentage change in preference for the designated target color that occurred for the 

three reversals. 

 

4 METHODS: Simulation experiments 

The analyses described above suggest that individual bees within a colony apply 

different strategies. These differences appear to follow a continuum, but often the 

same individuals retain one of several strategies over multiple reversals (Figure 4). 

We thus next used agent-based computer simulations to test the biological advantage 

of the colonies having bees with different strategies for dealing with switching 

between perceptually similar flower colors. The hypothesis for this ABM testing was 

that if a proposed strategy was biologically advantageous in nature, then the 

simulation experiments should find a case where this strategy outperforms the 

competing strategies. The null hypothesis is that a particular strategy does not 

perform better in any simulated condition than its competitors; this includes a 

scenario where individuals are just poor performers (Mota and Giurfa 2010). 

 

The general purpose of our simulation code is to act as a framework in which to 

explore the interactions between insect pollinators and the flowers they visit. In 

tackling the specific hypothesis above, the spatial component of the model we 

describe below could be replaced with the sequential presentation of randomly 

selected flowers to each forager since our experiments only need model flowers 

distributed uniform-randomly. However in general, environmental spatial 

arrangement has the potential to impact on insect behavior; a thesis discussed 

previously in relation to our simulation framework (Bukovac et al 2013). 

 

The agent-based model used for our simulation represents a foraging patch as a grid 

with dispersed flower-agents, and a colony of bee agents that search the patch to 

collect flower nutritional rewards. The simulation and its agents were updated 

synchronously and in discrete time steps. We conducted experiments by varying 

parameters for the distribution of foraging strategies of bees in a colony and for the 

availability and reliability of flower nutritional rewards. An explanation of the 
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simulation follows (see Fig. 5a for an overview), and the parameters are listed in 

Table 1. 

 

4.1 Flower distribution and reward availability 

We modeled two flower types, T1 and T2 of equal abundance, uniform randomly 

distributed, each in its own grid cell, across the foraging patch to simulate a 

temperate environment in which resources are typically randomly spaced (Dornhaus 

and Chittka, 2004; Visscher and Seeley, 1982). Flower agents may offer a reward 

unit to visiting bee-agents, or not, depending on the experiment. If a reward was 

present it was replenished after a bee-agent collected it, however, an individual bee-

agent cannot return to a flower-agent within a single bout (foraging session) so that a 

particular reward is only available once for each bee-agent in a simulated bout. This 

assumption allowed us to isolate bee-agents from one another to avoid forager 

population density effects that were not central to the particular research questions 

under consideration in the main experiments. In control experiments we introduced 

‘defective’ flower-agents that did not offer a reward even when their type was 

expected to do so. Thus by varying the relative percentage of defective flowers in an 

experiment, we additionally isolated population density effects. 

 

4.2 The bee-agent and its colony 

A flowchart of the algorithm each bee-agent follows is provided in Fig. 5b. Each bee-

agent is mobile on the foraging grid, and has variable flower-agent landing 

probabilities. These are preferences (0-100%) for the respective flower-agent types 

(sum = 100%). Bee agents also have visual acuity and memory parameters that 

determine whether the bee realizes it has seen a flower before, and whether or not it 

correctly identifies a flower when detected. (See below and Table 1.) 

To eliminate locality artefacts bee-agents were randomly placed on the grid to begin 

and end foraging bouts from any location (i.e. no hive location was assigned). Since 

we are interested in relative foraging strategy performance, flight speeds were 

irrelevant and fixed at one (orthogonal) grid cell per simulation time step. Bee-agents 

cannot co-occupy a grid cell or a flower it contains. Potential collisions are resolved 

in favour of a random bee-agent. 
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If a bee-agent occupies a grid cell containing a flower-agent it determines (using a 

strategy discussed below) whether to land and attempt reward collection. Each bee-

agent memorises the flower-agents it just visited and will not revisit a flower-agent in 

a particular bout. After a foraging bout, bee-agents ‘forget’ the locations of previous 

visits. The justification for this is that animals have different memory phases and are 

likely to just use short-term memory for recalling recent choices made in complex 

foraging environments (Menzel, 2001). Apart from for the four most recently visited 

flowers, a bee-agent must enter a flower-agent’s grid cell to determine if it has 

already been visited. To ensure that flower-agents are not repeatedly re-approached 

bee-agents were modelled with accurate memory of the location of the last four 

flower-agents approached (Pyke and Cartar, 1992; Soltz, 1986). 

At each simulation time step, each bee-agent examines its neighbourhood for flower- 

agents. The bee-agent randomly chooses an unapproached flower-agent as its 

destination, or, if no unapproached flower-agents are detected, the bee-agent chooses 

a random neighbouring cell. We recognise that bee foraging path selection is 

probably not entirely random (Pyke and Cartar, 1992), however, we are interested 

only in relative flower selection strategy performance, not absolute success of 

particular navigational approaches. In previous work we tested the random walk used 

in this simulation against a navigational strategy based on empirical data about a 

bee’s preferred direction of flight when departing a flower (Bukovac et al 2013). This 

showed that changes to the movement pattern affected foraging only by reducing 

overall success by a fraction of total nectar collected. Hence, as long as all bee-agents 

choose a path in the same way – randomly in our case – we can understand the 

relative success of different foraging strategies. 

4.3 Flower detection 

Bees can use multiple cues (vision and olfaction) to find flowers (Leonard et al., 

2011; Streinzer et al., 2009). Our model only considered visual cues. Bee spatial 

acuity is relatively poor compared with a vertebrate lens eye (Land, 1997). In real life 

bumblebees can only detect a plant’s cluster of 3-5 flowers (each flower of 2.5 cm 

diameter) at a distance of < 0.7 m (Dyer et al., 2008b; Wertlen et al., 2008). Detection 

appears to be a step function (Dyer et al., 2008b; Wertlen et al., 2008) so we modeled 

bee-agent acuity as distances > 0.7 m — not detected, distances < 0.7 m — 95% 
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chance of detecting flowers. Thus a bee-agent can detect the presence of a flower-

agent in a neighboring grid cell (up to 0.35 m + 0.35 m = 0.7 m away) with 95% 

accuracy, but cannot detect more distant flowers (Dyer et al., 2008b; Wertlen et al., 

2008). 

If a bee-agent is sharing a grid cell with a detected flower-agent the bee-agent has a 

probability of accurately discriminating a rewarding from an unrewarding flower- 

agent. This probability is modeled as the learnt percentage preference for a particular 

flower-agent type. This value represents the probability that the bee brain correctly 

determines if a given flower is a target or distractor. With these values it is possible 

that a bee-agent detects a target flower-agent, but chooses not to land if its preference 

for that type causes it to mistakenly perceive it as a distractor. Conversely a bee may 

choose to land on a distractor due to a perceptual error causing it to mistakenly 

perceive it as a target. This models the probabilistic way that bees discriminate 

between similar flower colors depending upon experience (Dyer 2012b). 

All bee-agents undergo two phases of flower-agent preference adjustment behavior 

based on experimental results for our behavioral experiments. These phases allow a 

bee-agent to adjust its internal preferences for flower-agents based on previous 

successful and failed reward collection attempts. During phase 1, bee-agents conduct 

standard learning behavior that was modeled to be directly comparable to the learning 

behavior described above for real bees (Fig. 1: phase 1). During phase 2, bee-agents 

adopt either a Deliberative-decisive, Fickle-circumspect or Stay behavior based on 

the strategies we outlined above for the real bees (Fig. 1-3). The simulation of these 

phases is discussed below. 

4.4 Simulation phase 1 – bee-agent preliminary information acquisition 

All bee-agents commence phase 1 with equal 50% preferences for each flower type 

T1 and T2. Thus, initially a bee-agent has a 50% probability of choosing to land on 

the first flower-agent it encounters. This corresponds directly to how real bees 

initially generalize similar color flowers (Dyer, 2012b; Dyer et al., 2011) and is 

consistent with our behavioral data reported above. 

During phase 1, each time a bee-agent visits a rewarding flower-agent its preference 

for that type (always T1 in phase 1) increases by 1% and its preference for the other 
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type (always T2 in phase 1) drops by 1%. Each time a bee-agent visits an 

unrewarding flower-agent preference for its type decreases by 1% and its preference 

for the other type of flower-agent increases by 1%. This learning model fits how real 

bees have been shown to learn in experiments (Dyer, 2012b; Dyer et al., 2011). Bee-

agent’s flower-agent preferences are clamped between 80 and 20% in keeping with 

realistic learning behavior of bees for perceptually difficult tasks (Dyer, 2012b; Dyer 

et al., 2011) and our own behavioral results (Fig. 1). 

At the conclusion of phase 1, entry into phase 2 occurs, modeling the potential 

reward reversal behavior observed in our behavioral experiments, and thus triggering 

a change in bee-agent foraging behavior. 

4.5 Transition from simulation phase 1 to phase 2 

A simulation always begins in a scenario where T1 flower-agents are rewarding and 

T2 are not. This situation holds throughout phase 1. Phase 1 continues until an 

average of 70% preference for T1 (and 30% preference for T2) is reached for the 

entire bee-agent colony. Then phase 2 begins. 

4.6 Simulation phase 2 – Deliberative-decisive, Fickle-circumspect or Stay behavior 

Throughout phase 2, each bee-agent adopts one of the following foraging strategies 

depending on the experiment. 

Deliberative-decisive. A Deliberative-decisive bee-agent decisively reverses its 

preferences if, over a period of deliberation time its preferred flower type is 

consistently found to have become unrewarding and another type is detected as 

being consistently rewarding. When a switch occurs in the rewards offered by a 

flower-agent type (e.g. T1 flower-agents were rewarding and suddenly become 

unrewarding), a Deliberative-decisive bee-agent that encounters four 

unrewarding T1 and four rewarding T2 flower-agents, can invert its preference 

accuracy. For instance, if a Deliberative-decisive bee-agent had learnt through 

experience to have 70% preference for T1 and 30% for T2 flower-agents, after 

encountering four unrewarding T1 and four rewarding T2 this can become a 

70% preference for T2 and 30% for T1. This bee-agent has discriminatory 

ability and sufficient neural flexibility to adjust to a new reward situation. This 

bee-agent’s foraging closely fits the profile of the free-flying bees shown in 



 16 

Figure 2. 

Fickle-circumspect. A bee-agent may learn to make accurate decisions about flower-

agent types based on experience as described for experimental phase 1. The 

Fickle-circumspect bee type continues to learn in phase 2 with a 1% change per 

flower-agent visit as it did initially in phase 1. Whenever the reward situation 

changes, this bee type incrementally adjusts its preferences. It is fickle in the 

sense that it is always willing to adjust preferences based on new evidence. It is 

circumspect in the sense that the changes it makes are slight. This bee can 

adapt, but only gradually. Fickle-circumspect bee preferences are clamped 

between 80 and 20% in keeping with the findings of our behavioral 

experiments (Fig. 1). 

Stay. A Stay bee’s preference ‘stays’ loyal to the flower-agent type for which it 

originally acquired a strong preference, even if that flower-agent type changes 

from rewarding to unrewarding. For example, once a Stay bee-agent reaches 

~70% preference for a flower-agent type, this preference becomes hard-wired, 

even if the availability of rewards offered by the flower-agents changes. This 

bee-agent’s foraging closely fits the profile of the free-flying bees shown in 

Figure 3. 

4.7 Simulation experiments 

We conducted experiments to determine the impact of varying different conditions on 

the foraging success of colonies, each containing 60 bee-agents, utilizing the 

following four foraging strategy compositions: all Fickle-circumspect bees, all Stay 

bees, all Deliberative-decisive bees, 1/3 mix of each bee type. 

Alternating reward experiments 

Real flowers typically offer rewards for only a period of time, and a flower that is 

rewarding in the morning may not be later in the day (and vice versa) (Chittka et al., 

1997; Townsend-Mehler and Dyer, 2012; Waddington et al., 1981; Waddington and 

Heinrich, 1981; Willmer et al., 2009). Thus we considered scenarios where the 

variation in the availability of rewards offered by flower-agents of type T1 and T2 

alternates cyclically. The length of phase 2 was fixed at 14,400 time steps – a value 

chosen because it has many even factors and is large enough to potentially allow full 
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exploration of differences in bee-agent strategy – for all alternating reward 

experiments. This allowed us to use only even factors of the length of phase 2 as 

reward swapping periods to ensure that the number of time steps that T1 and T2 were 

rewarding was identical in every run, and to ensure that only complete oscillation 

periods were simulated (i.e. no reward periods were truncated by the end of the 

simulation). Simulated periods ranged from 120 time steps per cycle (exactly 120 

changes of the flower reward situation during phase 2) to 7200 time steps per cycle 

(exactly 2 changes of the flower reward situation during phase 2). 

Throughout phase 1 of these experiments, T1 is rewarding and T2 is not. From the 

start of phase 2 for n time steps, T2 is rewarding and T1 is not. For the next n time 

steps T1 is rewarding and T2 is not. This switching process continues throughout 

phase 2 where n is an even factor of 14,400 between 120 and 7200. (See Figure 6 for 

a generic run.) 

Defective reward control experiments 

When bees forage with coworkers or bees from other colonies operating in the same 

flower patch, there is some likelihood that a bee lands on a flower that should be 

offering a reward at the time of the visit, but the reward has recently been acquired by 

another bee (Chittka et al., 1997; Townsend-Mehler and Dyer, 2012; Waddington et 

al., 1981; Waddington and Heinrich, 1981). By varying the fraction of a rewarding 

flower-agent type that is defective (in the sense that they do not offer rewards when 

they should), we tested the relative impact of these conditions on bee-agents’ 

foraging strategies. Phase 1 of these defective reward experiments was run as 

described above. During phase 2 of these experiments the proportion of the T1 

flower-agents that were defective and contained no reward was systematically varied. 

T2 flower-agents remained unrewarding throughout the experiment. 

Handling time control experiments 

Flower handling time may impact on the relative success of different bee foraging 

strategies (Burns and Dyer, 2008; Chittka et al., 1997). For example, the requirement 

of switching between different flower species can influence the handling time of 

bumblebees (Laverty, 1994; Laverty and Plowright, 1988; Raine and Chittka, 2007b). 

Even if handling times are identical for rewarded and unrewarded landings, bees 
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making poor landing decisions could be expected to waste more time on flower 

handling for no reward (Burns and Dyer, 2008; Muller and Chittka, 2008). We thus 

tested for the impact of flower handling times by instigating a single reward swap at 

the transition from phase 1 to phase 2, using a series of flower handling times from 0 

to 20 time steps. In this experiment bee-agents sat idle for a number of simulation 

time steps corresponding to flower handling time when they visited a flower-agent, 

regardless of whether or not a reward was collected. 

 

Dependent variable 

The dependent variables of interest are the relative amounts of nutrition collected 

during each simulation run by the four bee colony compositions under the 

experimental conditions. Nectar collection rate is a variable likely to be of high 

importance to colony survival in natural conditions where resources may be 

constrained at certain times of the year (Burns and Dyer, 2008; Mattila and Seeley, 

2007; Raine and Chittka, 2007a). 

 

4.8 Simulation model verification and validation 

Simulation verification involved checking the correctness of our model by ensuring 

that the simulation behaved in accordance with the behaviors detailed above. 

Validation checks included that: 

• Learning bee-agents changed preferences in ±1% increments appropriately. 

• Bee-agent approach (short-term) and visit (long-term) memories operate correctly. 

• Stay bees did not change preferences during phase 2. 

• Flower distribution mean was 50% T1, 50% T2. 

The simulation was tested with and without bee agent short-term memory. The short-

term memory had no effect on the relative success of the different foraging strategies.  

The verification process allowed us to determine some derived values for the 

behavior of the system that were important for interpreting our results. These are 

given below. 
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• Check that Deliberative-decisive bees make a flower-agent preference switch after 

receiving four rewards from sources that were not expected to offer a reward, and 

four failed attempts to extract a reward from flowers where a reward was 

expected. 

There is always some delay after a flower-agent reward availability swap until a 

Deliberative-decisive bee-agent makes a preference switch due to its need to visit a 

minimum of eight flower-agents. Mean time until bee-agent preference switch was 

765 time-steps (273 s.d.) after the flower-agents changed their rewards (median 

switch time was 756 time steps). Values computed from a sample of 60 Deliberative-

decisive bee-agents. 

• Check transition condition from phase 1 to phase 2 occurs when the mean bee-

agent flower-agent preference for T1 reaches 70%. 

We found that the mean time to reach a preference of T1 = 70% (T2 = 30%) was 

1131 time steps (45 s.d.). At this time, the bee-agent colonies had foraged on average 

a total of 667 units of reward (18 s.d.). Values computed from 40 randomized 

simulation runs with 60 bee-agents per colony. 

The gradual increase in a bee-agent’s preference for T1 flower-agents during the 

initial learning period (phase 1) is illustrated in Figure 6. This learning performance 

is consistent with fine color learning in foraging honeybees (Avarguès-Weber et al., 

2010; Avarguès-Weber et al., 2011; Dyer, 2012b; Giurfa, 2004), bumblebees (Dyer 

and Chittka, 2004c; Dyer et al., 2011) and our own behavioral data (Fig. 1). Reward 

foraged is plotted on the lower (green) lines (Fig. 6). T1 preferences are plotted on 

the upper (blue) lines (Fig. 6). 

5 RESULTS: Simulation experiments 

5.1 Alternating reward experiments 

Sample results for a ‘validation test’ colony containing only three bees, one of each 

foraging strategy, are illustrated (Fig. 6). This figure highlights the alternating phases 

of flower reward and the responses of each bee strategy to these changes. 

The impact on mean reward foraged of varying the reward-swapping period during 
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phase 2 of the simulations is illustrated in Figure 7 (note the x-axis log scale). 

Swapping periods from 120 time steps (120 swaps during the 14,400 time step long 

phase 2) to 7200 time steps (2 reward swaps during phase 2) were simulated.  

At no single value for swapping period in this range could we find any indication that 

the 100% Stay strategy hive (illustrated in green, Fig. 7, depicting approximately 

constant foraging performance across the board as expected) or the mixed beehive 

(illustrated in dotted red, Fig. 7) was most effective. However, the all Fickle-

circumspect strategy hives were consistently the best performers for short reward 

swapping periods until the all Deliberative-decisive strategy hives clearly took over 

as the most effective foragers when reward swap period reached ~1800 time steps 

(Fig. 7). As swapping period continued to increase, the difference between 

Deliberative-decisive and Fickle-circumspect strategies increased also. The success 

of the two strategies approached one another again as the time delay for the Fickle-

circumspect bees to adjust their preferences became less relevant with increasing 

flower reward oscillation period, and correspondingly, with a decrease in the number 

of reward swaps. 

On the basis of these simulation results, there was no evidence to support the 

hypothesis that Stay bees should exist as a major group within a hive under the 

conditions we tested. Therefore, we tentatively conclude it is likely that the bees we 

initially classified as Stay bees were more likely to be Fickle-circumspect bees that, 

under our behavioral test conditions, had received insufficient time to learn. Figure 

4b shows the same data as Figure 4a, now re-plotted in keeping with this conclusion. 

It distinguishes only between the Fickle-circumspect and Deliberative-decisive 

strategies that were observed in the behavioral experiments and whose biological 

advantage was supported by our ABMs. 

 

5.2 Control experiments 

Defective reward simulation runs (N=20) determine the impact of defective flower-

agents on foraging strategies by providing a source of noise that could potentially 

confuse bee-agents as to which flower type is rewarding. We separately considered 

the 0, 30, 50, 70 and 90% defective flower distributions by testing how the four 

different hive compositions collected nutrition for each distribution. 

There was no significant difference in the dependent variable of mean reward 
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collected for any of the defective reward experiments [One-way ANOVA, d.f. (3,76); 

0% condition F = 1.992, p=0.122; 30% F = 0.886, p=0.452; 50% F = 1.181, p=0.323; 

70% F = 0.087, p=0.967; 90% F = 1.277, p=0.268], showing that the relative foraging 

of the bee-agent hives with different strategies was independent of defective flower 

density effects. 

During handling time simulation runs (N = 20), a single reward swap occurred at the 

conclusion of simulation phase 1. From this time point, all bee-agents enacted their 

phase 2 change-of-preference strategies. In these runs, every landing on a flower 

caused a bee-agent to sit idle during the designated flower handling time. 

We did not identify any condition where the mixed beehive composition was most 

effective for the flower handling times tested. Flower handling time did not impact on 

the ranking of the different hive compositions for any test condition. 

 

6 DISCUSSION 

The behavioral experiments suggest a complex picture for individual honeybees 

having to reverse-learn a difficult color discrimination task. Whilst some honeybees 

were loyal to one of several strategies, other bees appeared to have flexibility to 

change between different strategies. A classic problem in understanding decision-

making in insects is, why have colonies evolved different strategies for solving 

perceptually difficult problems (Burns, 2005; Burns and Dyer, 2008)? Agent-based 

simulations allowed us to test hypotheses elicited by this question, using empirical 

results of behavioral experiments as a basis. 

In the current study, the empirical analyses initially suggested that there were three 

types of bee strategy for collecting nutrition, in a situation involving similarly colored 

flowers that could alternate in the availability of rewards offered. The potential 

strategies identified were Deliberative-decisive, Fickle-circumspect and Stay 

strategies. We found that Stay strategy honeybees never outperformed the other two 

strategies under the test conditions, often to the detriment of the hive’s overall 

efficiency (Fig. 7). This leads us to question what ecological factors might maintain 

Stay bees, or if Stay bees really exist in nature. Stay bees may be useful by 

persevering with their hard-won knowledge, being effective foragers in situations 

where there are only occasional unrewarding target flowers. However, the control 
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experiment on defective flowers allows us to discount this hypothesis. Even when 

many defective target flowers were introduced to the ABM, Stay bees never 

outperformed the Deliberative-decisive and Fickle-circumspect bees. 

Another possibility is that the bees that we classified as Stay bees following our 

initial analysis of the empirical data may have actually been Fickle-circumspect bees 

that learn very slowly (Fig. 3). The individual-based simulation allowed us to 

conclude that, under the conditions tested, bee colonies constrained to the 

requirement of collecting the maximum amount of nutrition per unit time should 

contain bees with only two types of decision-making strategy for complex color tasks 

(Figures 4 & 7). Following the learning of a perceptually difficult task, our results 

suggest that under repeated and frequent changes in a reward situation, it is best to 

make frequent and small changes to preferences in order to keep abreast of the 

changing environment, without missing an opportunity to fine-tune the perceptual 

system. Even though this fine-tuning may not bring the perceptual system fully into 

line with the new reward situation (Fig. 6), the minor adjustments take little time to 

be swayed in the reverse direction, and so the bee may simply revert to earlier 

preferences when needed using the same mechanism. However, under situations 

involving less frequent changes, this type of fine-tuning is slow to capitalize. Instead, 

once sufficient evidence has been gathered that the reward situation has changed, a 

large and decisive change of preferences is a more effective way to bring a bee’s 

perceptually based decisions into line with new foraging conditions. The difference 

between these two strategies decreases as the time taken to switch preferences 

becomes less significant (i.e. when there are less reward swaps and they have long 

stable periods between them). Interestingly, there doesn't appear to be just two 

distinct categories in nature. Figure 4 shows that, considering the mean change in 

target flower preferences by individual bees following a reward reversal, there is a 

continuum of performance differences from the bees that do just exhibit solely 

Fickle-circumspect, or Deliberative-decisive strategies. Indeed many bees lie in 

between these two proposed categories. Previous work on both bumblebees (Chittka 

et al. 2003) and honeybees (Burns and Dyer 2008) has reported that while there is 

evidence of fast-inaccurate and slow-accurate individual bees for solving perceptually 

difficult tasks, there appears to also be a continuum between these ‘different’ 

strategies. This suggests that differences in individual animal differences for solving 
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perceptually difficult tasks are variable through the bee population within a hive. 

Future work may consider if such observations are constant within individuals 

(Chittka et al. 2003), or may be influenced by factors like age or level of experience. 

However, in bumblebees some capacity to modulate decisions within individual has 

been observed (Chittka et al. 2003), and the current study also observed that 

honeybees varied their strategies (Fig. 4). 

Future work could consider whether there are any real-world conditions for which the 

presence of Stay bees is of benefit to a beehive. We note that the better the 

Deliberative-decisive bees learn during phase 1 to prefer T1 flowers, the longer it will 

take them to reverse their preferences after a reward swap in favor of T2, or any 

subsequent reversals. This occurs because their preferences for the currently 

unfavorable flower will be so low that they seldom visit to gain evidence for any 

newly instigated favorability. Perhaps the presence of Stay bees in a hive, together 

with Deliberative-decisive bees, may be useful if the bees can communicate with one 

another in some circumstances (Dornhaus et al., 2006). In particular, a Stay bee loyal 

to one flower type might act as a ‘watch-bee’ consistently monitoring flowers that 

have been previously found rewarding, ready to inform the hive once they become 

viable targets. 

In complex real world environments there is often no way for animals in general to 

know which conditions will be encountered, and thus it could be beneficial for a 

colony to possess individuals with multiple strategies, in agreement with bet hedging 

hypotheses (Burns and Dyer, 2008; Muller and Chittka, 2008). Figure 7 supports this 

hypothesis in the case of bees from both our behavioral and simulation experiments. 

Classically it has been appreciated that one form of decision-making in humans can 

be described as ‘Rationalistic’ in which a human subject “becomes aware of a 

problem, posits a goal, carefully weighs alternative means, and chooses among them 

according to his estimates of the respective merit with regard to the state of affairs he 

prefers” (Etzioni, 1967; Tarter and Hoy, 1998). Although the above description of the 

mental processes underlying this strategy is not applicable to insects, the outcomes, in 

terms of measured behavior, parallel those of bees employing the Deliberative-

decisive strategy. Alternatively, decision-making in human subjects may use an 

Incrementalist strategy. This strategy “seeks to adapt decision-making strategies to 

the limited cognitive capacities of decision-makers and to reduce the scope and cost 
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of information collection and computation” (Etzioni, 1967; Tarter and Hoy, 1998), by 

making a continual stream of micro-adjustments. This parallels the behavior we 

observed in Fickle-circumspect bees. In the field of Artificial Intelligence, which is 

concerned with decision-making agents, these different strategies are understood in 

terms of the concepts of simple reflex agents that select their behavior based purely 

on their current situation; and model-based reflex agents that maintain an internal 

model of the part of the world that has been visible to them in the past in order to take 

this into account in their decision making (Russell and Norvig, 2010, pp. 48-52).  

Our finding that bees demonstrate a variety of decision-making strategies is therefore 

consistent with theories of decision making in both humans and artificial intelligence. 

This suggests that results from the current honeybee and simulation experiments have 

widespread implications across a number of fields. Indeed the beehive may, by 

maintaining a diversity of individual level behavior, be acting as a super-organism 

(Hölldobler and Wilson, 2009; Seeley, 1989) with respect to its implementation of 

decision-making for complex problems that have no obvious, complete a priori 

solution. In addition, the behavioral experiments found some evidence that individual 

bees have a capacity to modulate their own decision-making approach, and 

modulation of decisions has previously been reported for bumblebees making 

speed/accuracy judgments for stimuli of similar color (Chittka et al., 2003; Dyer and 

Chittka, 2004b). However, there may be differences between visual processing and 

decision-making in honeybees and bumblebees (Dyer et al., 2008b; Morawetz and 

Spaethe, 2012; Raine and Chittka, 2012). This would be a fertile topic for further 

investigation. 

We conclude that for a perceptually difficult task, honeybees demonstrate a variety of 

methods for adjusting their flower preferences when environmental conditions 

change. Our agent-based simulations of this behavior reveal that this diversity of 

strategies allows a hive to efficiently collect resources in complex ecological 

conditions. 
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Fig. 1. Learning and switching behavior of all test bees. Mean (±95% confidence interval) of 32 bees 

during differential conditioning and the three reversals occurring after 60, 80 and 100 choices. 
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Fig. 2. Learning and switching behavior of Deliberative-decisive bees. Mean (dark blue line) of the 

four bees (grey lines) that always exhibited a Deliberative-decisive strategy during differential 

conditioning and the three reversals following 60, 80 and 100 choices. 
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Fig. 3. Learning and switching behavior of Stay bees. Mean (dark blue line) of the four bees (grey 

lines) that always exhibited a Stay strategy during differential conditioning and the three reversals 

following 60, 80 and 100 choices. 
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Fig. 4a & b. Rank order of 32 individual honeybees on a reverse-learn fine color discrimination task 

that was repeated three times. (a) The Y-axis shows Differentiation Index (mean absolute percentage 

change in a bee’s preference for a given rewarding color when a switch (1-3) occurred). The X-axis 

shows rank order of percentage change for the individual bees. If a bee’s choices following a reversal 

was within 90%CI for the initial target color it was classified as a Stay solution (blue bars), if a bee 

switched (>95%CI) it was classified as a Deliberative-decisive solution (white bars), and a bee with a 

change in behaviour between 90-95% CI was classified as a Fickle-circumspect bee (yellow hatched 

bars). Bars thus show the relative frequency of bees using the potentially different strategies. Many 

bees did use a mixture of strategies, but some bees were 100% loyal to a particular strategy and their 

respective Differential Index scores were statistically different (Compare solid white versus solid blue 

bars: Mann Whitney U, p= 0.021). For the Deliberative-decisive bees (solid white bars), this observed 

behaviour was not due to chance distribution as there was a 1/8000 chance of one individual 

successively switching three times, and using a binomial test the Pr(X_4) = 1-Pr(X<4) = 8.75e-12 (i.e. 

p-value < 0.0001 for the observed number of bees exhibiting this multiple switching behaviour by 

chance), whilst in contrast some bees never switched preference (solid blue bars) and were always 

within initial 90% confidence limits for the initial target colour. (b) Following agent-based simulations 

to dissect why different proposed foraging strategies may exist in nature, there was little support for a 

Stay strategy being optimal in the conditions tested, and so possibly only two types of strategies may 

exist in nature. Thus honeybee behavior for reverse-learning perceptually difficult color discrimination 

tasks could be categorized as a Deliberative-decisive solution (white bars), or a more conservative 

Fickle-circumspect strategy (green bars). 
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Fig. 5a & b. Flowcharts summarising the agent-based model. (a) The overall procedure for each 

experiment; (b) The procedure for updating an individual bee-agent every time step of a simulation. 

The preference adjusting behavior presented in this figure applies to all bee-agents during the first 

phase of every experiment, this being the preliminary information acquisition period which models the 

real bees’ differential conditioning (section 4.4). The bee-agents’ preference adjusting behavior at 

other times is detailed in the text (section 4.6). 
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Fig. 6. Sample ‘alternating reward’ agent-based simulation experiment for single bee-agents of 

respective decision making strategies. The upper plots (blue) are the preferences of each bee-agent for 

T1 rising from an initial 50% value (vertical, left-hand axis). The lower plots show units foraged by 

the individual bee-agents during the depicted simulation (vertical, right-hand axis). The preliminary 

acquisition period during which the bee-agent colony reaches a mean preference for T1 of 70% is 

marked phase 1. From then on the reward availability is swapped periodically until the end of the 

simulation; this is phase 2. The availability of rewards from T2 and T1 during phase 2 is illustrated by 

alternating grey bands from the beginning of phase 2. The experiment continues like this until the end 

of phase 2 at time step 14,400 (not shown). 
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Fig. 7. Mean reward foraged by hives of different bee-agent compositions during simulation phase 2 of 

14,400 time steps, as compared to the length of time (in simulation time steps plotted on a log scale) 

for which rewards are alternately offered by flower-agents of T1 and T2. Mean values based on 50 

simulation runs. Error bars indicate 95% confidence intervals. X-axis data points correspond to even 

factors of the length of phase 2 (14,400 time steps) ensuring that T1 and T2 each offer rewards for an 

identical number of time steps in un-truncated periods during every simulation. 
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Environment  

Patch size 

Grid cell size 

571 × 571 cells, torroidal boundary. 

0.35m x 0.35m 

Flower-agents  

T1 : T2 flower relative abundance (mean) 

Total flowers 

1 : 1 

13071 

 

Bee-agents  

Colony sizes and compositions 60 agents/colony, composed as: all 

Fickle-circumspect, all Stay, all 

Deliberative-decisive, 1/3 mix of each. 

Flower detection accuracy 95% from a neighboring cell or one 

shared with a flower. 

Storage capacity 100 reward units. 

Recently approached flower memory length. 

Visited flower memory length. 

4 most recent approaches. 

Every flower visited on a single bout. 

Learning increment (for all bees during phase 1, 

and for Fickle-circumspect bees during phase 2) 

±1% point per flower visit. 

Preference switch threshold (for Deliberative-

decisive bees during phase 2) 

Visit 4 surprising rewarding flowers 

and 4 surprising unrewarding flowers 

without encountering any unsurprising 

flowers. (A surprising visit occurs when 

a bee expects a reward but does not 

receive one, and vice versa.) 

Simulation length  

Duration of phase 1 (variable length) Until colony mean preference for T1 

flowers ≥70%. 

Duration of phase 2 (fixed length) 14,400 time steps. 

Table 1. Summary table of simulation parameters. 
 


