Monash University

Semester Two Examination 2004

Faculty of Information Technology

EXAM CODES:
TITLE OF PAPER:

CSE5301
NEURO-FUZZY COMPUTING

INSTRUCTIONS TO CANDIDATES:

1. This is an open-book exam.
2. Calculators are permitted.
3. Exam duration: 120 minutes writing time
4. Reading time: 15 minutes
5. This paper comprises 5 questions and 2 figures printed on 5 pages.
6. Attempt all questions.
7. Marks for questions are as shown.
8. Total marks are 100 .
9. The examination paper must be returned.
10. Question 5 should be answered in the examination paper. Answer the remaining questions in the script book.

11. A neural network generates its output according to the following equation

$$
y=\sigma\left(U \cdot\left[\begin{array}{c}
\boldsymbol{h} \\
1
\end{array}\right]\right), \quad \boldsymbol{h}=\boldsymbol{\sigma}\left(W^{h} \cdot\left[\begin{array}{c}
\boldsymbol{x} \\
1
\end{array}\right]\right)
$$

where σ is a suitable step function (a hard limiter),

$$
W=\left[\begin{array}{rrr}
-2 & 4 & 1 \\
6 & -4 & 1
\end{array}\right], \quad U=\left[\begin{array}{lll}
3 & 4 & -1
\end{array}\right] .
$$

(a) Sketch a dendritic diagram of the network.
(b) calculate the network output y for the following input vectors:

$$
X=\left[\begin{array}{lllll}
0.5 & 0 & 0 & 1 & 1 \\
0.25 & 0 & 1 & 0 & 1
\end{array}\right]
$$

(c) Plot the decision plane/line for every neuron in the network
(d) If the step functions σ are removed from the network, what function does the network perform?

$$
(7+7+7+5=28 \text { marks })
$$

2. In Adaline, the performance index is given in the following form:

$$
J\left(w_{1}, w_{2}\right)=4 w_{1}^{2}+6 w_{1} w_{2}+5 w_{2}^{2}+2 w_{1}-3 w_{2}+2
$$

(a) Determine the cross-correlation and input correlation matrices.
(b) Assuming that the current weight vector $w=[1-1]$ calculate the gradient of the performance index.
(c) In the steepest descent learning law, what would be the next value of the weight matrix?
(d) Assuming that the next values of the input vector $\mathbf{x}(n+1)$ and the desired output $d(n+1)$ are

$$
\mathbf{x}(n+1)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad d(n+1)=0.5
$$

calculate the next values of the cross-correlation and input correlation matrices.

$$
(5+6+5+7=23 \text { marks })
$$

3. In Generalised Hebbian learning
(a) the current values of the input vector and the weight matrix are as follows:

$$
\mathbf{x}=\left[\begin{array}{r}
-2 \\
-1 \\
1
\end{array}\right], \quad W=\left[\begin{array}{rrr}
1 & 0 & 2 \\
-1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Calculate the weight update ΔW. Assume $\eta=1$.
(b) At the conclusion of the learning process, what do the weight matrix, W, and the output vector, y, represent?

$$
(10+4=14 \text { marks })
$$

4. Consider a Kohonen Self-Organizing Map where dimensionality of the input and feature spaces are 2 and 1 , respectively. The number of neurons is 8 .
(a) Sketch a structure of the network.
(b) Assuming the contents of the weight and neuronal position matrices is as follows:

W		V
4	3	5
1	3	1
5	4.5	7
2	1	3
1.5	2	2
4.5	5	6
3	2.5	4
5.5	3	8

Sketch the resulting feature map.

$$
(10+5=15 \text { marks })
$$

5. Complete the following Fuzzy inference diagram. Another copy of the diagram is available on the next page. Use it as a draft.

if service is good

if service is excellent or

$$
\text { service }=7
$$

or

food is good ${ }^{10}$

food is dellicious

$$
\text { food }=3
$$

then

tip is average

result of aggregation
(20 marks)

if service is good

if service is excellent or

$$
\text { service }=7
$$

or and

food $=3$

tip is average

