Off	Office Use Only			

Monash University

Semester Two Examination 2004

Faculty of Information Technology

EXAM CODES: CSE5301

TITLE OF PAPER:

NEURO-FUZZY COMPUTING

INSTRUCTIONS TO CANDIDATES:

- 1. This is an open-book exam.
- 2. Calculators are permitted.
- 3. Exam duration: 120 minutes writing time
- 4. Reading time: 15 minutes
- 5. This paper comprises 5 questions and 2 figures printed on 5 pages.
- 6. Attempt all questions.
- 7. Marks for questions are as shown.
- 8. Total marks are 100.
- 9. The examination paper must be returned.
- 10. Question 5 should be answered in the examination paper. Answer the remaining questions in the script book.

1. A neural network generates its output according to the following equation

$$y = \sigma \left(U \cdot \begin{bmatrix} \mathbf{h} \\ 1 \end{bmatrix} \right) , \ \mathbf{h} = \boldsymbol{\sigma} \left(W^h \cdot \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} \right)$$

where σ is a suitable step function (a hard limiter),

$$W = \begin{bmatrix} -2 & 4 & 1 \\ 6 & -4 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 3 & 4 & -1 \end{bmatrix}.$$

- (a) Sketch a dendritic diagram of the network.
- (b) calculate the network output y for the following input vectors:

v	0.5	0	0	1	1]
$X = \left[{{\left[{{\left[{{\left[{X = } \right]} \right]_{X}} \right]_{X}}} \right]_{X}}} \right]_{X}$	0.25	0	1	0	1

- (c) Plot the decision plane/line for every neuron in the network
- (d) If the step functions σ are removed from the network, what function does the network perform?

$$(7+7+7+5=28 \text{ marks})$$

2. In Adaline, the performance index is given in the following form:

$$J(w_1, w_2) = 4w_1^2 + 6w_1w_2 + 5w_2^2 + 2w_1 - 3w_2 + 2$$

- (a) Determine the cross-correlation and input correlation matrices.
- (b) Assuming that the current weight vector w = [1 1] calculate the gradient of the performance index.
- (c) In the steepest descent learning law, what would be the next value of the weight matrix?
- (d) Assuming that the next values of the input vector $\mathbf{x}(n+1)$ and the desired output d(n+1) are

$$\mathbf{x}(n+1) = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad d(n+1) = 0.5;$$

calculate the next values of the cross-correlation and input correlation matrices.

$$(5+6+5+7=23 \text{ marks})$$

3. In Generalised Hebbian learning

(a) the current values of the input vector and the weight matrix are as follows:

	$\begin{bmatrix} -2 \end{bmatrix}$			1	0	2]	
$\mathbf{x} =$	-1	,	W =	-1	1	$1 \mid$	
	1		W =	0	1	2	

Calculate the weight update ΔW . Assume $\eta = 1$.

(b) At the conclusion of the learning process, what do the weight matrix, W, and the output vector, y, represent?

(10 + 4 = 14 marks)

- 4. Consider a Kohonen Self-Organizing Map where dimensionality of the input and feature spaces are 2 and 1, respectively. The number of neurons is 8.
 - (a) Sketch a structure of the network.
 - (b) Assuming the contents of the weight and neuronal position matrices is as follows:

V	V	V
4	3	5
1	3	1
5	4.5	7
2	1	3
1.5	2	2 6 4 8
4.5	5	6
3	2.5	4
5.5	3	8

Sketch the resulting feature map.

(10 + 5 = 15 marks)

- 1 1 1 0 0 0 food is rancid 10if service is poor $\frac{10}{10}$ 25% 25% tip is cheap then or 1 1 1 1 0 0 0 0 food is good 10^{10} if service is good **and** 25% 25% tip is average then 1 1 1 1 0 0 0 0 $0 \xrightarrow{10} 10$ if service is excellent or food is dellicious then 25% 25% tip is generous 1 service = 7food = 3
- 5. Complete the following Fuzzy inference diagram. Another copy of the diagram is available on the next page. Use it as a draft.

0 25% result of aggregation

0

0

 $0 \frac{25\%}{100}$ result of aggregation