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2 Perceptron

• The perceptron was introduced by McCulloch and Pitts in 1943 as an artificial neuron with a
hard-limiting activation function, σ.

• Recently the term multilayer perceptron has often been used as a synonym for the term multilayer
feedforward neural network.
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• Input signals, xi, are assumed to have real values.

• The activation function, σ, is a unipolar step function (sometimes called the Heaviside function),
therefore, the output signal is binary, y ∈ {0, 1}.

• One input signal is constant (xp = 1), and the related weight is interpreted as the bias, or threshold, θ:

wp = −θ

• The input signals and weights are arranged in the following column and row vectors, respectively:

x =
[
x1 · · · xp−1 1

]T
; w =

[
w1 · · · wp−1 wp

]
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• Aggregation of the “proper” input signals results in the activation potential, v, which can be
expressed as the inner product of “proper” input signals and related weights:

v =
p−1∑
i=1

wixi = w1:p−1 · x1:p−1

• The augmented activation potential, v̂, can be expressed as:

v̂ = w · x = v − θ

• For each input signal, x, the output, y, is determined as

y = σ(v̂) =

 0 if v < θ (v̂ < 0)

1 if v ≥ θ (v̂ ≥ 0)

• Hence, a perceptron works as a threshold element, the output being “active” if the activation potential
exceeds the threshold.
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2.1 A Perceptron as a Pattern Classifier

• A single perceptron classifies input patterns, x, into two classes.

• A linear combination of signals and weights for which the augmented activation potential is zero,
v̂ = 0, describes a decision surface which partitions the input space into two regions.

• The decision surface is a hyperplane specified as:

w · x = 0 , xp = 1 , or v = θ (2.1)

and we say that an input vector (pattern)

x belongs to a class
 #1

#0

 if
 y = 1, (v ≥ θ)

y = 0, (v < θ)

• The input patterns that can be classified by a single perceptron into two distinct classes are called
linearly separable patterns.

Example from a two-dimensional space (p = 3).
Equation of the decision line:

w1 · x1 + w2 · x2 + w3 = 0 , or
[
w1 w2 w3

]
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Useful remarks

• The inner product of two vectors can be also expressed as:

w · x = ||w|| · ||x|| · cos α

where ||.|| denotes the norm (magnitude, length) of the vector, and α is the angle between vectors.

• The weight vector, w, is orthogonal to the decision plane in the augmented input space, because

w · x = 0

that is, the inner product of the weight and augmented input vectors is zero.

• Note that the weight vector,
w1:p−1

is also orthogonal to the decision plane

w1:p−1 · x1:p−1 + wp = 0

in the “proper”, (p−1)–dimensional input space.

• For any pair of input vectors, say, (xa
1:p−1,x

b
1:p−1), for which the decision plane equation is satisfied, we

have
w1:p−1 · (xa

1:p−1 − xb
1:p−1) = 0

Note that the difference vector (xa
1:p−1 − xb

1:p−1) lies in the decision plane.
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Geometric Interpretation

• Let us consider a 3-dimensional augmented input space (p = 3). Input vectors are 2-dimensional, and
x =

[
x1 x2 1

]T
. The decision plane, is described as follows:

w1x1 + w2x2 + w3x3 = 0 , x3 = 1 (2.2)
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Figure 2–1: Augmented 3-D input space with the decision plane

• The augmented decision plane, OAB, goes through the origin of the augmented input space (a
homogeneous equation).

• Each augmented input vector, x, lies in the this plane. The weight vector, w, is orthogonal to the OAB
plane hence to each augmented input vector.

• Intersection of the augmented decision plane, OAB, and the horizontal plane, x3 = 1, gives a 2-D
“plane” AB (a straight line, in this case) described by eqn (2.2).
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2.2 Example — a three-synapse perceptron

Consider a three-input perceptron with weights

w = [2 3 − 6]
v̂

��
��

y@ @ @

x1 x2 1

2 3 −6

-

The total (augmented) activation potential is determine as:

v̂ = w · x =
[
2 3 −6

]


x1

x2

1

 = 2x1 + 3x2 − 6

The input space, [x1 x2, is 2-dimensional and the decision plane is reduced to a straight line:

2x1 + 3x2 − 6 = 0

The 2-D weight vector ŵ = [2 3] is perpendicular to the decision line, that is, to the vector a = [−3 2]T

which is parallel to (lies in) the decision line, because the inner product ŵ · a = 0, that is

[2 3]

 −3
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Note that the weight vector ŵ points in the “positive” direction, that is, to the side of the plane where y = 1.
2
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2.3 Selection of weights for the perceptron

In order for the perceptron to perform a desired task, its weights must be properly selected.

In general two basic methods can be employed to select a suitable weight vector:

• By off-line calculation of weights. If the problem is relatively simple it is often possible to calculate
the weight vector from the specification of the problem.

• By learning procedure. The weight vector is determined from a given (training) set of input-output
vectors (exemplars) in such a way to achieve the best classification of the training vectors.

Once the weights are selected (the encoding process),
the perceptron performs its desired task (e.g., pattern classification)
(the decoding process).
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2.3.1 Selection of weights by off-line calculations — Example

Consider the problem of building the NAND gate using the perceptron. In this case the desired
input-output relationship is specified by the following truth table and related plot:

x1 0 0 1 1
x2 0 1 0 1
y 1 1 1 0

-
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The input patterns (vectors) belong to two classes and are marked in the input space (the plane (x1, x2) )
with 4 and �, respectively. The decision plane is the straight line described by the following equation

x1 + x2 = 1.5 or − x1 − x2 + 1.5 = 0

In order for the weight vector to point in the direction of y = 1 patterns we select it as:

w =
[
−1 −1 1.5

]

For each input vector the output signal is
now calculated as

v̂ =
[
−1 −1 1.5

]


x1

x2

1

 ; y =

 0 if v̂ < 0

1 if v̂ ≥ 0

v̂

��
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y@ @ @

x1 x2 1

−1 −1 1.5
-

Verify that such a perceptron does
implement a two-input NAND gate.
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2.4 The Perceptron learning law

• Learning is a recursive procedure of modifying weights from a given set of input-output patterns.

• For a single perceptron, the objective of the learning (encoding) procedure is to find the decision plane,
(that is, the related weight vector), which separates two classes of given input-output training
vectors.

• Once the learning is finalised, every input vector will be classified into an appropriate class.

• A single perceptron can classify only the linearly separable patterns.

• The perceptron learning procedure is an example of a supervised error-correcting learning law.

-
x(n)

w(n) ����

����

-
v̂(n)

-
y(n)s s

Learning-

�
�
�

�
��

?
−

�
d(n)

�
ε(n)

Figure 2–2: Error-Correcting, Supervised Learning in perceptron
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More specifically, the supervised learning procedure can be described as follows

• given the set of N training patterns consisting of input signals x(n) and the related desired output
signals, d(n):

x(n) =


x1(n)

...
xp−1(n)

1

 , d(n) , for n = 1, 2, . . . , N

• obtain the correct decision plane specified by the weight vector w.

• The training patterns are arranged in a training set which consists of a p×N input matrix, X , and an
N -element output vector, D:

X =



x1(1) x1(2) · · · x1(N)
x2(1) x2(2) · · · x2(N)

... ... ...
xp−1(1) xp−1(2) · · · xp−1(N)

1 1 · · · 1


D =

[
d(1) d(2) · · · d(N)

]

• We can assume that an untrained perceptron can generate an incorrect output y(n) 6= d(n) due to
incorrect values of weights.

• We can think about the actual output y(n) as an “estimate” of the correct, desired output d(n).
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The perceptron learning law proposed by Rosenblatt in 1959 can be described as follows:

1. weights are initially set to “small” random values

w(0) = rand

2. for n = 1, 2, . . . , N training input vectors, x(n), are presented to the perceptron and the actual
output y(n), is compared with the desired output, d(n), and the error ε(n) is calculated as follows

y(n) = σ(w(n) · x(n)) , ε(n) = d(n)− y(n)

Note that because
d(n), y(n) ∈ {0, 1}, then ε(n) ∈ {−1, 0, +1}

3. at each step, the weights are adapted as follows

w(n + 1) = w(n) + η ε(n)x(n) (2.3)

where 0 < η < 1 is a learning parameter (gain), which controls the adaptation rate. The gain must be
adjusted to ensure the convergence of the algorithm.

Note that the weight update

∆w = η ε(n)x(n) (2.4)

is zero if the error ε(n) = 0.
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The tabular form of the weight updates:

∆w = η ε(n)x(n)

d(n) y(n) ε(n) ∆w(n)

0 0 0 0
1 1 0 0
0 1 −1 −η x(n)

1 0 +1 +η x(n)

Geometric interpretation of the perceptron
learning law:
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• Identify a current weight vector, w(n), the next weight
vector, w(n + 1), and the correct weight vector, w∗.

• Related decision planes are orthogonal to these vectors and
are depicted as straight lines.

• During the learning process the current weight vector
w(n) is modified in the direction of the current input vector
x(n), if the input pattern is misclassified, that is, if the error
is non-zero.
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• Presenting the perceptron with enough training vectors, the weight vector w(n) will tend to the correct
value w∗.

• Rosenblatt proved that if input patterns are linearly separable, then the perceptron learning law
converges, and the hyperplane separating two classes of input patterns can be determined.

• The structure of the perceptron and its learning law are presented in the following block-diagram
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Figure 2–3: The structure of a perceptron with its learning part.

• Note the decoding part of the perceptron is a static, feedforward system, whereas the encoding part
is a discrete-time dynamic system described by the difference equation (2.3).
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2.5 Implementation of the perceptron learning law in MATLAB — Example

The following numerical example demonstrates the perceptron learning law. In the example we will
demonstrate three main steps typical to most of the neural network applications, namely:

Preparation of the training patterns. Normally, the training patterns are specific to the particular
application.

In our example we generate a set of vectors and partition this set with a plane into two linearly
separable classes.

The set of vectors is split into two halves, one used as a training set, the other as a validation set.

Learning. Using the training set, we apply the perceptron learning law as described in sec. 2.4

Validation. Using the validation set we verify the quality of the learning process.

Calculations are performed in MATLAB.
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Description of a demo script perc.m

p = 5; % dimensionality of the augmented input space
N = 50; % number of training patterns — size of the training epoch

PART 1: Generation of the training and validation sets

X = 2*rand(p-1,2*N)-1; % a (p− 1)× 2N matrix of uniformly distributed random numbers
from the interval [−1, +1]

nn = randperm(2*N); nn = nn(1:N); % generation of N random integer numbers from
the range [1..2N ].

X(:,nn) = sin(X(:,nn)); % Columns of the matrix X pointed to by nn are ”coloured” with
the function ‘sin’, in order to make the training patterns more interesting.

X = [X; ones(1,2*N)]; % Each input vector is appended with a constant 1 to implement biasing.

The resulting matrix of input patterns, X , may be of the following form:

X = -0.02 0.83 -0.72 . . . -0.68 -0.04
0.33 0.73 -0.10 . . . 0.45 -0.09
0.36 0.78 0.98 . . . -0.41 0.04

-0.57 0.09 -0.57 . . . -0.90 -0.11
1.00 1.00 1.00 . . . 1.00 1.00

where only the three initial and two final columns of the matrix X are shown.

A.P. Papliński 2–15
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Specification of an arbitrary separation plane in the augmented input space:
wht = 3*rand(1,p)-1; wht = wht/norm(wht); % This is a unity length vector orthogonal

to the augmented separation plane. It is also the target weight vector.
The result may be of the form:

wht = 0.38 0.66 -0.14 0.61 0.14

D = (wht*X >= 0); % Classification of every point from the input space with respect to the class
number, 0 or 1. The three initial and two terminal values of the output vector may be of the
following form:

D = 0 1 1 ... 0 0

Xv = X(:, N+1:2*N) ; % The validation set: Xv is p×N

Dv = D(:, N+1:2*N) ; % Dv is 1×N X = X(:, 1:N) ; % The training set: X is p×N

D = D(:, 1:N) ; % D is 1×N

Visualisation of the input-output patterns.

The input space is p-dimensional, hence difficult to visualise.
We will plot projections of input patterns on a 2-D plane, say (x1 − x3) plane.
The projection is performed by extracting rows specified in pr from the X and D matrices.

pr = [1, 3]; Xp = X(pr, :);
wp = wht([pr p]); % projection of the weight vector
c0 = find(D==0); c1 = find(D==1); % c0 and c1 are vectors of indices to input patterns

X belonging to the class 0 or 1, respectively.
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figure(1), clf reset
plot(Xp(1,c0),Xp(2,c0),’o’,Xp(1,c1),Xp(2,c1),’x’) % The input patterns are

plotted on the selected projection plane.
Patterns belonging to the class 0, or 1 are marked with ’o’, or ’x’, respectively.

Setting up the plot and freezing its axes:

axis(axis), axis(’square’)
title(’Projection of the input space and a decision plane’)
xlabel([’x_’, num2str(pr(1))])
ylabel([’x_’, num2str(pr(2))])
hold on

Superimposition of the projection of the separation plane on the plot. The projection is a straight line:

x1 · w1 + x3 · w3 + w5 = 0

To plot this line we need at least two points. However, in order to account for all possible situations we will
use four co-linear points which are intersections with the four lines limiting the square as presented in sec.
2.7.

L = [-1 1] ;
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)]), grid, drawnow % plotting the line

The relevant plot is in Figure 2–5.

A.P. Papliński 2–17
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PART 2: Learning

• The training input-output patterns are stored in matrices X (p×N) and D (1×N).

• We will start the learning/training process with a randomly selected weight vector (thus related
separation/decision plane).

• During training procedure the weight vector should converge to the weight vector specifying the
correct separation plane.

eta = 0.5; % The training gain.
wh = 2*rand(1,p)-1; % Random initialisation of the weight vector with values from

the range [−1, +1]. An example of an initial weight vector follows
wh = 0.36 -0.34 -0.89 0.97 0.08

Projection of the initial decision plane which is orthogonal to wh is plotted as previously:
wp = wh([pr p]); % projection of the weight vector
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)]), grid on, drawnow

• In what follows, the internal loop controlled by the variable n goes through N training exemplars (one
epoch).

• The loop is repeated until the performance index (error) E is small but not more than C times (C
epochs).

• The projection of the current decision surface is plotted after the previous projection has been erased.
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C = 50; % Maximum number of training epochs
E = [C+1, zeros(1,C)]; % Initialization of the vector of the total sums of squared errors

over an epoch.
WW = zeros(C*N,p); % The matrix WW will store all weight vectors wh, one weight vector

per row of the matrix WW
c = 1 ; % c is an epoch counter
cw = 0 ; % cw total counter of weight updates
while (E(c)>1)|(c==1)

c = c+1 ;
plot([S(1,:) L], [L S(2,:)], ’w’) % At the beginning of each internal loop

the former projection of the decision plane is erased (option ’w’)
for n = 1:N % The internal loop goes once through all training exemplars.
eps = D(n) - ((wh*X(:,n)) >= 0); % ε(n) = d(n)− y(n)

wh =wh+eta*eps*X(:,n)’; % The Perceptron Learning Law
cw=cw+1;
WW(cw,:)=wh/norm(wh); % The updated and normalised weight vector is stored in WW

for feature plotting
E(c)=E(c)+abs(eps); % |ε| = ε2

end;
wp=wh([pr p]); % projection of the weight vector
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)], ’g’), drawnow

end;
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After every pass through the set of training patterns, the projection of the current decision plane, which is
determined by the current weight vector, is plotted after the previous projection has been erased.

WW = WW(1:cw, pr);
E = E(2:c+1)

An example of the performance index E and the final value of the weight vector is as follows:
E = 10 6 4 3 1 0
wt = 0.29 0.73 –0.18 0.61 0.14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Projection of the input space and a decision plane

x
1

x 3

Figure 2–4: Projection of the input space onto a 2–D plane.
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Validation

• The final decision (separation) planes differs slightly from the correct one.

• Therefore, if we use input signals from the validation set which were not used in training, it may be
expected that some patterns will be misclassified and the following total sum of squared errors will be
non-zero.

Ev = sum(abs(Dv - (wh*Xv >= 0))’)

The values of Ev over many training sessions were between 0 and 5 (out of N = 50).
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2.6 A modified perceptron learning rule

• In the basic version of the perceptron learning rule, the weight update occurs for each input vector,
x(n), which generates output, y(n), different from desired d(n), that is, when the error ε(n) is
non-zero.

• In the modified version of the perceptron learning rule, in addition to misclassification, the input vector
x(n) must be located far enough from the decision surface, or, alternatively, the net activation potential
v̂(n) must exceed a preset margin, vT .

• The reason for adding such a condition is to avoid an erroneous classification decision in a situation
when v̂(n) is very small, and due to presence of noise, the sign of v̂(n) cannot be reliably established.

• The modified perceptron learning rule can be illustrated in the following tabular and graphical forms:

d(n) y(n) ε(n) v̂(n) update if ∆w(n)

0 0 0 v < 0 — 0
1 1 0 v ≥ 0 — 0
0 1 −1 v ≥ 0 v > vT −ηx(n)

1 0 +1 v ≥ 0 v < −vT +ηx(n)
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d = 0; ε = 0, ∆w = 0
d = 1; ε = +1, ∆w = ηx

∆w = 0
d = 0; ε = −1, ∆w = −ηx
d = 1; ε = 0, ∆w = 0

-

6

−vT 0 vT

1
y(n)

v̂(n)

The additional update condition: |v̂(n)| > vT (2.5)

can be re-written as |w(n) · x(n)| > vT

Knowing that the absolute value of the inner product can be expressed as:

|w · x| = ‖w‖ · | ‖x‖ · cos α| = ‖w‖ · |x̂w|
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where ‖.‖ denotes the length (norm) of the vector, and xw = ‖x‖ · cos α

is the projection of the input vector, x on the weight vector, w.

The additional update condition (2.5) can be now written as ‖w‖ · |xw| > vT or as |xw| >
vT

‖w‖

The condition says that in order the update to occur the
current input vector, x̂ must lie outside the 2vT/‖ŵ(n)‖
strip surrounding the decision plane, as illustrated for the
2–D case in the following figure:
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2.7 Intersection of a cube by a plane. A 2-D case.

Consider a straight line described by the following equation w · x = 0 (2.6)

where w = [w1 w2 w3] ; x = [x1 x2 1]T

Given a square limited by the following four edge lines:
x1 = l11 ; x1 = l12

x2 = l21 ; x2 = l22

we would like to calculate all four intersection points of the square edges by the straight line:

l22

l11 l12

l21

x1

x2

0

21

11

22

12

s

s

s

s

Figure 2–5: A straight line intersecting a square
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The coordinates of the four intersection points can be arranged as follows:

x1 l11 l12 s11 s12

x2 s21 s22 l21 l22
(2.7)

For each column of table (2.7) we can write eqn (2.6) as

[w1 w2] ·
 s11

l21

 = −w3 , [w1 w2] ·
 s12

l22

 = −w3

[w1 w2] ·
 l11

s21

 = −w3 , [w1 w2] ·
 l12

s22

 = −w3

Grouping the unknown sij on the left-hand side we have

w1[s11 s12] = −w2[l21 l22]− w3[1 1]

w2[s21 s22] = −w1[l11 l12]− w3[1 1]

or in a matrix form

S = −
 1/w1 0

0 1/w2

 (

 w2 0

0 w1

 L + w3

 1 1

1 1

) (2.8)

where

S =

 s11 s12

s21 s22

 ; L =

 l21 l22

l11 l12

 ;
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2.8 Design Constraints for a Multi-Layer Perceptron

In this section we consider a design procedure for implementation of combinational (logic) circuits using a
multi-layer perceptron. In such a context, the perceptron is also referred to as a Linear Threshold Gate
(LTG).

Consider a single-hidden-layer perceptron as in Figure 2–6 described by the following equations

- W h -��
��
σx o o

p−1 p
�
1

o
L−1

ho o
L−1 L

�
1

- W y -��
��

-σo o
m m

y

Figure 2–6: A multi-layer perceptron

h = σ

W h ·
 x

1


 , y = σ

W y ·
 h

1


 (2.9)

where

σ(x) =

 0 for x ≤ 0

1 for x > 0
is a step function (a hard limiter).

Note that the step function has been shifted so that for a binary signal

x ∈ {0, 1} , σ(x) = x

x = [x1 . . . xp−1]
T is a (p−1)–element input vector,
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h = [h1 . . . hL−1]
T is an (L−1)–element hidden vector,

y = [y1 . . . ym]T is an m-element output vector,

W h is an (L−1)×p hidden weight matrix, and

W y is an m× L output weight matrix.

The input and hidden signals are augmented with constants:

xp = 1 , and hL = 1

The total number of adjustable weights is

nw = (L− 1)p + m · L = L(p + m)− p (2.10)

Design Procedure

Assume that we are given the set of N points
 X

Y

 =

 x(1) . . . x(N)

y(1) . . . y(N)

 (2.11)

to be mapped by the perceptron so that

y(n) = f (x(n)) ∀n = 1, . . . , N. (2.12)
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Combining eqns (2.9), (2.11), and (2.12) we obtain a set of design constraints (equations) which must be
satisfied by the perceptron in order for the required mapping to be achieved:

σ
([

W y
:,1:L−1 · σ

([
W h

:,1:p−1 ·X
]
⊕c W h

:,p

)]
⊕c W h

:,L

)
= Y (2.13)

where

M ⊕c c
def
= M + (1⊗ c)

describe addition of a column vector c to every column of the matrix M (⊗ denotes the Kronecker
product, and 1 is a row vector of ones). Eqn (2.13) can be re-written as a set of N individual constraints,
one for each output, y(n) where n = 1, . . . N .

For a binary case, the eqn (2.11) represent a truth table of m Boolean functions of (p− 1) variables. The
size of this table is

N = 2p−1

The constraints (2.13) can now be simplify to[
W y

:,1:L−1 · σ
([

W h
:,1:p−1 ·X

]
⊕c W h

:,p

)]
⊕c W h

:,L = Y (2.14)
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Conjecture 1 Under appropriate assumptions the necessary condition for a solution to the design problem
as in eqn (2.13) or (2.14) to exist is that the number of weights must be greater that the of points to be
mapped, that is,

L(p + m)− p > N

Hence, the number of hidden signals

L >
N + p

p + m
(2.15)

For a single output (m = 1) binary mapping when N = 2p−1 eqn (2.15) becomes

L >
2p−1 + p

p + 1
(2.16)

Once the structural parameters p, L, m are known the weight matrices Wh, Wy that satisfy the constraint
equation (2.13), or (2.14) can be selected.
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Example

Consider the XOR function for which
 X

Y

 =


0 1 0 1

0 0 1 1

0 1 1 0

 , p = 3 , N = 2p−1 = 4 (2.17)

From eqn (2.16) we can estimate that

L >
N + p

p + 1
, Let L = 3

The dendritic structure of the resulting two-layer perceptron is depicted in Figure 2–7.
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x1 x2 1
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w21 w22 w23

ĥ1

ĥ2
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�
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v1 v2 v3

-
yŷ

Figure 2–7: A dendritic diagram of a two-layer perceptron which implements the XOR function

A known combination of weights which implements the XOR function specified in eqn (2.17) can be
obtained from the following plots in the input and hidden spaces presented in Figure 2–8.
Equations of the straight lines illustrated in Figure 2–8 and related equations for activation potentials
(“hat” signals) for all individual perceptrons are as follows
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Figure 2–8: A possible configuration of the input and hidden spaces for the XOR perceptron

equations of lines: activation signals:

x1 + x2 = 0.5 =⇒ ĥ1 = x1 + x2 − 0.5

x1 + x2 = 1.5 =⇒ ĥ2 = −x1 − x2 + 1.5

h1 + h2 = 1.5 =⇒ ŷ = h1 + h2 − 1.5

From the above equations the weight matrices can be assembled
as follows

W h =

 1 1 −0.5

−1 −1 1.5

 , W y = v =
[
1 1 −1.5

]
(2.18)

Note that:

 X

H

 =



0 1 0 1

0 0 1 1

0 1 1 1

1 1 1 0


(2.19)
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Constraint Equations for the XOR perceptron

In order to calculate other combinations of weights for the XOR perceptron we can re-write the constraint
equation (2.14) using the structure as in Figure ??. The result is as follows

[
v1 v2

]
· σ


 w11 w12

w21 w22

 ·
 0 1 0 1

0 0 1 1

 ⊕c

 w13

w23


 + v3 =

[
0 1 1 0

]
(2.20)

Eqn (2.20) is equivalent to the following four scalar equations, the total number of weights to be selected
being 9.

v1 · σ(w13) + v2 · σ(w23) + v3 = 0

v1 · σ(w11 + w13) + v2 · σ(w21 + w23) + v3 = 1

v1 · σ(w12 + w13) + v2 · σ(w22 + w23) + v3 = 1

v1 · σ(w11 + w12 + w13) + v2 · σ(w21 + w22 + w23) + v3 = 0

It can easily be verified that the weights specified in eqn (2.18) satisfy the above constraints.
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