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4 Feedforward Multilayer Neural Networks — part I

• Feedforward multilayer neural networks (introduced in sec. 1.7) with supervised error correcting
learning are used toapproximate (synthesise) a non-linear input-output mapping from a set of
training patterns.

Consider the following mappingf (X)

from ap-dimensional domainX into an
m-dimensional output spaceD:

R
p

F(W, X)

Y

D

X

f(X) R
m

Figure 4–1:Mapping from ap-dimensional domain into anm-dimensional output space

• A function: f : X → D , or d = f (x) ; x ∈ X ⊂ Rp , d ∈ D ⊂ Rm

is assumed to be unknown, but it is specified by a set of training examples,{X ;D}.

• This function is approximated by a fixed, parameterised function (a neural network)

F : Rp ×RM → Rm , or y = F (W,x); x ∈ Rp, d ∈ Rm, W ∈ RM

• Approximation is performed in such a way that someperformance index, J , typically a function of
errors betweenD andY ,

J = J(W, ‖D − Y ‖) is minimised.
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Basic types of NETWORKS for APPROXIMATION:

• Linear Networks — Adaline
F (W,x) = W · x

• “Classical” approximation schemes.Consider a set of suitablebasis functions {φ}ni=1 then

F (W,x) =
n∑
i=1
wiφi(x)

Popular examples: power series, trigonometric series, splines, Radial Basis Functions.

The Radial Basis Functions guarantee, under certain conditions, an optimal solution of the
approximation problem.

• A special case:Gaussian Radial Basis Functions:

φi(x) = exp

−1

2
(x− ti)

TΣ−1
i (x− ti)

 where ti and Σi are the centre and
covariance matrix of thei-th RBF.

• Multilayer Perceptrons — Feedforward neural networks

Each layer of the network is characterised by its matrix of parameters, and the network performs
composition of nonlinear operations as follows:

F (W,x) = σ(W1 · . . . σ(Wl · x) . . .)

A feedforward neural network with two layers (one hidden and one output) is very commonly used to
approximate unknown mappings.

If the output layer is linear, such a network may have a structure similar to an RBF network.
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4.1 Multilayer perceptrons (MLPs)

• Multilayer perceptrons are commonly used to approximate complex nonlinear mappings.

• In general, it is possible to show that two layers are sufficient to approximate any nonlinear function.

• Therefore, we restrict our considerations to such two-layer networks.

• The structure of the decoding part of the two-layer back-propagation network is presented in
Figure (4–2).
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Figure 4–2: A block-diagram of a single-hidden-layer feedforward neural network

• The structure of each layer has been discussed in sec. 1.6.

• Nonlinear functions used in the hidden layer and in the output layer can be different.

• The output function can be linear.

• There are two weight matrices: anL× p matrix W h in the hidden layer, and anm× L matrix W y

in the output layer.
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• The working of the network can be described in the following way:

u(n) = W h · x(n) ; h(n) = ψ(u(n)) — hidden signals;

v(n) = W y · h(n) ; y(n) = σ(v(n)) — output signals.

or simply as

y(n) = σ
(
W y ·ψ(W h · x(n))

)
(4.1)

• Typically, sigmoidal functions (hyperbolic tangents) are used, but other choices are also possible.

• The important condition from the point of view of the learning law is for the function to be
differentiable.

• Typical non-linear functions and their derivatives used in multi-layer perceptrons:

Sigmoidal unipolar:

y = σ(v) =
1

1 + e−βv
=

1

2
(tanh(βv/2)− 1)

y
1

0

v

The derivative of the unipolar sigmoidal function:

y′ =
dσ

dv
= β

e−βv

(1 + e−βv)2
= β y(1− y)
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Sigmoidal bipolar:

σ(v) = tanh(βv)

y
1

0
-1

v

The derivative of the bipolar sigmoidal function:

y′ =
dσ

dv
=

4βe2βv

(e2βv + 1)2
= β(1− y2)

Note that

• Derivatives of the sigmoidal functions are always non-negative.

• Derivatives can be calculated directly from output signals using simple arithmetic operations.

• In saturation, for big values of the activation potential,v, derivatives are close to zero.

• Derivatives of used in the error-correction learning law.
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Comments on multi-layer linear networks

Multi-layer feedforwardlinear neural networks can be always replaced by an equivalent single-layer
network. Consider a linear network consisting of two layers:

- W hx op - W yho
L

-
y

om

The hidden and output signals in the network can be calculated as follows:

h = W h · x , y = W y · h

After substitution we have:

y = W y ·W h · x = W · x

where

W = W y ·W h

which is equivalent to a single-layer network described by the weight matrix,W :

- W
x op -

y
om
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4.2 Detailed structure of a Two-Layer Perceptron — the most commonly used feedforward neural network

Signal-flow diagram:
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Figure 4–3:Various representations of a Two-Layer Perceptron
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4.3 Example of function approximation with a two-layer perceptron

Consider a single-variable function approximated
by the following two-layer perceptron:

y
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Function approximation with a two−layer perceptron
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The neural net generates the following function:

y = w · h = w · tanh

Wh ·
 x

1


 = w1 · h1 + w2 · h2 + w3 · h3

= w1 · tanh(w11 · x + w12) + w2 · tanh(w21 · x + w22) + w3 · tanh(w31 · x + w32)

= 0.5 · tanh(2x− 1) + 0.1 · tanh(3x− 4)− 0.3 · tanh(0.75x− 2)

4–8



Neuro-Fuzzy Comp. — Ch. 4 March 24, 2005

4.4 Structure of a Gaussian Radial Basis Functions (RBF) Neural Network

An RBF neural network is similar to a two-layer perceptron:
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Let us consider a single output case, that is,
approximation of a single function ofp variables:

y = F (x; t1, . . . , tL,Σ1, . . . ,ΣL,w)

=
L∑
l=1
wl · exp(−1

2
(x− tl)

TΣ−1
l (x− tl)

where

tl, p-element vectors, are the centers of the
Gaussian functions, and

Σl, p× p covariance matrices, specified a shape of
the Gaussian functions

When the covariance matrix is diagonal, the axes of the Gaussian shape are aligned with the coordinate
system axes.
If, in addition, all diagonal elements are identical, the Gaussian function is symmetrical in all directions.
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4.5 Example of function approximation with a Gaussian RBF network

Consider a single-variable function approximated
by the following Gaussian RBF network:
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The neural net generates the following function:

y = w · h = w1 · h1 + w2 · h2 + w3 · h3

= w1 · exp(−1

2

x− t1
σ1

2

) + w2 · exp(−1

2

x− t2
σ2

2

) + w3 · exp(−1

2

x− t3
σ3

2

)
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4.6 Error-Correcting Learning Algorithms for Feedforward Neural Networks

Error-correcting learning algorithms aresupervisedtraining
algorithms that modify the parameters of the network in such a way to
minimise that error between the desired and actual outputs.

The vectorw represents all the adjustable parameters of the network.
ε

w  w = w  +

x; wF( )=y
x y

d
∆

• Training data consists ofN p-dimensional vectorsx(n), and N m-dimensional desired output
vectors,d(n), that are organized in two matrices:

X = [ x(1) . . . x(n) . . . x(N) ] is p×N matrix,
D = [ d(1) . . . d(n) . . . d(N) ] is m×N matrix

• For each input vector,x(n), the network calculates the actual output vector,y(n), as

y(n) = F (x(n);w(n))

• The output vector is compared with the desired outputd(n) and the error is calculated:

ε(n) = [ε1(n) . . . εm(n)]T = d(n)− y(n) is an m× 1 vector, (4.2)

• In a pattern training algorithm, at each step the weight vector is updated

w(n + 1) = w(n) + ∆w(n)

so that the total error is minimised.

4–11

Neuro-Fuzzy Comp. — Ch. 4 March 24, 2005

• More specifically, we try to minimise aperformance index, typically themean-squared error, J(w)

specified as an averaged sum of instantaneous squared errors at the network output:

J(w) =
1

mN

N∑
n=1

E(w(n)) (4.3)

where thetotal instantaneous squared error, E(w, n), is defined as

E(w(n)) =
1

2

m∑
k=1

ε2
k(n) =

1

2
εT (n) · ε(n) (4.4)

• To consider possible minimization algorithm we can expandJ(w) into the Taylor power series:

J(w(n + 1)) = J(w + ∆w) = J(w) + ∆w · ∇J(w) +
1

2
∆w · ∇2J(w) ·∆wT + · · ·

= J(w) + ∆w · g(w) +
1

2
∆w ·H(w) ·∆wT + · · · (4.5)

(n) has been omitted for brevity.

where: ∇J(w) = g is the gradient vector of the performance index,

∇2J(w) = H is the Hessian matrix (matrix of second derivatives).
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• As for the Adaline, we infer that in order for the performance index to be reduced, that is

J(w + ∆w) < J(w)

the following condition must be satisfied:

∆w · ∇J(w) < 0

where the higher order terms in the expansion (4.5) have been ignored.

• This condition describes thesteepest descent methodin which the weight vector is modified in the
direction opposite to the gradient vector:

∆w = −η∇J(w)

• However, the gradient of the total error is equal to the sum of its components:

∇J(w) =
1

mN

N∑
n=1

∇E(w(n)) (4.6)

• Therefore, in the pattern training, at each step the weight vector can be modified in the direction
opposite to thegradient of the instantaneous error:

∆w(n) = −η∇E(w(n))
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• Thegradient of the instantaneous erroris aK-component vector, whereK is the total number of
weights:

∇E(w) =

 ∂E
∂w1

· · · ∂E
∂wK


(n) has been omitted for brevity.

• Using eqns (4.4) and (4.2) we have

∇E(w) = εT · ∂ε
∂w

= −εT · ∂y
∂w

= −εT · ∂F (x;w)

∂w

where
∂y

∂w
=

 ∂yj∂wk


m×K

is a m×K matrix of all derivatives
∂yj
∂wk

.

• Details of calculations of the gradient of the instantaneous error will be different for a specific type of
neural nets. We start with a two-layer perceptron.
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4.7 Backpropagation learning algorithm for a Multi-layer perceptron

• The backpropagation learning algorithm is the simplest error-correcting algorithms for a multi-layer
perceptron.

• For simplicity we will derive it for a two-layer perceptron as in Figure 4–3.

• In this case, the parameters vector has the following structure:

w = scan(W h,W y) = [wh
11 . . . w

h
1p . . . w

h
Lp︸ ︷︷ ︸

hidden weights

|wy
11 . . . w

y
1L . . . w

y
mL︸ ︷︷ ︸

output weights

]

The size ofw is K = L(p +m).

• The instantaneous gradient has components associated with the hidden layer weights,W h, and the
output layer weights,W y, and can be arranged in the following way:

∇E(w(n)) =

 ∂E
∂wh

11

· · · ∂E
∂wh

ji

· · · ∂E
∂wh

Lp

∂E

∂wy
11

· · · ∂E
∂wy

kj

· · · ∂E

∂wy
mL



• We will calculate first a component of the instantaneous gradient vector with respect to anoutput
weight, wy

kj, and then with respect to ahidden weight, wh
ji.
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• The basic signal flow referred to in the above calculations is as follows:
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�
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�
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�
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�
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� d1

dk
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ε1

εk

εm

• Good to remember

E =
1

2

m∑
k=1

ε2
k , εk = dk − yk

yk = σ(W y
k: · h) = σ(

L∑
j=1

wy
kj · hj)

hj = σ(W h
j: · x) = σ(

p∑
i=1
wy
ji · xi)
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4.7.1 The output layer

The gradient component related to a
synaptic weightwy

kj for then–th
training vector can be calculated as
follows:

where thedelta error , δk, is the output
error,εk, modified with thederivative of
the activation function, σ′k.

∂E(n)

∂wy
kj

= −εk
∂yk
∂wy

kj

E = 1
2(. . . + ε2

k + . . .) , yk = σ(vk)

= −εk
∂yk
∂vk

∂vk
∂wy

kj

vk = W y
k: · h = . . . + wy

kjhj + . . .

= −εk · σ′k · hj σ′k =
∂yk
∂vk

= −δk · hj δk = εk · σ′k

Alternatively, the gradient components related to
the complete weight vector,W y

k: of thekth output
neuron can be calculated as:

In the above expression, each component of the
gradient is a function of the delta error for the
k–th output,δk, and respective output signal from
the hidden layer,hT = [h1 . . . hL].

∂E(n)

∂W y
k:

= −εk
∂yk
∂W y

k:

yk = σ(vk)

= −εk
∂yk
∂vk

∂vk
∂W y

k:

vk = W y
k: · h

= −εk · σ′k · hT

= −δk · hT
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Finally, the gradient components related to the
complete weight matrix of the output layer,W y,
can be collected in anm× L matrix, as follows:

where

and ‘�’ denotes an ‘element-by-element’
multiplication, and
the hidden signals are calculated as follows:

∂E(n)

∂W y
= −δ(n) · hT (n) (4.7)

δ =


δ1
...
δm

 =


ε1 · σ′1

...
εm · σ′m

 = ε� σ′ , (4.8)

h(n) = ψ(W h(n) · x(n))

Hence, in the Least-Mean-Squared (LMS)pattern training algorithm for minimisation of the performance
index the weight update for the output layer, based on then–th training pattern, can be written as:

∆W y(n) = −ηy
∂E(n)

∂W y(n)
= ηy · δ(n) · hT (n) (4.9)

that is, the weight modification should be proportional to theouter product of the vector of the modified
output error,δ, and the vector of the input signals to the output layer (hidden signals),h:

W y(n + 1) = W y(n) + ηy · δ(n) · hT (n) (4.10)

Note that the modified output errorδ is a product of the output errorsε and the vector of derivatives:

σ′ =

 ∂y1

∂v1
. . .

∂ym
∂vm

T
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In thebatch training mode the gradient of the total performance index,J(W h,W y), related to the output
weight matrix,W y, can be obtained by summing the instantaneous gradients:

∂J

∂W y
=

1

mN

N∑
n=1

∂E(n)

∂W y(n)
= − 1

mN

N∑
n=1
δ(n) · hT (n) (4.11)

If we take into account that the sum of outer products can be replaced by a product of matrices collecting
the contributing vectors, then the gradient can be written as:

∂J

∂W y
= − 1

mN
S ·HT (4.12)

where S is them×N matrix of output delta errors: S = [δ(1) . . . δ(N)] (4.13)

andH is theL×N matrix of the hidden signals: H = ψ(W h ·X)

In thebatch training steepest descent algorithm, the weight update afterk-th epoch can be written as:

∆W y(k) = −η̂y
∂J

∂W y
= ηy · S ·HT (4.14)

or simply:

W y(k + 1) = W y(k) + ηy · S ·HT (4.15)
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4.7.2 The hidden layer

• Calculations of the gradient components related to the weight matrix of the hidden layer are slightly
more complicated, mainly, because we have toback-propagate error from the output layer to the
hidden layer.

• We will demonstrate that by back-propagating the output error to the hidden layer it is possible to
obtain a similar update rule for the hidden weight matrix.

• Firstly, we calculate the gradient component related to a single weight of the hidden layer,wh
ji, adding

up error contributions from all output neurons as in figure in page 4–16.

∂E(n)

∂wh
ji

= −
m∑
k=1

εk
∂yk
∂wh

ji

yk = σ(vk)

= −
m∑
k=1

εk
∂yk
∂vk

∂vk
∂wh

ji

vk = . . . + wy
kjhj + . . .

= −(
m∑
k=1

δk w
y
kj)

∂hj
∂wh

ji

δk = εk · σ′k

= −W yT
:j δ

∂hj
∂wh

ji

W yT
:j δ = δTW y

:j =
m∑
k=1

δk w
y
kj = εhj
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• Note, that thej–th column of the output weight matrix,W y
:j, is used to modify the delta errors to create

theequivalent hidden layer errors, known asback-propagated errorswhich are specified as
follows:

εhj = W yT
:j · δ , for j = 1, . . . , L

• Using the back-propagated error, we can now repeat the steps performed for the output layer, withεhj
andhj replacingεk andyk, respectively.

∂E(n)

∂wh
ji

= − εhj
∂hj
∂wh

ji

hj = ψ(uj) , uj = W h
j: · x

= − εhj · ψ′j · xi ψ′j =
∂ψj
∂uj

= − δhj · xi δhj = εhj · ψ′j

where the back-propagated error has been used to generate the delta-error for the hidden layer,δhj .
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• All gradient components related to the hidden weight matrix,W h, can now be calculated in a way
similar to that for the output layer as in eqn (4.7):

∂E(n)

∂W h
= − δh · xT (4.16)

where δh =


εh1 · ψ′1

...
εhL · ψ′L

 = εh �ψ′ (4.17)

and the back-propagated (hidden) error εy = W yT · δ .

• For thepattern training algorithm, the update of the hidden weight matrix for then–the training
pattern now becomes:

∆W h(n) = −ηh
∂En

∂W h(n)
= ηh · δh · xT (4.18)

• It is interesting to note that the weight update rule is identical in its form for both the output and
hidden layers, that is,

W h(n + 1) = W h(n) + ηh · δh(n) · xT (n) (4.19)
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• For thebatch training , the gradient of the total performance index,J(W h,W y), related to the hidden
weight matrix,W h, can be obtained by summing the instantaneous gradients:

∂J

∂W h
=

1

mN

N∑
n=1

∂E(n)

∂W h(n)
= − 1

mN

N∑
n=1
δh(n) · xT (n) (4.20)

• If we take into account that the sum of outer products can be replaced by a product of matrices
collecting the contributing vectors, then we finally have

∂J

∂W y
= − 1

mN
Sh ·XT (4.21)

where Sh is theL×N matrix of hidden delta errors: Sh =
[
δh(1) . . . δh(N)

]
(4.22)

and X is thep×N matrix of the input signals.

• In thebatch training steepest descent algorithm, the weight update afterk-th epoch can be written as:

∆W h(k) = −ηh
∂J

∂W h
= ηh · Sh ·XT (4.23)

or simply:

W h(k + 1) = W h(k) + ηh · Sh ·XT (4.24)
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• The structure of the two-layer back-propagation network with learning:
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ηyδ hT

Figure 4–4:The structure of the decoding and encoding parts of the two-layer back-propagation network.

• Note the decoding and encoding parts, and the blocks which calculate derivatives, delta signals and the
weight update signals.

• The process of computing the signals (pattern mode) during each time step consists of the:

forward pass in which the signals of the decoding part are determined starting fromx, throughu,h,
ψ′, v to y andσ′.

backward passin which the signals of the learning part are determined starting fromd, throughε, δ,
∆W y, εh, δh and∆W h.

• From Figure 4–4 and the relevant equations note that, in general, the weight update is proportional to
the synaptic input signals (x, orh) and the delta signals (δh, or δ).

• The delta signals, in turn, are proportional to the derivatives the activation functions,ψ′, orσ′.
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Comments on Learning Algorithms for Multi-Layer Perceptrons.

• The process of training a neural network is monitored by observing the value of the performance
index,J(W (n)), typically the mean-squared error as defined in eqns (4.3) and (4.4).

• In order to reduce the value of this error function, it is typically necessary to go through the set of
training patterns (epochs) a number of times as discussed in page 3–21.

• There are two basic modes of updating weights:

– thepattern mode in which weights are updated after the presentation of a single training pattern,

– thebatch mode in which weights are updated after each epoch.

• For the basicsteepest descent backpropagationalgorithm the relevant equations are:

pattern mode

W y(n + 1) = W y(n) + ηy · δ(n) · hT (n)

W h(n + 1) = W h(n) + ηh · δh(n) · xT (n)

wheren is the pattern index.

batch mode

W y(k + 1) = W y(k) + ηy · S(k) ·HT (k)

W h(k + 1) = W h(k) + ηh · Sh(k) ·XT (k)

wherek is the epoch counter. Definitions of the other variable have been already given.
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• Weight Initialisation

The weight are initialised in one of the following ways:

– using prior information if available. The Nguyen-Widrow algorithm presented below is a good
example of such initialisation.

– to small uniformly distributed random numbers.

Incorrectly initialised weights cause that the activation potentials may become large which saturates
the neurons. In saturation, derivativesσ′ = 0 and no learning takes place.

A good initialisation can significantly speed up the learning process.

• Randomisation

For the pattern training it might be a good practice to randomise the order of presentation of training
examples between epochs.

• Validation

In order to validate the process of learning the available data is randomly partitioned into atraining
setwhich is used for training, and atest setwhich is used for validation of the obtained data model.
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4.8 Example of function approximation (fap2D.m)

In this MATLAB example we approximate two functions of two variables,

y = f(x) , or y1 = f1(x1, x2) , y2 = f2(x1, x2)

using a two-layer perceptron,

y = σ(W y · σ(W h · x))

The weights of the perceptron,W h,W y, are trained using the basicback-propagation algorithm in a
batch modeas discussed in the previous section.
Specification of the the neural network (fap2Di.m):

p = 3 ; % Number of inputs plus the bias input
L = 12; % Number of hidden signals (with bias)
m = 2 ; % Number of outputs
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Two functions to be approximated by the two-layer perceptron are as follows:

y1 = x1e
−ρ2 , y2 =

sin 2ρ2

4ρ2
, where ρ2 = x2

1 + x2
2

The domain of the function is a squarex1, x2 ∈ [−2, 2).
In order to form the training set the functions are sampled on a regular 16×16 grid. The relevantMATLAB

code to form the matricesX andD follows:

na = 16; N = naˆ2; nn = 0:na-1; % Number of training cases

Specification of the domain of functions:

X1 = nn* 4/na-2; % na points from -2 step (4/na)=.25 to (2 - 4/na)=1.75
[X1 X2] = meshgrid(X1); % coordinates of the grid vertices X1 and X2 are na by na
R=(X1.ˆ2+X2.ˆ2+1e-5); % R (rhoˆ2) is a matrix of squares of

distances of the grid vertices from the origin.
D1 = X1. * exp(-R); D = (D1(:))’;

% D1 is na by na, D is 1 by N
D2 = 0.25 * sin(2 * R)./R ; D = [D ; (D2(:))’];

% D2 is na by na, D is a 2 by N matrix of 2-D target vectors

The domain sampling points are as follows:

X1=-2.00 -1.75 ... 1.50 1.75 X2=-2.00 -2.00 ... -2.00 -2.00
-2.00 -1.75 ... 1.50 1.75 -1.75 -1.75 ... -1.75 -1.75

. . . . . . . . . . . .
-2.00 -1.75 ... 1.50 1.75 1.50 1.50 ... 1.50 1.50
-2.00 -1.75 ... 1.50 1.75 1.75 1.75 ... 1.75 1.75
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Scanning X1 and X2 column-wise and appending the bias inputs, we obtain the input matrix X which
is p×N :
X = [X1(:)’; X2(:)’;ones(1,N)];

The training exemplars are as follows:

X = -2.0000 -2.0000 ... 1.7500 1.7500
-2.0000 -1.7500 ... 1.5000 1.7500

1.0000 1.0000 ... 1.0000 1.0000

D = -0.0007 -0.0017 ... 0.0086 0.0038
-0.0090 0.0354 ... -0.0439 -0.0127

The functions to be approximated are plotted side-by-side,
which distorts the domain which in reality is the same for
both functions, namely,x1, x2 ∈ [−2, 2).

surfc([X1-2 X1+2], [X2 X2], [D1 D2])
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Random initialization of the weight matrices:
Wh = randn(L,p)/p; % the hidden-layer weight matrixW h isL× p

Wy = randn(m,L)/L; % the output-layer weight matrixW y ism× L

C = 200; % maximum number of training epochs
J = zeros(m,C); % Memory allocation for the error function
eta = [0.003 0.1]; % Training gains

for c = 1:C % The main loop (fap2D.m)
The forward pass:

H = ones(L-1,N)./(1+exp(-Wh * X)); % Hidden signals (L-1 by N)
Hp = H. * (1-H); % Derivatives of hidden signals

H = [H ; ones(1,N)]; % bias signal appended
Y = tanh(Wy * H); % Output signals (m by N)

Yp = 1 - Y.ˆ2; % Derivatives of output signals

The backward pass:

Ey = D - Y; % The output errors (m by K)
JJ = (sum((Ey. * Ey)’))’; % The total error after one epoch

% the performance function m by 1
delY = Ey. * Yp; % Output delta signal (m by K)
dWy = delY * H’; % Update of the output matrix dWy is L by m
Eh = Wy(:,1:L-1)’ * delY % The back-propagated hidden error Eh is L-1 by N
delH = Eh. * Hp ; % Hidden delta signals (L-1 by N)
dWh = delH* X’; % Update of the hidden matrix dWh is L-1 by p

Wy = Wy+etay* dWy; Wh = Wh+etah* dWh; % The batch update of the weights
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Two 2-D approximated functions are plotted after each epoch.

D1(:)=Y(1,:)’; D2(:)=Y(2,:)’;
surfc([X1-2 X1+2], [X2 X2], [D1 D2]) J(:,c) = JJ ;

end % of the epoch loop

Approximation after 1000 epochs:
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The sum of squared errors at the end of each training
epoch is collected in a2× C matrix. The approximation
error for each function at the end of each epoch:
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From this example you will note that the backpropagation algorithm is

• painfully slow

• sensitive to the weight initialization

• sensitive to the training gains.

We will address these problems in the subsequent sections.

It is good to know that the best training algorithm can betwo orders of magnitude fasterthat a basic
backpropagation algorithm.
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