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5 Feedforward Multilayer Neural Networks — part II

In this section we first consider selected applications of the multi-layer perceptrons.

5.1 Image Coding using Multi-layer Perceptrons

• In this example we study an application of a two-layer feed-forward neural network (perceptron) in
image coding.

The general concept is as follows:

• A two-layer perceptron is trained using a representative set of images,F .
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• Once the training is completed, appropriate hidden,W h and output,W y weights are available.

• An image, F , can now be encoded into an imageF c, represented by the hidden signals.

• If L < p an image compression occurs.

• The encoded (compressed) image,F c, represented by the hidden signals can now be reconstructed
using the output layer of the perceptron asF r.
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Training procedure:

• Training is conducted for a representative class of images using the back-propagation algorithm.

• Assume that an image,F , used in training is of sizeR× C and consists ofr × c blocks.

• Convert a block matrixF into a matrixX of sizep×N containing training vectors,x(n), formed
from image blocks. Note that

p = r · c , and p ·N = R · C
C

R

F N
X

p
r

c
(n)x

• As atarget data use theinput data, that is:

D = X

Use the followingMATLAB function to perform this

conversion:X = blkM2vc(F, [r c]);

function vc = blkM2vc(M, blkS)
[rr cc] = size(M) ;
r = blkS(1) ; c = blkS(2) ;
if (rem(rr, r) ˜= 0) | (rem(cc, c) ˜= 0)

error(’blocks do not fit into matrix’)
end
nr = rr/r ; nc = cc/c ; rc = r * c ;
vc = zeros(rc, nr * nc);
for ii = 0:nr-1

vc(:,(1:nc)+ii * nc)=reshape(M((1:r)+ii * r,:),rc,nc);
end

• Train the network until the mean squared error,J , is sufficiently small. The matricesW h and W y

will be subsequently used in the image encoding and decoding steps.
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Image encoding:

• An image, F , is divided into r × c blocks of pixels. Each block is then scanned to form an input
vector x(n) of size p = r × c.

The image to be encoded is now represented by anN × p matrixX, each column storing a block of
pixels.

x(n)

r
c

ϕW L Lp = r c

(n)h

n
F

H
L

R

C N

Original Image

Encoded Image

h

Figure 5–1:A hidden layer in image encoding

• Assume that the hidden layer of the neural network consists ofL neurons each withp synapses, and
that it is characterised by the appropriately selected weight matrixW h.

• The encoding procedure can be described as follows:

F −→ X , H = σ(W h ·X) −→ F c

where F c represented byH is an encoded image.
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Image reconstruction:

• Assume that the output layer consists ofm = p = r × c neurons, each withL synapses.

Let W y be an appropriately selected output weight matrix.

• The decoding procedure can be described as follows:

Y = σ(W y ·H) , Y −→ F r

• Re-assemble the output signals intop = r × c image blocks to obtain a re-constructed image,F r.
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Figure 5–2:the outpur layer in image reconstruction

• The quality of image coding is typically assessed by the Signal-to-Noise Ratio (SNR) defined as

SNR = 10 log
∑
i,j(Fi,j)

2

∑
i,j(F r

i,j − Fi,j)2
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• The conversion of the vectors of the reconstructed image stored in thep×N matrix Y into blocks of
the reconstructed image,F r, can be performed using the followingMATLAB function:

Fr = vc2blkM(Y, r, R);

function M = vc2blkM(vc, r, rM)
%vc2blkM Reshaping a matrix vc of rc by 1 vectors into a
% block-matrix M of rM by cM size
% Each rc-element column of vc is converted into a r by c
% block of a matrix M and placed as a block-row element
[rc nb] = size(vc) ; pxls = rc * nb ;
if ( (rem(pxls, rM) ˜= 0) | (rem(rM, r) ˜= 0) )

error(’incorrect number of rows of the matrix’)
end
cM = pxls/rM ;
if ( (rem(rc, r) ˜= 0) | (rem(nb * r, rM) ˜= 0) )

error(’incorrect block size’)
end
c = rc/r ;
xM = zeros(r, nb * c);
xM(:) = vc ;
nrb = rM/r ;
M = zeros(rM, cM);
for ii = 0:nrb-1

M((1:r)+ii * r, :) = xM(:, (1:cM)+ii * cM) ;
end
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5.2 Paint-Quality Inspection Adapted from (Freeman and Skapura, 1991)

• Visual inspection of painted surfaces, such as automobile body panels, is a very time-consuming and
labor-intensive process.

• To reduce the amount of time required to perform this inspection, one of the major U.S. automobile
manufacturers reflects a laser beam off the painted panel and on to a projection screen.

• Since the light source is a coherent beam, the amount of scatter observed in the reflected image of the
laser provides an indication of the quality of the paint finish on the car.

Reflection of a laser beam off
painted sheet-metal surfaces:

top — a poor-quality paint finish:
reflection is relatively difused.

bottom — a better-quality paint
finish: reflection is very close to
uniform throughout its image.
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• A neural network, a two-layer perceptron in this case, is used to capture the expertise of the human
inspectors scoring the paint quality from observation of the reflected laser images.

• The block-diagram of the Automatic Paint QA
System:

• Images of the reflected laser beam are recorded by a
camera and an associated frame grabber. Each image
contains 400-by-75 8-bit pixels.

• To keep the size of the network needed to solve the
problem manageable, we elected to take 10
sub-images from the snapshot, each sub-image
consisting of a 30-by-30-pixel square centered on a
region of the image with the brightest intensity.

x (n) h (n) y(n)

30x30 sub−images

selection
sub−images

Frame grabber
Camera &

Neural Network

User Interface

900+1 m = 1
Wh σ

50+1
Wy

score

• These 8-bit pixels are input to the neural network. In addition there is one biasing input, therefore,
p = 901.

• The hidden layer consists ofL = 50 neurons, hence the hidden-matrix,W h is 900× 50, and there are
900 × 50 = 45000 synapses in the hidden layer. A unipolar sigmoidal function is used.

• A single output signal from the network represents anumerical scorein the range of 1 through 20 (a 1
represented the best possible paint finish; a 20 represented the worst).

• The output layer islinear and the output matrixW y has a size51× 1 (there is a biasing input to the
output layer).
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• Once the network was constructed (and trained), 10 sub-images were taken from the snapshot using
two different sampling techniques.

• In the first test, the samples were selected randomly from the image (in the sense that their position on
the beam image was random).

• In the second test, 10 sequential samples were taken, so as to ensure that the entire beam was
examined.

• In both cases, the input sample was propagated through the trained MLP, and the score produced as
output by the network was averaged across the 10 trials.

• The average score, as well as the range of scores produced, were then provided to the user for
comparison and interpretation.
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Training the Paint QA Network

• At the time of the development of this application, (1988) this network was significantly larger than
any other network we had yet trained.

• The network is relatively big: 901 inputs, 51 hidden neurons, 1 output. Total number of trainable
weights (synapses) is 45 101.

• The number of training patterns with which we had to work was a function of the number of control
paint panels to which we had access (18), as well as of the number of sample images we needed from
each panel to acquire a relatively complete training set (approximately 6600 images per panel).

• During training, the samples were presented to the network randomly to ensure that no single paint
panel dominated the training.

• From these numbers, we can see that there was a great deal of computer time consumed during the
training process.

• For example, one training epoch required the computer to perform approximately 13.5 million weight
updates, which translates into roughly 360,000 floating-point operations (FLOPS) per pattern (2
FLOPS per connection during forward propagation, 6 FLOPS during error propagation), or 108
million FLOPS per epoch.

• However, once the network was trained, decoding is very fast and can be efficiently used in
manufacturing.
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5.3 NETtalk
Sejnowski and Rosenberg, 1987

• The NETtalk project aimed at training a network to pronounce English text.

• The conceptual structure of the network is as follows:

T h i s i s t h e i n p u t
↓

Neural Network
↓
\s\ phoneme code

• A character from a text and its three proceeding and three following characters are entered into a
neural network which generates a phoneme code for the central character.

• The phoneme code can be sent to a speech generator giving the pronunciation of the central letter from
the input window.
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Network structure

• There are 29 English letters (including punctuation) and each letter is coded in a 1-of-29 code.
Therefore, there arep = 7× 29 = 203 binary inputs to the network.

• Similarly, there are 26 different phonemes, hence, the network has 26 binary outputs.

• In addition, 80 hidden neurons are employed.

7x29

text
σ

80
σ

m = 26

phoneme
Wh Wy

Training

• During training, the desired data were supplied by a commercially available DEC-talk, which is based
on hand-coded linguistic rules.

• The network was trained on 1024 words, obtaining intelligible speech after 10 training epochs and
95% accuracy after 50 epochs.
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5.4 Efficient initialization of the learning algorithms

• The simplest initialization of the weights is based on assigning them a “small” random values.

• This is not always a good solution because the activation potentials can be big enough to drive the
activation functions into saturation.

• In saturation, the derivatives of the activation functions are zero, hence no weight update will take
place.

• Efficient initialization can speed up the convergence process of the learning algorithms significantly,
even by the order of magnitude.

• A popular initialization algorithm developed by Nguyen and Widrow and used in the MATLAB Neural
Network Toolbox is presented below.

• Let us consider for simplicity asingle layerof m neurons withp synapses, each including the bias.
Then for jth neuron we have

yj = σ(vj) , where vj = wj · x , xp = 1

• For an activation functionσ(v) we can specify itsactive region v̄ = [vmin vmax] outside which the
function is consider to be in saturation.

• For example, for the hyperbolic tangent we can assume the active region as:

v̄ = [−2 + 2] , then tanh(v) ∈ [−0.96 0.96]
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• In addition we need to specify the range of input signals,

x̄i = [xi,min xi,max] for i = 1 . . . p− 1

Unified range:

Assume first that the range of input signals and non-saturating activation potential is[−1 + 1].

• The initial weight vectors will now have evenly distributed magnitudes and random directions:

For p = 2 (single input plus bias) the weights are initialised in the following way:

• generatem random numbersaj ∈ (−1, +1) for j = 1, . . . ,m

• Set up weights as follow
W (j, 1) = 0.7

aj
|aj|

, W (:, 2) = 0
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For p > 2 the weight initialisation is as follows

• Specify the magnitude of the weight vectors as

W̄ = 0.7m
1

p−1

• generatem random unity vectors,aj, that is, generate anm×(p− 1) array A of random numbers,
aji ∈ (−1, +1) and normalise it in rows:

aj =
A(j, :)

‖A(j, :)‖

• Set up weights as follow

W (j, 1 : p− 1) = W̄ · aj for j = 1, . . . ,m

and the bias weights

W (j, p) = sgn(W (j, 1)) · W̄ · βj for βj = −1 :
2

m−1
: 1

• Finally, the weights are linearly rescaled to account for different range of activation potentials an input
signals.

• Details can be found in the MATLAB script,nwini.m.
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function w = nwini(xr, m, vr)
%
% nwini Calculates Nugyen-Widrow initial conditions.
% adapted from NNet toolbox 8 Axril 1999
% xr - p-1 by 2 matrix of [xmin xmax]
% assumes that the bias is added
% m - Number of neurons.
% vr - Active region of the transfer function
% vr = [Vmin Vmax].
% e.g. vr = [-2 -2] for tansig , [-4 4] for logsig
% w is m by p

r = size(xr,1); p = r+1 ;

% Null case
if (r == 0) | (m == 0)

w = zeros(s,p) ;
return

end

% Remove constant inputs that provide no useful info
R = r;
ind = find(xr(:,1) ˜= xr(:,2));
r = length(ind);
xr = xr(ind,:);

% Nguyen-Widrow Method
% Assume inputs and activation potentials range in [-1 1].
% Weights
wMag = 0.7 * mˆ(1/r); % weight vectors magnitude
% weight vectors directions: wDir are row unity vectors
a = 2* rand(m,r)-1 ;
if r == 1
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b = ones./abs(a);
else

b=sqrt(ones./(sum((a. * a)’)))’;
end
wDir=b(:,ones(1,r)). * a;
w = wMag* wDir;
% Biases
if (m==1)

wb = 0;
else

wb = wMag* [2 * (0:m-2)/(m-1)-1 1]’. * sign(w(:,1));
end

% Conversion of activation potentials of [-1 1] to [Nmin Nmax]
a1 = 0.5 * (vr(2)-vr(1));
a2 = 0.5 * (vr(2)+vr(1));
w = a1* w;
wb = a1* wb+a2;

% Conversion of inputs of xr to [-1 1]
a1 = 2./(xr(:,2)-xr(:,1));
a2 = 1-xr(:,2). * a1;

ap = a1’;
wb = w* a2+wb;
w = w.* ap(ones(1,m),:);

% Replace constant inputs
ww = w; w = zeros(m,R);
w(:,ind) = ww;
% combine with biasing weights
w = [w wb] ;
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5.5 Why backpropagation is slow

• The basic pattern-based back-propagation learning law is a gradient-descent algorithm based on the
estimation of the gradient of the instantaneous sum-squared error for each layer:

∆W (n) = −η · ∇WE(n) = η · δ(n) · xT (n) (5.1)

Such an algorithm is slow for a few reasons:

• It uses an instantaneous sum-squared errorE(W,n) to minimise the mean squared error,J(W ), over
the training epoch.

• The gradient of the instantaneous sum-squared error is not a good estimate of the gradient of the mean
squared error.

• Therefore, satisfactory minimisation of this error typically requires many repetitions of the training
epochs.

• It is a first-order minimisation algorithm which is based on the first-order derivatives (a gradient).
Faster algorithms utilise also the second derivatives (the Hessian matrix)

• The error back propagation, which is conceptually very interesting, serialises computations on the
layer by layer basis.

A general problem is that the mean squared error,J(W ), is a relatively complex surface in the weight
space, possibly with many local minima, flat sections, narrow irregular valleys, and saddle points,
therefore, it is difficult to navigate directly to its minimum.
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5.6 Examples of error surfaces

• Consider the following function of two
weights,J(w1, w2) representing a
possible mean-squared error together
with its contour map.

• Note the local and global minima, and
a saddle point.

• Consider the importance of the proper
initialisation to be able to reach the
global minimum.
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• Complexity of the error surface is the main reason that behaviour of a simple steepest descend
minimisation algorithm can be very complex often with oscillations around a local minimum.
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• In order to gain more insight into
the shape of the error surfaces let
us consider a simple two-layer
network approximating a
single-variable function similar
to that considered in sec. 4.3
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the network approximate the following function:
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• In order to obtain the error surface, we will varyw = [W h wy] and calculateJ(w) for the selected
inputsX.

• The error functionJ(w) is an 8-dimensional object, hence difficult to visualise.

Therefore we will vary only a pair of selected weights at a time.
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Note that the surfaces are very far away from and ideal second order paraboloidal shapes.
Finding the minimum is very sensitive to the initial position, learning gain and the direction of movement.
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5.7 Illustration of sensitivity to a learning rate
Figures 9.1, 9.2, 9.3, 12.6, 12.7 12.8 from: M.T. Hagan, H. Demuth, M. Beale,Neural Network Design, PWS Publishing, 1996

• For an Adaline, when the error surface is paraboloidal, the maximum stable learning gain can be
evaluated from eqn (3.24) and is inversely proportional to the largest eigenvalue of the input
correlation matrix,R.

• As an illustration we consider the case whenηmx = 0.04 and observe the learning trajectory on the
error surface for a linear case:

η = 0.01 η = 0.035 η = 0.039 η = 0.041
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• Examples of learning trajectories for the steepest descent backpropagation algorithm in the batch
mode. Plots on the right shows the error versus the iteration number.

Trajectory for the learning gain
too large
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5.8 Heuristic Improvements to the Back-Propagation Algorithm

• The first group of consider to the basic back-propagation algorithms based on heuristic methods.

• These methods do not directly address the inherent weaknesses of the back-propagation algorithm, but
aim at improvement of the behaviour of the algorithm by making modifications to its form or
parameters.

5.8.1 The momentum term

• One of the simple method to avoid an error trajectory in the
weight space being oscillatory is to add to the weight update a
momentum term.

• Such a term is proportional to the weight update at the previous
step.

∆W (n) = η · δ(n) · xT (n) + α ·∆W (n− 1) , 0 < α < 1 (5.2)

where α is a momentum term parameter.

• Such modification to the steepest descend learning law acts as a
low-pass filter smoothing the error trajectory.

• As a result it is possible to apply higher learning rate,η.

5–24



Neuro-Fuzzy Comp. — Ch. 5 March 24, 2005

5.8.2 Adaptive learning rate

• One of the ways of increasing the convergence speed, that is, to move faster downhill to the minimum
of the mean-squared error,J(W ), is to vary adaptively the learning rate parameter,η.

• A typical strategy is based on monitoring the rate of change of the mean-squared error and can be
described as follows:

• If J is decreasing consistently, that is,∇J is negative
for a prescribed number of steps, then the learning rate is
increased linearly:

η(n + 1) = η(n) + a , a > 0 (5.3)

• If the error has increased,(∇J > 0), the learning rate is
exponentially reduced:

η(n + 1) = b · η(n) , 0 < b < 1 (5.4)

• In general, increasing the value of the learning rate the
learning tends to become unstable which is indicated be
an increase in the value of the error function.

• Therefore it is important to quickly reduceη.
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Advanced methods of optimisation

• Optimization or minimisation of a function of many variables (multi-variable function),J(w), has
been researched since the XVII century and its principles were formulated by such mathematicians as
Kepler, Fermat, Newton, Leibnitz, Gauss.

• In general the problem is to find an optimal learning gain and the optimal search direction that takes
into account the shape of the error function, that is its curvature.

5.9 Line search minimisation procedures

• Gradient descent minimization procedures are based on updating the weight
vector

w(n+1) = w(n) + η p(n) (5.5)

whereη is the learning gain and the vectorp(n) describes the direction of
modification of the weight vector.

• The vectorp is typically equal to the negative gradient of the error function

p(n) = −g(n) , where g(n) = ∇J(w(n))
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• Note that the next value of weight vector,w(n + 1), is obtained from the current value of weight
vector, w, by moving it along the direction of a vector,p.
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• We can now find an optimal value ofη for which the performance index

J(w(n+1)) = J(w + η p) (5.6)

is minimised.

• The optimalη is typically found through a search procedure along the directionp (line optimization)

• In order to find some properties of the line optimization we calculate the partial derivative ofJ with
respect toη:

∂J(w(n+1))

∂η
=
∂J(w(n+1))

∂w(n+1)

∂w(n+1)

∂η
=
∂J(w(n+1))

∂w(n+1)
η pT = η∇J(w(n+1)) · pT (5.7)

• For the optimal value ofη, this derivative needs to be zero and we have the following relationship

∇J(w(n+1)) · pT = g(n+1) · pT = 0 (5.8)

• It states that the next estimate of the gradient,g(n+1) = ∇J(w(n+1)), is to be orthogonal to the
current search direction,p for the optimal value ofη
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This means, in particular, that

• if we combine theline minimisation technique with thesteepest
descentalgorithm when we move in the direction opposite to the
gradient,p = −g,

• then we will be descending along the zig-zag line, each segment
being orthogonal to the next one.

• In order to smooth the descend direction, the steepest-descent technique is replaced with the conjugate
gradient algorithm.
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5.10 Conjugate Gradient Algorithm

• The conjugate gradient algorithms also involved the line optimisation with respect toη, but

• in order to avoid the zig-zag movement through the error surface, the next search direction,p(n+1),
instead of being exactly orthogonal to the gradient, tries to maintain the current search direction,p(n),
namely

p(n + 1) = −g(n) + β(n)p(n) (5.9)

where scalarβ(n) is selected in such a way that

• the directionsp(n + 1) and p(n) areconjugate with respect to the Hessian matrix, ∇2J(w) = H

(the matrix of all second derivatives ofJ), that is,

p(n + 1) ·H · pT (n) = 0 (5.10)

• In practice, the Hessian matrix is not being calculated and the following three approximate choices of
β(n) are the most commonly used
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• Hestenes-Steifel formula

β(n) =
(g(n) − g(n− 1)) · gT (n)

(g(n) − g(n− 1)) · pT (n− 1)
(5.11)

• Fletcher-Reeves formula

β(n) =
g(n) · gT (n)

g(n− 1) · gT (n− 1)
(5.12)

• Polak-Ribíere formula

β(n) =
(g(n) − g(n− 1)) · gT (n)

g(n− 1) · gT (n− 1)
(5.13)

In summary, the conjugate gradient involves:

• initial search direction,p(0) = −g(0),

• line minimisation with respect ofη,

• calculation of the next search direction as in eqn
(5.9), and

• β from one of the above formulae.
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5.11 Newton’s Methods

• In Newton’s methods minimisation is based on utilisation of not only thefirst derivatives (the
gradient) of the error function, but also itssecond derivatives(Hessian matrix).

• Consider the Taylor series expansion of the performance index as in eqn (4.5) which can be re-written
as

J(w(n+1)) = J(w) + ∆w · ∇J +
1

2
∆w ·H ·∆wT + · · ·

• To minimiseJ(w(n+1)) we calculate the gradient and equate it to zero

∇J(w(n+1)) = ∇J + ∆w ·H + · · · = 0

• Neglecting the higher order expansion terms, we have the following fundamental for Newton’s
methods equation:

∆w = −∇J ·H−1 (5.14)

• This equation says that a more accurate weight update is the direction opposite to the gradient vector
modified (rotated) by the inverse of the Hessian matrix of the performance indexJ .

• The Hessian matrix provides additional information about the shape of the performance index surface
in the neighbourhood ofw(n).
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• The Newton’s methods are typically faster than conjugate gradient algorithms.

• However, they require computations of the inverse of the Hessian matrix which are relatively complex.

• Many specific algorithms originate from the Newton’s method, the fastest and most popular being the
Levenberg-Marquardt algorithm , which originate from the Gauss-Newton method.

• The Newton’s methods use the batch training mode, rather then the pattern mode which is based on
derivatives of instantaneous errors.
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5.12 Gauss-Newton method

In the Gauss-Newton method theHessian matrix is approximated by a product of theJacobian matrix.

In order to explain details of the method let us repeat the standard assumption:

• all weights have been arranged in one row vector

w = [w1 . . . wj . . . wK ]

• all (instantaneous) errors form a column vector

ε(w(n)) = d(n) − y(n) = [ε1 . . . εk . . . εm]T

• the instantaneous performance indexE(w(n)) is a sum of squares of errors

E(w(n)) =
1

2

m∑
k=1

ε2
k(n) =

1

2
ε(n) · εT (n)

(for brevity, arguments likew andn are often omitted)

• The total performance index (mean squared error)

F (w) =
1

M

N∑
n=1

E(w(n))

whereM = mN . The symbolF is used in place ofJ to avoid confusion with the Jacobian matrix.
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• We consider first derivatives of instantaneous errors. Thejth element of the instantaneous gradient
vector can now be expressed as

[∇E(w(n))]j =
∂E(w(n))

∂wj
=

m∑
i=1
εk(w)

∂εi(w)

∂wj
= εT (w)

∂ε1(w)

∂wj
. . .

∂εm(w)

∂wj


T

• This expression can be generalised into a matrix form for the gradient:

∇E(w(n)) = εT (w(n))J (w(n)) (5.15)

where

J (w(n)) =



∂ε1(w)

∂w1
. . .

∂ε1(w)

∂wK... ...
∂εm(w)

∂w1
. . .

∂εm(w)

∂wK


(5.16)

is them×K matrix of first derivatives known as theJacobianmatrix.

• In order to find the Hessian matrix of the instantenous performance index we differentiate eqn (5.15):

∇2E(w(n)) =
∂(εT (w)J (w))

∂w
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• Let us calculate first, for simplicity, thek, j element of the Hessian matrix

[∇2E(w(n))]k,j =
∂2E(w)

∂wk∂wj
=

m∑
i=1

 ∂εi
∂wk

∂εi
∂wj

+ εi
∂2εi

∂wk∂wj



=

 ∂ε1

∂wk
. . .

∂εm
∂wk





∂ε1

∂wj
...

∂εm
∂wj


+ εT

∂2εi
∂wk∂wj

• Generalizing the above expression into a matrix form, we obtain:

∇2E(w) = J T (w)J (w) + εT (w)R(w) (5.17)

where

R(w) =


∂2εi

∂wk∂wj


it the matrix of all second derivatives of errors.

• If we neglect the term

εT (w)R(w)

due to the fact that errors are small, then we obtain the Gauss-Newton method.
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• In this method the Hessian matrix is approximated as:

H(w(n)) = ∇2E(w(n)) ≈ J T (w(n))J (w(n))

and the weight update equation (5.14) becomes:

∆w(n) = −∇E(n)H−1(n) = −εT (n)J (n)
(
J T (n)J (n)

)−1
(5.18)

• For simplicity, we have considered the pattern update, however, in the following section we consider a
modification of the Gauss-Newton algorithm in which the batch update of weights is employed.
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5.13 Levenberg-Marquardt algorithm

5.13.1 The algorithm

• One problem with the Gauss-Newton method is that the approximated Hessian matrix may not be
invertible.

• To overcome this problem in theLevenberg-Marquardt algorithm a small constantµ is added such
that

H(w) ≈ JT (w)J(w) + µI

where H(w) and J(w) are thebatch Hessian and Jacobian matrices, respectively,I is the
identity matrix andµ is a small constant.

• The gradient of the batch performance index,F (w), can be calculated as

∇F (w) =
N∑
n=1

∇E(w(n)) =
N∑
n=1
εT (w(n)) · J (w(n)) = eT (w)J(w)

where

eT = scan(D − Y ) = [εT (1) . . . εT (N)]

is the vector of all instantaneous errors.
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• The batch Jacobian matrix,J(w), is a block-column matrix consisting of the instantaneous Jacobian
matrices,J (n)

J(w) =


J (1)

...
J (N)


• As a result, the batch weight update is as in eqn (5.19):

∆w = −∇F ·H−1 = −eT (w)J(w)
(
JT (w)J(w) + µI

)−1
(5.19)

5.13.2 Calculation of the Jacobian matrix

• Calculation of the Jacobian matrix is similar to calculation of the gradient of the performance index.

• The main difference is that in the case of the gradient we differentiate the sum of squared errors,
whereas in the case of the Jacobian we differentiate errors themselves, see eqn (5.16).

• Following the derivation of the basic backpropagation algorithm we consider atwo-layer perceptron
with two weight matrices,W h,W y. The weight vectorw is formed by scanning these matrices in
rows, so that we have:

w = scan(W h,W y) = [wh
11 . . . w

h
1p . . . w

h
Lp|w

y
11 . . . w

y
1L . . . w

y
mL]

The length ofw is K = L(p +m).
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• The instantaneous Jacobian matrix,J (n), is m×K, one column per weight, and can be partitioned
into two blocks related to the hidden and output weights, respectively:

J (n) = [J h(n) J y(n)]

5.13.3 Output layer

• The output Jacobian matrixJ y(n) is m×mL, wherem is the number of output neurons andL is
the number of hidden signals,hj, as in Figure 4–3.

• The elements ofJ y(n) are the first derivatives
∂εi
∂wy

kj

of errors εi(n) with respect to weightswy
kj.

We have

εi(n) = di(n) − yi(n) , yi(n) = σ(vi(n)) , vi(n) = W y
i: · h(n)

• Now, an element of the output Jacobian matrix can be calculate in the following way

∂εi
∂wy

kj

=


0 if i 6= k (error is local to thekth neuron)

− ∂yk
∂wy

kj

if i = k

• Hence, the output Jacobian matrix has a block-diagonal structure.
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• Subsequently, we have

∂yk
∂wy

kj

=
∂yk
∂vk

∂vk
∂wy

kj

= σ′k · hj , where σ′k =
∂yk
∂vk

which can be generalised to the matrix of non-zero blocks ofJ y as

Pk: =
∂εk
∂W y

k:

= −σ′k · hT , P =
∂εk
∂W y

= −σ′ · hT

• Rows of the matrixP form the diagonal blocks of the JacobianJ y.

• More formally, we can write

J y = −diag(σ′) ⊗ hT (5.20)

where ⊗ denotes the Kronecker product.

5.13.4 Hidden layer

• The hidden Jacobian matrixJ h(n) is m×mp, wherem is the number of output neurons andp is
the number of input signals,xi(n).

• An element of the hidden Jacobian matrix can be calculate in the following way

∂εk
∂wh

ji

= − ∂yk
∂wy

ji

= −∂yk
∂vk

∂vk
∂wh

ji

= −σ′k
∂vk
∂wh

ji
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• If we take into account that

vk = W y
k: · h = · · · + wy

kj · hj + · · ·

and
hj = ψ(W h

j: · x) = ψ(· · · + wh
ji · xi + · · ·)

• then we can arrive at the final form for a single element of the hidden Jacobian matrix:

[J h]k,ji =
∂εk
∂wh

ji

= −σ′k · w
y
kj ·

∂hj
∂wh

ji

= −σ′k · w
y
kj · ψ′

j · xi (5.21)

• A 1× p block of the hidden Jacobian matrix can be expressed as follows

[J h]k,j: = −skj · xT , where skj = σ′k · w
y
kj · ψ′

j

and finally, we have

J h = −Sh ⊗ xT , where Sh = diag(σ′) ·W y · diag(ψ′) (5.22)
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The complete algorithm — general description

The complete Levenberg-Marquardt algorithm can be described as follows:

1. For the input matrix,X, calculate the matrices of:

• hidden signals,H,

• output signals,Y ,

• related derivatives,Ψ′, and Φ′,

• errors,D − Y , and e.

2. Calculate instantaneous Jacobian matrices,J h and J y as in eqns (5.22) and (5.20), and arrange
them in the batch JacobianJ.

3. Calculate the weight update,∆w, according to eqn (5.22) for a selected value ofµ.

4. Calculate the batch performance index,F (w + ∆w), and compare it with the previous value,F (w).

If F (w + ∆w) > F (w), reduce the value of the parameterµ and recalculate∆w (step 3), until
F (w + ∆w) > F (w) is reduced.

5. Repeat calculations from step 1 for the updated weights,w = w + ∆w.
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5.13.5 Some computational details

JTJ:

• The size ofJ is M ×K = mN × L(p +m), that is, (size of the data set)×(set of the weight set)
which might be prohibitively large for a big data set.

• In order to reduce the size of the intermediate data, we can proceed in the following way:

JTJ = [J T (1) . . .J T (N)]


J (1)

...
J (N)

 =
N∑
n=1

J T (n)J (n)

• The size of the matrix to be inverted,(JTJ + µI) is K ×K.

eTJ:

• Similarly, we can calculate the above
gradient as

∇F = eTJ =
N∑
n=1
εT (n)J (n)

• In this way, we need not store the complete
batch Jacobian,J.

LMbp trajectory
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5.14 Speed comparison

Some of the functions available for the batch training inNeural Network Toolbox are listed in the
following table together with a relative time to reach convergence.

Function Algorithm Relative time

LM trainlm Levenberg-Marquardt 1.00
BFG trainbfg BFGS Quasi-Newton 4.58
RP trainrp Resilient Backpropagation 4.97
SCG trainscg Scaled Conjugate Gradient 5.34
CGB traincgb Conjugate Gradient with Powell/Beale Restarts 5.80
CGF traincgf Fletcher-Powell Conjugate Gradient 6.89
CGP traincgp Polak-Ribíere Conjugate Gradient 7.23
OSS trainoss One-Step Secant 8.46
GDX traingdx Variable Learning Rate Backpropagation 24.29
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