1. A discrete-time recurrent network is described by the following equation:

$$\mathbf{y}(n+1) = A \cdot \mathbf{y}(n) + B \cdot \mathbf{x}(n)$$

where

$$A = \begin{bmatrix} 0.7 & 0.5 \\ -0.4 & 0.6 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$

- (a) Sketch the dendritic and signal-flow diagrams of the network
- (b) Assuming that $\mathbf{y}(0) = 0$ calculate $\mathbf{y}(1)$ and $\mathbf{y}(2)$ for $\mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $\mathbf{x}(1) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.

(5+5+5=15 marks)

2. A neural network generates its output according to the following equation

$$y = \sigma \left(U \cdot \begin{bmatrix} h \\ 1 \end{bmatrix} \right), \quad h = \sigma \left(W \cdot \begin{bmatrix} x \\ 1 \end{bmatrix} \right)$$

where σ is a suitable step function (a hard limiter),

$$W = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}.$$

- (a) Sketch a dendritic diagram of the network.
- (b) Calculate the network hidden and output signals for the following input vector:

$$\mathbf{x} = \left[\begin{array}{c} 0.5\\1 \end{array} \right]$$

- (c) Plot the decision plane/line for every neuron in the network
- (d) Write a relationship between inputs and outputs of the modified network in which the step functions σ have been removed.

$$(5+4+6+5=20 \text{ marks})$$

3. Consider an ADALINE with two synapses driven by signals x_1 and $x_2 = 1$. The training data consists of three input signals: $x_1 = n$ for n = 1, 2, 3and corresponding desired/target outputs: $\mathbf{d} = \begin{bmatrix} 1.2 & 1.8 & 3.2 \end{bmatrix}$

Calculate the gradient of the error function for the weight vector $\mathbf{w} = \begin{bmatrix} 0.3 & -0.2 \end{bmatrix}$

(5 marks)

4. In Adaline, the performance index is given in the following form:

$$J(w_1, w_2) = 4w_1^2 + 6w_1w_2 + 5w_2^2 + 2w_1 - 3w_2 + 2$$

- (a) Determine the cross-correlation and input correlation matrices.
- (b) Assuming that the current weight vector $w = \begin{bmatrix} 1 & -1 \end{bmatrix}$ calculate the gradient of the performance index.
- (c) In the steepest descent learning law, what would be the next value of the weight matrix? Assume that the learning gain $\eta = 1$.
- (d) Assuming that the next values of the input vector $\mathbf{x}(n+1)$ and the desired output d(n+1) are

$$\mathbf{x}(n+1) = \begin{bmatrix} 2\\1 \end{bmatrix}, \quad d(n+1) = 0.5;$$

calculate the next values of the cross-correlation and input correlation matrices.

(4+4+1+6=15 marks)

5. Consider an ADALINE with three synapses with weights: $\mathbf{w} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$.

For a given data set, it has been calculated that the eigenvalues of the input correlation matrix are equal to: 0.2, 0.1 and 0.3.

Determine the maximum stable learning gain using the steepest descent learning law.

(2 marks)

6. A multilayer perceptron calculates its output in the following way:

$$y = \tanh(x_1 + x_2 - 0.5) + 2\tanh(-x_1 + 2x_2 + 1) + 1.5$$

- (a) Determine the weight matrices of the network
- (b) Sketch a dendritic diagram of the network

(3 + 3 = 6 marks)

7. Consider a feedforward neural network with one hidden layer and a **linear** output layer. Assume that we use a **batch** learning mode.

In such a case the optimal output weights can be calculated in one step using the normal equation.

Explain how it can be done giving relevant equations.

(8 marks)

8. Consider a Gaussian RBF neural network with a single output. Derive a steepest descent learning law in a pattern mode.

(12 marks)

9. In a feedforward neural network if we combine the steepest descent algorithm with a line minimization technique than we will be descending the error surface along a zig-zag line, each segment of the line being orthogonal to the previous one.

Explain in your own words why it is the case. Give relevant equations.

(4 marks)

- 10. In Generalised Hebbian learning
 - (a) the current values of the input vector and the weight matrix are as follows:

$$\mathbf{x} = \begin{bmatrix} -2\\ -1\\ 1 \end{bmatrix}, \quad W = \begin{bmatrix} 1 & 0 & 2\\ -1 & 1 & 1\\ 0 & 1 & 2 \end{bmatrix}$$

Calculate the weight update ΔW . Assume $\eta = 1$.

(b) At the conclusion of the learning process, what do the weight matrix, W, and the output vector, y, represent?

(10 + 4 = 14 marks)

- 11. Consider a Kohonen Self-Organizing Map where dimensionality of the input and feature spaces are 2 and 1, respectively. The number of neurons is 8.
 - (a) Sketch a structure of the network.
 - (b) Assuming the contents of the weight and neuronal position matrices is as follows:

W		V
4	3	5
1	3	1
5	4.5	7
2	1	3
1.5	2	2
4.5	5	6
3	2.5	4
5.5	3	8

Sketch the resulting feature map.

(10 + 5 = 15 marks)

12. The following 2-D data consisting of three pairs of clusters as in the figure below is used to train a Kohonen Self-Organizing Map consisting of 3×3 lattice of neurons. Two copies are provided for your convenience.

(a) Superimpose on the input data the most likely final feature map.

(b) Justify the result.

(5 + 5 = 10 marks)

13. Complete the following Fuzzy inference diagram. Another copy of the diagram is available on the next page. Use it as a draft.

(15 marks)

0 30% result of aggregation

Marks do not add up to 100, they add up to 141 instead.