Building Systems with the Fuzzy Logic Toolbox

Building Systems with the Fuzzy Logic Toolbox

Dinner for Two, from the Top

Now we’re going to work through a similar tipping example, only we’ll be
building it using the graphical user interface (GUI) tools provided by the
Fuzzy Logic Toolbox. Although it is possible to use the Fuzzy Logic Toolbox
by working strictly from the command line, in general it is much easier to
build a system graphically. There are five primary GUI tools for building,
editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox:
the Fuzzy Inference System or FIS Editor, the Membership Function Editor,
the Rule Editor, the Rule Viewer, and the Surface Viewer. These GUIs are
dynamically linked, in that changes you make to the FIS using one of them,
can affect what you see on any of the other open GUIs. You can have any or
all of them open for any given system.

In addition to these five primary GUIs, the toolbox includes the graphical
ANFIS Editor GUI, which is used for building and analyzing Sugeno-type
adaptive neural fuzzy inference systems. The ANFIS Editor GUI is discussed
later in the section, “Sugeno-Type Fuzzy Inference” on page 2-77.

2-29

2 Tutorial

2-30

FIS Editor

Membership
ion Editor

Rule Editor

Inference

Nm | . Read-only
LA l tools

Rule Viewer Surface Viewer

The FIS Editor handles the high-level issues for the system: How many input
and output variables? What are their names? The Fuzzy Logic Toolbox
doesn’t limit the number of inputs. However, the number of inputs may be
limited by the available memory of your machine. If the number of inputs is
too large, or the number of membership functions is too big, then it may also
be difficult to analyze the FIS using the other GUI tools.

The Membership Function Editor is used to define the shapes of all the
membership functions associated with each variable.

The Rule Editor is for editing the list of rules that defines the behavior of
the system.

The Rule Viewer and the Surface Viewer are used for looking at, as opposed
to editing, the FIS. They are strictly read-only tools. The Rule Viewer is a
MATLAB based display of the fuzzy inference diagram shown at the end of

Building Systems with the Fuzzy Logic Toolbox

the last section. Used as a diagnostic, it can show (for example) which rules
are active, or how individual membership function shapes are influencing the
results. The Surface Viewer is used to display the dependency of one of the
outputs on any one or two of the inputs — that is, it generates and plots an
output surface map for the system.

This section began with an illustration similar to the one below describing
the main parts of a fuzzy inference system, only the one below shows how
the three editors fit together. The two viewers examine the behavior of the
entire system.

The General Case...

A Specific Example...

The GUI Editors...

Input === Output

¥

service m==gp- tip

¥

if service is poor then tip is cheap
if service is good then tip is average

The FIS Editor

¥

The Rule Editor

Rules if service is excellent then fip is generous

¢ N Y N

Input Output service = tip =
terms terms {poor, {cheap,

(interpret) (assign) good, average,
excellent} generous}

Y N

The Membership
Function Editor

The five primary GUIs can all interact and exchange information. Any one of
them can read and write both to the workspace and to the disk (the read-only
viewers can still exchange plots with the workspace and/or the disk). For any
fuzzy inference system, any or all of these five GUIs may be open. If more
than one of these editors is open for a single system, the various GUI windows
are aware of the existence of the others, and will, if necessary, update related
windows. Thus if the names of the membership functions are changed using
the Membership Function Editor, those changes are reflected in the rules
shown in the Rule Editor. The editors for any number of different FIS systems
may be open simultaneously. The FIS Editor, the Membership Function
Editor, and the Rule Editor can all read and modify the FIS data, but the Rule
Viewer and the Surface Viewer do not modify the FIS data in any way.

Getting Started

We'll start with a basic description of a two-input, one-output tipping problem
(based on tipping practices in the U.S.).

2-31

2 Tutorial

2-32

The Basic Tipping Problem

Given a number between 0 and 10 that represents the quality of service at
a restaurant (where 10 is excellent), and another number between 0 and
10 that represents the quality of the food at that restaurant (again, 10 is
excellent), what should the tip be?

The starting point is to write down the three golden rules of tipping, based on
years of personal experience in restaurants.

1. If the service is poor or the food is rancid, then tip is cheap.
2. If the service is good, then tip is average.
3. If the service is excellent or the food is delicious, then tip is generous.

We'll assume that an average tip is 15%, a generous tip is 25%, and a cheap

tip is 5%. it is also useful to have a vague idea of what the tipping function
should look like this.

25 —

15 —

Bud service or bud food Graot semvice or grent food

Obviously the numbers and the shape of the curve are subject to local
traditions, cultural bias, and so on, but the three rules are pretty universal.

Now we know the rules, and we have an idea of what the output should look
like. Let's begin working with the GUI tools to construct a fuzzy inference
system for this decision process.

Building Systems with the Fuzzy Logic Toolbox

The FIS Editor

Double-click on an input

iable icon 1 h Double<lick on the icon for
XI(\]enrgbeerslﬁﬁnnFt?n?:ﬁgz Edeitor the output variable icon, to
" Double<lick on the system open the Membership

. diagram to open the Rule Editor. Function Editor.
These menu items allow you to save, open,

or edit a fuzzy system using any of the five
basic GUI tools.

51 IFIS Editor: tippar

File Edit View

ﬁ\l '
]

[IWE=T

(mamakaniy

The name of the system is tip

displayed here. It can be changed foee]

using one of the Save as..

menu options. FIS Marne: tipper FIS Type: rarndani
And method il = Current Yariable

These pop-up menus are 0r method = 1 [[Name ,7

used to adjust the fuzzy o Tope
inference functions, such as the || Implication f
defuzzification method.

Range
Agaregation

Defuzzification centroid - Help Cloze

Swstem "tipper' 2 inputs, 1 output, and 3 rules

This status line describes the
most recent operation.

This edit field is used to name
and edit the names of the
input and output variables.

The following discussion tells you how to build a new fuzzy inference system
from scratch. If you want to save time and follow along quickly, you can
load the pre-built system by typing

fuzzy tipper

2-33

2 Tutorial

2-34

This loads the FIS associated with the file tipper.fis (the .fis is implied)
and launches the FIS Editor. However, if you load the prebuilt system, you
will not be building rules and constructing membership functions.

The FIS Editor displays general information about a fuzzy inference system.
There is a simple diagram at the top that shows the names of each input
variable on the left, and those of each output variable on the right. The
sample membership functions shown in the boxes are just icons and do not
depict the actual shapes of the membership functions.

Below the diagram is the name of the system and the type of inference used.
The default, Mamdani-type inference, is what we've been describing so far
and what we'll continue to use for this example. Another slightly different
type of inference, called Sugeno-type inference, is also available. This method
is explained in “Sugeno-Type Fuzzy Inference” on page 2-77. Below the name
of the fuzzy inference system, on the left side of the figure, are the pop-up
menus that allow you to modify the various pieces of the inference process. On
the right side at the bottom of the figure is the area that displays the name of
either an input or output variable, its associated membership function type,
and its range. The latter two fields are specified only after the membership
functions have been. Below that region are the Help and Close buttons that
call up online help and close the window, respectively. At the bottom is a
status line that relays information about the system.

To start this system from scratch, type

fuzzy

at the MATLAB prompt. The generic untitled FIS Editor opens, with one
input, labeled inputl, and one output, labeled outputl. For this example, we
will construct a two-input, one output system, so go to the Edit menu and
select Add input. A second yellow box labeled input2 will appear. The two
inputs we will have in our example are service and food. Our one output is
tip. We'd like to change the variable names to reflect that:

1 Click once on the box (yellow) on the left marked inputl (the box will be
highlighted in red).

2 In the white edit field on the right, change input1 to service and press
Return.

Building Systems with the Fuzzy Logic Toolbox

3 Click once on the box (yellow) marked input2 (the box will be highlighted
in red).

4 In the white edit field on the right, change input2 to food and press
Return.

5 Click once on the box (blue) on the right marked outputl.
6 In the white edit field on the right, change output1 to tip.

7 From the File menu, select Export and then To Workspace...

K =] E3

Save current FIS to workspace

“Workzpace vanable I tipper

Cancel | (]

8 Enter the variable name tipper and click on OK.

You will see the diagram updated to reflect the new names of the input
and output variables. There is now a new variable in the workspace called
tipper that contains all the information about this system. By saving to
the workspace with a new name, you also rename the entire system. Your
window will look something like this.

2-35

2 Tutorial

|T_FIS E ditor: tipper M= E3
File Edit “iew

tipper

imamclani

| FIS Mame: tipper FIS Type: mamdani |
And method i - Current ¥ ariable
Or method o <] | [MName
o T
Implication min - e
Range
Aggregation an =
Defuzzification centraid - Help Claze | |
System "tipper': 2 inputs, 1 output, and 3 rules |

Leave the inference options in the lower left in their default positions for now.
You've entered all the information you need for this particular GUI. Next
define the membership functions associated with each of the variables. To do
this, open the Membership Function Editor. You can open the Membership
Function Editor in one of three ways:

< Pull down the View menu item and select Edit Membership Functions....
<« Double-click on the icon for the output variable, tip.

= Type mfedit at the command line.

2-36

Building Systems with the Fuzzy Logic Toolbox

The Membership Function Editor

This is the “Variable Palette”
area. Click on a variable here
to make it current and edit its
membership functions.

These menu items allow you
to save, open, or edita uzzy
system using any of the five
basic GUI tools.

This graph field displays all
the membership functions o

the current variable.

E'J 'Membemhip Function Editor: tipper

Click on a line to select it and you
can change any of its attributes,
including name, type and

numerical parameters. qu% your
mouse to move or change the shape
of a selected membership function.

File Edit “iew
FIS Variables Mambarship functon pigfs P10t points: [71
poar good excallnt
a4
L0
senice tip
fiood
These text fields display input variabls "sarvice”
the name and type o
the current variable. \\ Current Yariable Current Membership Function [click on MF to select)
This edit field lets Ham - Mame qood
you set the range of
the current variable. Tope b Tupe gauzamf -
Params
This edit field lets you set 1| Range [010] [055
the display range of the
currentplot. _— I Display Range @ ‘ Helg | Cloze ‘

Fieady
I

This status line describes
the most recent operation.

This edit field lets
you chon?e the
numerica
parameters for the
current membership
function.

This pop-up menu lets
you change the type
of the current
membership function.

This edit field lets you
change the name of the
current membership
function.

The Membership Function Editor shares some features with the FIS Editor.
In fact, all of the five basic GUI tools have similar menu options, status lines,
and Help and Close buttons. The Membership Function Editor is the tool
that lets you display and edit all of the membership functions associated with
all of the input and output variables for the entire fuzzy inference system.

2-37

2 Tutorial

2-38

When you open the Membership Function Editor to work on a fuzzy inference
system that does not already exist in the workspace, there are not yet any
membership functions associated with the variables that you have just
defined with the FIS Editor.

On the upper left side of the graph area in the Membership Function Editor is
a “Variable Palette” that lets you set the membership functions for a given
variable.To set up your membership functions associated with an input or an
output variable for the FIS, select an FIS variable in this region by clicking
on it.

Next select the Edit pull-down menu, and choose Add MFS A new window
will appear, which allows you to select both the membership function type and
the number of membership functions associated with the selected variable.

In the lower right corner of the window are the controls that let you change
the name, type, and parameters (shape), of the membership function, once

it has been selected.

The membership functions from the current variable are displayed in the main
graph. These membership functions can be manipulated in two ways. You
can first use the mouse to select a particular membership function associated
with a given variable quality, (such as poor, for the variable, service), and
then drag the membership function from side to side. This will affect the
mathematical description of the quality associated with that membership
function for a given variable. The selected membership function can also be
tagged for dilation or contraction by clicking on the small square drag points
on the membership function, and then dragging the function with the mouse
toward the outside, for dilation, or toward the inside, for contraction. This will
change the parameters associated with that membership function.

Below the Variable Palette is some information about the type and name of
the current variable. There is a text field in this region that lets you change
the limits of the current variable’s range (universe of discourse) and another
that lets you set the limits of the current plot (which has no real effect on
the system).

Building Systems with the Fuzzy Logic Toolbox

The process of specifying the input membership functions for this two input
tipper problem is as follows:

1 Select the input variable, service, by double-clicking on it. Set both the
Range and the Display Range to the vector [0 10].

2 Select Add MFs... from the Edit menu. The window below opens.

Add membership functions

MF type gaussmf — |

Mumber of MFs & _.|

Cancel | QK |‘

3 Use the tab to choose gaussmf for MF Type and 3 for Number of MFs.
This adds three Gaussian curves to the input variable service.

4 Click once on the curve with the leftmost hump. Change the name of the
curve to poor. To adjust the shape of the membership function, either use
the mouse, as described above, or type in a desired parameter change, and
then click on the membership function. The default parameter listing
for this curve is [1.5 0].

5 Name the curve with the middle hump, good, and the curve with the
rightmost hump, excellent. Reset the associated parameters if desired.

6 Select the input variable, food, by clicking on it. Set both the Range and
the Display Range to the vector [0 10].

7 Select Add MFs... from the Edit menu and add two trapmf curves to the
input variable food.

8 Click once directly on the curve with the leftmost trapezoid. Change the
name of the curve to rancid. To adjust the shape of the membership
function, either use the mouse, as described above, or type in a desired
parameter change, and then click on the membership function. The
default parameter listing for this curve is [0 0 1 3].

9 Name the curve with the rightmost trapezoid, delicious, and reset the
associated parameters if desired.

2-39

2 Tutorial

2-40

Next you need to create the membership functions for the output variable,
tip. To create the output variable membership functions, use the Variable
Palette on the left, selecting the output variable, tip. The inputs ranged from
0 to 10, but the output scale is going to be a tip between 5 and 25 percent.

Use triangular membership function types for the output. First, set the
Range (and the Display Range) to [0 30], to cover the output range.
Initially, the cheap membership function will have the parameters [0 5 10],
the average membership function will be [10 15 20], and the generous
membership function will be [20 25 30]. Your system should look something

like this.

[Membership Function Editor: tipper
File Edit Wiew

FIS Variables

Membership function plots plat paints: 131
T T

T
cheap

T T
averace generous

10 1 20 25 an

output variable "tip*

Current Variable

Current Membership Function [click on MF to select]

Mame tip Hame IgemﬂT
Tupe output Type I trimf j'
Fiange lw Paramsz I [20 25 30]

Dizplay Range lw ‘ Help | Cloze | ‘

Selected variable "'tip"

Now that the variables have been named, and the membership functions
have appropriate shapes and names, you're ready to write down the rules.
To call up the Rule Editor, go to the View menu and select Edit Rules..., or

type ruleedit at the command line.

Building Systems with the Fuzzy Logic Toolbox

The Rule Editor

The menu items allow The rules are
you to save, open, or entered

edit a fuzzy system . automatically
using any of the five Input or output selection menus. using the GUI
basic GUI tools. tools.

51 |Rule Editor: tipper

Fil= Edit ‘“iew Options

falalala
excellznt
none

average
generaus
nare

ok

tule | Change rulel

/H Help | Close/ | ‘

Negate input or output Create or edit rules with the GUI buttons and The Help button

statements in rules. choices from the input or output selection menus. ~ 9iV€s some
information about

how the Rule Editor
works, and the
Close button closes
the window.

Link input /

statements in rules.

This status line
describes the most
recent operation.

Constructing rules using the graphical Rule Editor interface is fairly self
evident. Based on the descriptions of the input and output variables defined
with the FIS Editor, the Rule Editor allows you to construct the rule
statements automatically, by clicking on and selecting one item in each
input variable box, one item in each output box, and one connection item.
Choosing none as one of the variable qualities will exclude that variable
from a given rule. Choosing not under any variable name will negate the

2-41

2 Tutorial

2-42

associated quality. Rules may be changed, deleted, or added, by clicking
on the appropriate button.

The Rule Editor also has some familiar landmarks, similar to those in the
FIS Editor and the Membership Function Editor, including the menu bar and
the status line. The Format pop-up menu is available from the Options
pull-down menu from the top menu bar—this is used to set the format for the
display. Similarly, Language can be set from under Options as well. The
Help button will bring up a MATLAB Help window.

To insert the first rule in the Rule Editor, select the following:

= poor under the variable service

« rancid under the variable food

The or radio button, in the Connection block

cheap, under the output variable, tip.
The resulting rule is
1. If (service is poor) or (food is rancid) then (tip is cheap) (1)

The numbers in the parentheses represent weights that can be applied to each
rule if desired. You can specify the weights by typing in a desired number
between zero and one under the Weight setting. If you do not specify them,
the weights are assumed to be unity (1).

Follow a similar procedure to insert the second and third rules in the Rule
Editor to get

1. If (service is poor) or (food is rancid) then (tip is cheap) (1)
2. If (service is good) then (tip is average) (1)
3. If (service is excellent) or (food is delicious) then (tip is generous) (1)

To change a rule, first click on the rule to be changed. Next make the desired
changes to that rule, and then click Change rule. For example, to change
the first rule to

1. If (service not poor) or (food not rancid) then (tip is not cheap) (1)

Building Systems with the Fuzzy Logic Toolbox

Select the not check box under each variable, and then click Change rule.

The Format pop-up menu from the Options menu indicates that you're
looking at the verbose form of the rules. Try changing it to symbolic. You
will see

1. (service==poor) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) => (tip=generous) (1)

There is not much difference in the display really, but it is slightly more
language neutral, since it doesn't depend on terms like “if” and “then.” If you
change the format to indexed, you'll see an extremely compressed version of
the rules that has squeezed all the language out.

1,1(1):1
2,2(1):1
3,31 :1

This is the version that the machine deals with. The first column in this
structure corresponds to the input variable, the second column corresponds to
the output variable, the third column displays the weight applied to each rule,
and the fourth column is shorthand that indicates whether this is an OR (2)
rule or an AND (1) rule. The numbers in the first two columns refer to the
index number of the membership function. A literal interpretation of rule 1 is
“If input 1 is MF1 (the first membership function associated with input 1)
then output 1 should be MF1 (the first membership function associated with
output 1) with the weight 1. Since there is only one input for this system, the
AND connective implied by the 1 in the last column is of no consequence.

The symbolic format doesn’t bother with the terms, if, then, and so on.

The indexed format doesn’t even bother with the names of your variables.
Obviously the functionality of your system doesn’t depend on how well you
have named your variables and membership functions. The whole point of
naming variables descriptively is, as always, making the system easier for
you to interpret. Thus, unless you have some special purpose in mind, it will
probably be easier for you to stick with the verbose format.

At this point, the fuzzy inference system has been completely defined, in that
the variables, membership functions, and the rules necessary to calculate tips

2-43

are in place. Now look at the fuzzy inference diagram presented at the end of
the previous section and verify that everything is behaving the way you think
it should. This is exactly the purpose of the Rule Viewer, the next of the GUI
tools we'll look at. From the View menu, select View rules....

The Rule Viewer

Each column of plots (yellow) shows how

the input variable is used in the rules. The This column of plots (blue)

shows how the output

The menu items allow input values are shown here at the top. variable is used in the rules.
you to save, open, or edit

a fuzzy system using any

of the five basic GUI

tools. 1 Rule Viewer: tipper

File Edit Yiew Options

tip=1%

Each row of plots

represents one rule (here 1
there are 3). Click on a
rule to display it in the
status bar.

generate a new output
response.

Slide this line to change i : ’ ’
your input values, and

This edit field allows you T
to set the input |nput: Flot points: M e /
explicitly. P | [55] P 101 Ieft/l, ‘lght | downf up |
]
Opened system tipper, 3 ulss H Help / | Clode |
/ T
VA |
/ |
This status line describes the most recent operation. Shift the plots left, right, ~This line provides a
up, or down with these defuzzified value.
buttons.

This plot shows how the

output of each rule is combined
to make an aggregate

output and then defuzzified.

The Rule Viewer displays a roadmap of the whole fuzzy inference process. it is
based on the fuzzy inference diagram described in the previous section. You
see a single figure window with 10 small plots nested in it. The three small

2-44

Building Systems with the Fuzzy Logic Toolbox

plots across the top of the figure represent the antecedent and consequent
of the first rule. Each rule is a row of plots, and each column is a variable.
The first two columns of plots (the six yellow plots) show the membership
functions referenced by the antecedent, or the if-part of each rule. The third
column of plots (the three blue plots) shows the membership functions
referenced by the consequent, or the then-part of each rule. If you click once
on a rule number, the corresponding rule will be displayed at the bottom

of the figure. Notice that under food, there is a plot which is blank. This
corresponds to the characterization of none for the variable food in the second
rule. The fourth plot in the third column of plots represents the aggregate
weighted decision for the given inference system. This decision will depend
on the input values for the system.

There are also the now familiar items like the status line and the menu bar.
In the lower right there is a text field into which you can enter specific input
values. For the two-input system, you will enter an input vector, [9 8], for
example, and then click on Input. You can also adjust these input values by
clicking anywhere on any of the three plots for each input. This will move the
red index line horizontally, to the point where you have clicked. You can also
just click and drag this line in order to change the input values. When you
release the line, (or after manually specifying the input), a new calculation

is performed, and you can see the whole fuzzy inference process take place.
Where the index line representing service crosses the membership function
line “service is poor” in the upper left plot will determine the degree to which
rule one is activated. A yellow patch of color under the actual membership
function curve is used to make the fuzzy membership value visually apparent.
Each of the characterizations of each of the variables is specified with respect
to the input index line in this manner. If we follow rule 1 across the top of
the diagram, we can see the consequent “tip is cheap” has been truncated to
exactly the same degree as the (composite) antecedent--this is the implication
process in action. The aggregation occurs down the third column, and the
resultant aggregate plot is shown in the single plot to be found in the lower
right corner of the plot field. The defuzzified output value is shown by the
thick line passing through the aggregate fuzzy set.

The Rule Viewer allows you to interpret the entire fuzzy inference process
at once. The Rule Viewer also shows how the shape of certain membership
functions influences the overall result. Since it plots every part of every rule,
it can become unwieldy for particularly large systems, but, for a relatively
small number of inputs and outputs, it performs well (depending on how

2-45

2 Tutorial

2-46

much screen space you devote to it) with up to 30 rules and as many as 6 or
7 variables.

The Rule Viewer shows one calculation at a time and in great detail. In this
sense, it presents a sort of micro view of the fuzzy inference system. If you
want to see the entire output surface of your system, that is, the entire
span of the output set based on the entire span of the input set, you need to
open up the Surface Viewer. This is the last of our five basic GUI tools in
the Fuzzy Logic Toolbox, and you open it by selecting View surface... from
the View menu.

Building Systems with the Fuzzy Logic Toolbox

The Surface Viewer

This plot shows the

output surface for any

output of the system
Use the mouse to rotate the axes. versus Onf)}/1 one or two

inputs to the system.
The menu items allow

you fo save, open, or 51 | Surface Viewer: tipper
edit a fuzzy system _—_File Edt “iew Opfions
using any of the five
basic GUI tools.

These pop-up menus
let you specify the
one or two displayed
input variables.

These edit fields let
you determine how
densely to grid the

input space. \
input]: ST - | Y [input]: food - | £ [output]: tip =

This edit field lets you

set the input explicitly grids: 15 ¥ s 15 J
for inputs not specified ——
in the surface plot. Fief. Input | e | /E:Ic-se |
VA J
VA Vi
Feady / /
7 /I
This status line describes the most recent operation. %Iick EVG'L::JQfe e
. you're ready to
The Help bution gives calculate and plot.
some information)
about how the Surface This pop-up menu lets
Viewer works, and the your specify the
Close button closes the displayed output
window. variable.

Upon opening the Surface Viewer, we are presented with a two-dimensional
curve that represents the mapping from service quality to tip amount.
Since this is a one-input one-output case, we can see the entire mapping in
one plot. Two-input one-output systems also work well, as they generate
three-dimensional plots that MATLAB can adeptly manage. When we move

2-47

2 Tutorial

2-48

beyond three dimensions overall, we start to encounter trouble displaying the
results. Accordingly, the Surface Viewer is equipped with pop-up menus that
let you select any two inputs and any one output for plotting. Just below the
pop-up menus are two text input fields that let you determine how many
x-axis and y-axis grid lines you want to include. This allows you to keep the
calculation time reasonable for complex problems. Clicking the Evaluate
button initiates the calculation, and the plot comes up soon after the
calculation is complete. To change the x-axis or y-axis grid after the surface is
in view, simply change the appropriate text field, and click either X-grids or
Y-grids, according to which text field you changed, to redraw the plot.

The Surface Viewer has a special capability that is very helpful in cases with
two (or more) inputs and one output: you can actually grab the axes and
reposition them to get a different three-dimensional view on the data. The
Ref. Input field is used in situations when there are more inputs required
by the system than the surface is mapping. Suppose you have a four-input
one-output system and would like to see the output surface. The Surface
Viewer can generate a three-dimensional output surface where any two of
the inputs vary, but two of the inputs must be held constant since computer
monitors cannot display a five-dimensional shape. In such a case the input
would be a four-dimensional vector with NaNs holding the place of the varying
inputs while numerical values would indicate those values that remain fixed.
An NaN is the IEEE symbol for not a number.

This concludes the quick walk-through of each of the main GUI tools. Notice
that for the tipping problem, the output of the fuzzy system matches our
original idea of the shape of the fuzzy mapping from service to tip fairly well.
In hindsight, you might say, “Why bother? | could have just drawn a quick
lookup table and been done an hour ago!” However, if you are interested

in solving an entire class of similar decision-making problems, fuzzy logic
may provide an appropriate tool for the solution, given its ease with which

a system can be quickly modified.

Importing and Exporting from the GUI Tools

When you save a fuzzy system to disk, you're saving an ASCII text FIS file
representation of that system with the file suffix .fis. This text file can be
edited and modified and is simple to understand. When you save your fuzzy
system to the MATLAB workspace, you're creating a variable (whose name

Building Systems with the Fuzzy Logic Toolbox

you choose) that will act as a MATLAB structure for the FIS system. FIS files
and FIS structures represent the same system.

Note If you do not save your FIS to your disk, but only save it to the MATLAB
workspace, you will not be able to recover it for use in a new MATLAB session.

Customizing Your Fuzzy System

If you want to include customized functions as part of your use of the
Fuzzy Logic Toolbox, you must follow a few guidelines. You may substitute
customized functions for the AND, OR, aggregation, and defuzzification
methods, provided your customized functions work in a similar way to max,
min, or prod in MATLAB. That is, they must be able to operate down the
columns of a matrix.

In MATLAB, for a matrix X, min(x) returns a row vector containing the
minimum element from each column. For N-D arrays, min(x) operates
along the first non-singleton dimension. The function min(x,y), on the other
hand, returns an array the same size as x and y populated with the smallest
elements from x or y. Either one can be a scalar. Functions such as max,
prod, and mean operate in a similar manner.

In the Fuzzy Logic Toolbox, the implication method performs an element by
element matrix operation, similar to the min(x,y) function in MATLAB, as in

a=[1 2; 3 4];
b=[2 2; 2 2];
min(a,b)
ans =
1 2
2 2

After you have defined your custom function using the procedure described
in the next section, use the FIS Editor to substitute your custom function
for a standard function. To do this:

1 Open the FIS Editor by typing fuzzy at the command line prompt.

2 In the lower left panel, locate the method you want to replace.

2-49

2 Tutorial

2-50

3 In the drop-down menu, select Custom. A dialog box appears.

4 Enter the name of your custom function and click OK.

Your custom function then replaces the standard function in all subsequent
operations.

Custom Membership Functions

You can create your own membership functions using an M-file. The values
these functions can take must be between 0 and 1. There is a limitation
on customized membership functions in that they cannot use more than 16
parameters.

To define a custom membership function named custmf:

1 Create an M-file for a function, custmf.m, that takes values between 0 and
1, and depends on 16 parameters at most.

2 Choose the Add Custom MF item in the Edit menu on the Membership
Function Editor GUI.

3 Enter your custom membership function M-file name, custmf, in the M-file
function name text box.

4 Enter the vector of parameters you want to use to parameterize your
customized membership function in the text box next to Parameter list.

5 Give the custom membership function a name different from any other
membership function name you will use in your FIS.

6 Click OK.

Here is some sample code for a custom membership function, testmf1, that
depends on eight parameters between 0 and 10.

function out = testmfi(x, params)
for i=1:1length(x)

if x(i)<params(1)

y(i)=params(1);

elseif x(i)<params(2)
y(i)=params(2);

elseif x(i)<params(3)

Building Systems with the Fuzzy Logic Toolbox

y(i)=params(3);
elseif x(i)<params(4)
y(i)=params(4);
elseif x(i)<params(5)
y(i)=params(5);
elseif x(i)<params(6)
y(i)=params(6);
elseif x(i)<params(7)
y(i)=params(7);
elseif x(i)<params(8)
y(i)=params(8);

else
y(i)=0;

end

end

out=.1*y';

You can try naming this file testmf1.m and loading it into the Membership
Function Editor using the parameters of your choice.

2-51

2 Tutorial

Working from the Command Line

2-52

The tipping system is one of many examples of fuzzy inference systems
provided with the Fuzzy Logic Toolbox. The FIS is always cast as a MATLAB
structure. To load this system (rather than bothering with creating it from
scratch), type

a = readfis('tipper.fis')
MATLAB will respond with

a:
name: 'tipper'
type: 'mamdani'
andMethod: 'min’
orMethod: 'max'
defuzzMethod: ‘centroid'
impMethod: 'min’
aggMethod: 'max'
input: [1x2 struct]
output: [1x1 struct]
rule: [1x3 struct]

The labels on the left of this listing represent the various components of the
MATLAB structure associated with tipper.fis. You can access the various
components of this structure by typing the component name after typing a.
At the MATLAB command line, type

a.type

for example. MATLAB will respond with

ans =
mamdani

The function
getfis(a)

returns almost the same structure information that typing a, alone does.

Working from the Command Line

getfis(a)returns

Name = tipper
Type = mamdani
NumInputs 2
InLabels
service
food
NumOutputs = 1
OutLabels =
tip
NumRules = 3
AndMethod = min
OrMethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = centroid

Notice that some of these fields are not part of the structure, a. Thus, you
cannot get information by typing a.Inlabels, but you can get it by typing

getfis(a,'Inlabels’)
Similarly, you can obtain structure information using getfis in this manner.
getfis(a,'input',1)
getfis(a,'output’,1)
getfis(a,'input',1,'mf';1)

The structure.field syntax also generates this information. For more
information on the syntax for MATLAB structures and cell arrays, see the
MATLAB documentation.
For example, type

a.input

or

a.input(1).mf (1)

2-53

2 Tutorial

2-54

The function getfis is loosely modeled on the Handle Graphicse function get.
There is also a function called setfis that acts as the reciprocal to getfis.

It allows you to change any property of an FIS. For example, if you wanted
to change the name of this system, you could type

a = setfis(a,'name','gratuity’);

However, since a is already a MATLAB structure, you can set this information
more simply by typing

a.name = 'gratuity’;

Now the FIS structure a has been changed to reflect the new name. If you
want a little more insight into this FIS structure, try

showfis(a)

This returns a printout listing all the information about a. This function
is intended more for debugging than anything else, but it shows all the
information recorded in the FIS structure

Since the variable, a, designates the fuzzy tipping system, you can display
any of the GUIs for the tipping system directly from the command line. Any of
the following will display the tipping system with the associated GUI:

= fuzzy(a) displays the FIS Editor.

= mfedit(a) displays the Membership Function Editor.
= ruleedit(a) displays the Rule Editor.

= ruleview(a) displays the Rule Viewer.

< surfview(a) displays the Surface Viewer.

If, in addition, a is a Sugeno-type FIS, then anfisedit(a) will display the
ANFIS Editor GUI.

Once any of these GUIs has been opened, you can access any of the other
GUIs using the pull-down menu rather than the command line.

Working from the Command Line

System Display Functions

There are three functions designed to give you a high-level view of your fuzzy
inference system from the command line: plotfis, plotmf, and gensurf.
The first of these displays the whole system as a block diagram much as

it would appear on the FIS Editor.

plotfis(a)

[# Figure No. 1 = E
File Edit ‘Window Help

sarvice (3) tipper

{mamdaniy

Arukes

tip (3)

food (2)

System tipper: 2 inputs, 1 outputs, 3 rules

After closing any open MATLAB figures or GUI windows, the function plotmf
plots all the membership functions associated with a given variable as follows.

plotmf(a,'input',1)

returns

2-55

2 Tutorial

2-56

30

T
pgor good excellent
1 / \ /
/ \ /]
R / \ /
g / /
5 0.6 / / i
2 /
£ / /
£ / \ /
5 /
s / \ /
204+ / \ i
>
] / \
/ \/
0.2 4
o 77// /// —
Il Il
0 1 2 3 4 5 6 7 8 9 10
service
plotmf(a,'output’,1)
T T
cheap average generous
1F) B
0.8
2
=
@
$ 0.6
3
£
@
£
k)
]
5 0.4r-
i3
o
0.2
0 /
Il Il Il
0 5 10 15 20 25
tip

Working from the Command Line

These plots will appear in the Membership Function Editor GUI, or in an
open MATLAB figure, if plotmf is called while either of these is open.

Finally, the function gensurf will plot any one or two inputs versus any one
output of a given system. The result is either a two-dimensional curve, or a
three-dimensional surface. Note that when there are three or more inputs,

gensurf must be generated with all but two inputs fixed, as is described in

the description of genfis in Chapter 4, “Functions — Alphabetical List”.

gensurf(a)

food 0 o

service

Building a System from Scratch

It is possible to use the Fuzzy Logic Toolbox without bothering with the
GUI tools at all. For instance, to build the tipping system entirely from the
command line, you would use the commands newfis, addvar, addmf, and
addrule.

Probably the trickiest part of this process is learning the shorthand that the

fuzzy inference systems use for building rules. This is accomplished using
the command line function, addrule.

2-57

2 Tutorial

2-58

Each variable, input, or output, has an index number, and each membership
function has an index number. The rules are built from statements like this.

If inputl is MF1 or input2 is MF3, then outputl is MF2 (weight = 0.5)

This rule is turned into a structure according to the following logic. If there
are m inputs to a system and n outputs, then the first m vector entries of the
rule structure correspond to inputs 1 through m. The entry in column 1 is the
index number for the membership function associated with input 1. The entry
in column 2 is the index number for the membership function associated with
input 2, and so on. The next n columns work the same way for the outputs.
Column m + n + 1 is the weight associated with that rule (typically 1) and
column m + n + 2 specifies the connective used (where AND =1 and OR = 2).
The structure associated with the rule shown above is

1320.52

Here is one way you can build the entire tipping system from the command
line, using the MATLAB structure syntax.

newfis (‘tipper');
.input(1).name='service’;
.input(1).range=[0 10];
.input(1).mf(1).name="poor’;

.input(1).mf(1).type='gaussmf’;
.input(1).mf(1).params=[1.5 0];
.input(1).mf(2).name='good'’;
.input(1).mf(2).type='gaussmf’;
.input(1).mf(2).params=[1.5 5];
(3) .name='excellent’;
(3).type='gaussmf';

.input(1).mf(3).params=[1.5 10];
.input(2).name="food’;
.input(2).range=[0 10];

a=
a

a

a

a

a

a

a

a
a.input(1).mf
a

a

a

a
a.input(2).mf(1).name='rancid’;
a
a
a
a
a

(
(
(
(
(
(
(
(
.input(1).mf
(
(
(
(
(
(
(
(
(

.input(2).mf(1).type="trapmf’;
.input(2).mf(1).params=[-2 0 1 3];
.input(2).mf(2).name='delicious’;
.input(2).mf(2).type="trapmf’;
.input(2).mf(2).params=[7 9 10 12];

Working from the Command Line

.output(1).name="tip’;
.output(1).range=[0 30];
.output(1).mf(1).name='cheap
.output(1).mf(1).type="trimf’;
.output(1).mf(1).params=[0 5 10];
.output(1).mf(2).name='average’;
.output(1).mf(2).type="trimf’;
.output(1).mf(2).params=[10 15 20];
.output(1).mf(3).name='generous’;
.output(1).mf(3).type="trimf’;

.output(1).mf(3).params=[20 25 30];

SV <V C VN <V AV <V VI VI VR R R O R (VR < R VRV R OB OO O

.rule(1).antecedent=[1 1];
.rule(1).consequent=[1];
.rule(1).weight=1;
.rule(1).connection=2;
.rule(2).antecedent=[2 0];
.rule(2).consequent=[2];
.rule(2).weight=1;
.rule(2).connection=1;
.rule(3).antecedent=[3 2];
.rule(3).consequent=[3];
.rule(3).weight=1;
.rule(3).connection=2

Alternatively, here is how you can build the entire tipping system from the
command line using Fuzzy Logic Toolbox commands.

a=newfis('tipper');

a=addmf (a,'input',1,'service', [0 10]);
a=addmf(a,'input’,1,'poor','gaussmf',[1.5 0]);
a=addmf(a,'input’,1,'good','gaussmf',[1.5 5]);
a=addmf (a,'input',1,'excellent’,'gaussmf',[1.5 10]);
a=addvar(a,'input','food', [0 10]);

a=addmf (a,'input',2,'rancid’','trapmf',[-2 0 1 3]);
a=addmf(a,'input',2,'delicious’,'trapmf',[7 9 10 12]);
a=addvar(a,'output’,'tip’, [0 30]);

a=addmf (a,'output’,1,'cheap’,'trimf', [0 5 10]);
a=addmf (a,'output’,1,'average’,'trimf',[10 15 20]);
a=addmf (a,'output’,1,'generous’,'trimf', [20 25 301]);
ruleList=[

2-59

2 Tutorial

2-60

1
1
1

N o —
o WN =

H

2
1
2]

e(a,rulelList);

L WN =

=addrul

FIS Evaluation

To evaluate the output of a fuzzy system for a given input, use the function
evalfis. For example, the following script evaluates tipper at the input,
[12].

a = readfis('tipper');
evalfis([1 2], a)
ans =

5.5586

This function can also be used for multiple collections of inputs, since different
input vectors are represented in different parts of the input structure. By
doing multiple evaluations at once, you get a tremendous boost in speed.

evalfis([3 5; 2 7], a)
ans =

12.2184

7.7885

The FIS Structure

The FIS structure is the MATLAB object that contains all the fuzzy inference
system information. This structure is stored inside each GUI tool. Access
functions such as getfis and setfis make it easy to examine this structure.

All the information for a given fuzzy inference system is contained in the FIS
structure, including variable names, membership function definitions, and
so on. This structure can itself be thought of as a hierarchy of structures,

as shown in the following diagram.

Working from the Command Line

F1S
name

type

andMethod
orMethod
defuzzMethod
1mpMethod
aggMethod

You can generate a listing of information on the FIS using the showfis

input
name

range

output
name

range

rules
antecedent

conseqguent

command, as shown below.

showfis(a)

o~NO O~ WOWN =

Name tipper
Type mamdani
Inputs/Outputs [21]
NumInputMFs [3 2]
NumOutputMFs 3
NumRules 3
AndMethod min
OrMethod max
ImpMethod min
. AggMethod max
DefuzzMethod centroid
InLabels service
food
. OutlLabels tip
InRange [010]
[010]
. OutRange [030]

inputl MFs
name
type

params

input2 MFs
name

itype

output MFs
name

type

2-61

2 Tutorial

18. InMFLabels poor

19. good

20. excellent

21. rancid

22. delicious

23. OutMFLabels cheap

24, average

25. generous

26. InMFTypes gaussmf

27. gaussmf

28. gaussmf

29. trapmf

30. trapmf

31. OutMFTypes trimf

32. trimf

33. trimf

34. InMFParams [1.5 000]
35. [1.5 00]
36. [1.5 10 0 0]
37. [0013]
38. [79 10 10]
39. OutMFParams [0510 0]
40. [10 15 20 0]
41, [20 25 30 0]
42. Rule Antecedent [1 1]

43. [2 0]

44, [3 2]

42. Rule Consequent 1

43. 2

44, 3

42. Rule Weigth 1

43. 1

44, 1

42. Rule Connection 2

43. 1

44, 2

The list of command-line functions associated with FIS construction includes
getfis, setfis, showfis, addvar, addmf, addrule, rmvar, and rmmf.

2-62

Working from the Command Line

Saving FIS Files on Disk

A specialized text file format is used for saving fuzzy inference systems to a
disk. The functions readfis and writefis are used for reading and writing
these files.

If you prefer, you can modify the FIS by editing its . fis text file rather than
using any of the GUIs. You should be aware, however, that changing one entry
may oblige you to change another. For example, if you delete a membership
function using this method, you also need to make certain that any rules
requiring this membership function are also deleted.

The rules appear in indexed format in a .fis text file. Here is the file
tipper.fis.

[System]
Name="tipper’
Type='mamdani'
NumInputs=2
NumOutputs=1
NumRules=3
AndMethod="min’
OrMethod='max'
ImpMethod='min’
AggMethod='max’
DefuzzMethod='centroid'

[Inputi]

Name='service'

Range=[0 10]

NumMFs=3
MF1='poor':'gaussmf’,[1.5 0]
MF2='good':'gaussmf',[1.5 5]
MF3='excellent':'gaussmf',[1.5 10]

[Input2]

Name='food'

Range=[0 10]

NumMFs=2

MF1='rancid':'trapmf',[0 0 1 3]
MF2='delicious':'trapmf',[7 9 10 10]

2-63

2 Tutorial

2-64

[Outputt]

Name="tip'

Range=[0 30]

NumMFs=3

MF1='cheap':'trimf',[0 5 10]
MF2='average':'trimf',[10 15 20]
MF3='generous':'trimf',[20 25 30]

[Rules]

11, 1 (1) 2
20, 2 (1) : 1
32,3 (1) :2

H

Working with Simulink

Working with Simulink

The Fuzzy Logic Toolbox is designed to work seamlessly with Simulink, the
simulation software available from The MathWorks. Once you've created
your fuzzy system using the GUI tools or some other method, you're ready
to embed your system directly into a simulation.

An Example: Water Level Control

Picture a tank with a pipe flowing in and a pipe flowing out. You can change
the valve controlling the water that flows in, but the outflow rate depends
on the diameter of the outflow pipe (which is constant) and the pressure

in the tank (which varies with the water level). The system has some very
nonlinear characteristics.

S 0 |

Close

‘Water Level Control

A controller for the water level in the tank needs to know the current water
level and it needs to be able to set the valve. Our controller’s input will be
the water level error (desired water level minus actual water level) and its
output will be the rate at which the valve is opening or closing. A first pass at
writing a fuzzy controller for this system might be the following.

1. If (level is okay) then (valve is no_change) (1)
2. If (level is low) then (valve is open_fast) (1)
3. If (level is high) then (valve is close_fast) (1)

One of the great advantages of the Fuzzy Logic Toolbox is the ability to

take fuzzy systems directly into Simulink and test them out in a simulation
environment. A Simulink block diagram for this system is shown below.

2-65

2 Tutorial

It contains a Simulink block called the Fuzzy Logic Controller block. The
Simulink block diagram for this system is sltank. Typing

sltank

at the command line, causes the system to appear. At the same time, the file
tank.fis is loaded into the FIS structure tank.

sltank [_ (O]

File Edt “iew Simulation Fomat Todls

| Dl @@l A=) 2l v

PID Contmliar

WATER ||
vALVE e L

— Mus Subsystam ankE
emor
P Scopet

Companean
Fuzzy Logic Gontmlier
Soopal

tank max
inflow

S-Functian

changs
secpe

. - duidt et
Try the demo —_f
*eftania? change D rivathve
Ready | odedf S

Some experimentation shows that three rules are not sufficient, since the
water level tends to oscillate around the desired level. This is seen from
the following plot

2-66

Working with Simulink

0.2 B

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time (second)

We need to add another input, the water level’s rate of change, to slow down
the valve movement when we get close to the right level.

4. 1If (level is good) and (rate is negative), then (valve is close_slow) (1)
5. If (level is good) and (rate is positive), then (valve is open_slow) (1)
The demo, sltank is built with these five rules. With all five rules in
operations,you can examine the step response by simulating this system. This

is done by clicking Start from the pull-down menu under Simulate, and
clicking the Comparison block. The result looks like this.

2-67

2 Tutorial

2-68

18- b

0 10 20 30 40 50 60 70 80 90 100
Time (second)

One interesting feature of the water tank system is that the tank empties
much more slowly than it fills up because of the specific value of the outflow
diameter pipe. We can deal with this by setting the close_slow valve
membership function to be slightly different from the open_slow setting.

A PID controller does not have this capability. The valve command versus
the water level change rate (depicted as water) and the relative water level
change (depicted as level) surface looks like this. If you look closely, you can
see a slight asymmetry to the plot.

Working with Simulink

valve

-01 1 level

water

Because the MATLAB technical computing environment supports so many
tools (like the Control System Toolbox, the Neural Network Toolbox, and so
on), you can, for example, easily make a comparison of a fuzzy controller
versus a linear controller or a neural network controller.

For a demonstration of how the Rule Viewer can be used to interact with a
Fuzzy Logic Controller block in a Simulink model, type

sltankrule

This demo contains a block called the Fuzzy Controller With Rule Viewer
block.

In this demo, the Rule Viewer opens when you start the Simulink simulation.
This Rule Viewer provides an animation of how the rules are fired during
the water tank simulation. The windows that open when you simulate the
sltankrule demo are depicted as follows.

2-69

2 Tutorial

2-70

B :ltankrule =10]=

Sie S Mew Spuamn Foonsl Tour

R = 1= = = e

W

Fim — [
1 — 7 Rulz Yiewer: tonk = =] E3
Fl= Ezii “Wietw Jchoas
ot +
_ t_ > " Lo_la-20298 [T el ez o
ol el e~ [
Fiz Ezii ‘Wirdow Hop 2 /5 E
B #
N I (T
; I e
F 1 R s
— —Ll—
‘rwf I ET |"'f*rf-"'-'-' IIIJI i -'un| down| D ”
R O I pered sden lack e | ‘ lep | | nem | ‘

The Rule Viewer that opens during the simulation can be used to access
the Membership Function Editor, the Rule Editor, or any of the other GUIs,
(see “The Membership Function Editor” on page 2-37, or “The Rule Editor”
on page 2-41, for more information).

For example, you may want to open the Rule Editor to change one of your
rules. To do so, select Edit rules under the View menu of the open Rule
Viewer. Now you can view or edit the rules for this Simulink model.

Working with Simulink

sllankrule
File Edit “iew

D Zlee

Sonstant)

oooo ’—I

File Edit it

-

‘ FIS Mame: tank. ‘ ‘ Help | Close | ‘ l
- [— 1
Input; I [0.02981 -0.02053] Plat paints: [109 Move: |eft | right | downl up |
Water Level Contr Fieady Help | Cloze |

|#/ Rule Editor: tank

File Edit

Wiew Optionz

=10 x|
=] 3

1.1 u] then [v hange] (1]
2. IF [lewel iz low) then [valve iz open_fast] [1]
3 1E [lewel iz high] then [walve iz cloze_fast] (1]
4 IF [level iz okay] and [rate iz positive] then [valve iz cloze_slow] (1]
8. 1f [lewel iz okay] and [rate iz negative) then [valve iz open_slow] (1]
It and
level iz rate is
high - negative |«
law
none
[nat [nat
- Connection Weight:
o
& and I 1 Delete rile

| Change ule |

]

=10 x|

LI | =0.00825

Then
valve iz

r

cloze_fast
close_slow

[~ not

|

It is best if you stop the simulation prior to selecting any of these editors to
change your FIS. Remember to save any changes you make to your FIS to
the workspace before you restart the simulation.

2-71

2 Tutorial

2-72

Building Your Own Fuzzy Simulink Models

To build your own Simulink systems that use fuzzy logic, simply copy the
Fuzzy Logic Controller block out of s1tank (or any of the other Simulink demo
systems available with the toolbox) and place it in your own block diagram.
You can also find the Fuzzy Logic Controller block in the Fuzzy Logic Toolbox
library, which you can open either by selecting Fuzzy Logic Toolbox in the
Simulink Library Browser, or by typing

fuzblock

at the MATLAB prompt.

The following library appears.

ZlLibrary: fuzblock M=] E3
File Edit “iew Formal Helg
Fuzzy Logic
Controller MF
Membership
f ¥ ¥ 'j Functionzs
Fuzzy Logic
Contraller
with Ruleviewer
Ready [100% |Locked L

The Fuzzy Logic Toolbox library contains the Fuzzy Logic Controller
and Fuzzy Logic Controller with Rule Viewer blocks. It also includes a
Membership Functions sublibrary that contains Simulink blocks for the
built-in membership functions.

The Fuzzy Logic Controller with Rule Viewer block is an extension of the
Fuzzy Logic Controller block. It allows you to visualize how rules are fired
during simulation. Double-click the Fuzzy Controller With Rule Viewer block,
and the following appears.

Working with Simulink

luzzy controller with ruleviewer =] E3
File Edit “iew Simulation Format Tools

[y

ZomOder Animation1
Hold

In ‘Zm* Qutl

Fuzzy Logic Contmoler

To initialize the Fuzzy Logic Controller blocks (with or without the Rule
Viewer), double-click on the block and enter the name of the structure variable
describing your FIS. This variable must be located in the MATLAB workspace.

About the Fuzzy Logic Controller Block

For most fuzzy inference systems, the Fuzzy Logic Controller block
automatically generates a hierarchical block diagram representation of your
FIS. This automatic model generation ability is called the Fuzzy Wizard. The
block diagram representation only uses built-in Simulink blocks and therefore
allows for efficient code generation. For more information about the Fuzzy
Logic Controller block, see the fuzblock reference page.

The Fuzzy Wizard cannot handle FIS with custom membership functions or
with AND, OR, IMP, and AGG functions outside of the following list:

orMethod: max

andMethod: min,prod

impMethod: min,prod

aggMethod: max

In these cases, the Fuzzy Logic Controller block uses the S-function sffis to
simulate the FIS. For more information, see the sffis reference page.

2-73

2 Tutorial

Example: Cart and Pole Simulation

The cart and pole simulation is an example of an FIS model auto-generated
by the Fuzzy Logic Controller block. Type

slcp
at the MATLAB prompt to open the simulation.

This model appears.

Elslcp* M=l E3
File Edit “iew Simulation Format Tools Help

D|D”H§|$E|DQ|HE®|D llNormaI *I

animap

Animation

oooo
[=R=]

-
P
]
Target Position -
Switch
Constant
-
Target Fosition -

[Mouse-Criven)

i
+—]

L

Cart& FPole
Dynamics ki d
[]
Wariahle Initialization
— A e
g
Fuzzy Logic
Controller
Ready | 1002 [[|odef i

Right-click on the Fuzzy Logic Controller block and select Look under mask
from the right-click menu. This subsystem opens.

2-74

Working with Simulink

ZlLink: slcpfFuzzy Logic Controller [O] x|

File Edit “iew Simulation Formsl Tools Help

DsESE 2R o2 hEs ®) >

In1 Cutl

FIS Wifizard

I[100% | | [ade5 o

Follow the same procedure to look under the mask of the FIS Wizard
subsystem to see the implementation of your FIS. This following figure
shows part of the implementation (the entire model is too large to show in

this document).

2-75

2 Tutorial

ElLink: slcp/.../Configurable FIS/FIS Wizard *

File Edit ¥iew Simulation Format Tools Help

D& R o REY®| > = | 4|

Rule

Rule1

Rule

Rule2

Rule

Rule3

Rule

Ruled

ZergfFiring Strength?

il
Rule _/

RuleS

R iri
i Al Stren
i FIAA
Rule F g l
U i il
]

RuleG

Output MF

KT

Ready R0 [[|odef

As the figure shows, the Fuzzy Logic Controller block uses built-in Simulink
blocks to implement your FIS. Although the models can grow complex, this
representation is better suited than the S-function sffis for efficient code
generation.

2-76

Sugeno-Type Fuzzy Inference

Sugeno-Type Fuzzy Inference

The fuzzy inference process we’'ve been referring to so far is known as
Mamdani’s fuzzy inference method, the most common methodology. In this
section, we discuss the so-called Sugeno, or Takagi-Sugeno-Kang, method of
fuzzy inference. Introduced in 1985 [Sug85], it is similar to the Mamdani
method in many respects. The first two parts of the fuzzy inference process,
fuzzifying the inputs and applying the fuzzy operator, are exactly the same.
The main difference between Mamdani and Sugeno is that the Sugeno output
membership functions are either linear or constant.

A typical rule in a Sugeno fuzzy model has the form

If Input 1 =xand Input 2 =y, then Outputisz=ax+ by +c
For a zero-order Sugeno model, the output level z is a constant (a=b =0).
The output level z; of each rule is weighted by the firing strength w; of the
rule. For example, for an AND rule with Input 1 = x and Input 2 =y, the
firing strength is

w; = AndMethod (F,(x), F(y))

where F, , (.) are the membership functions for Inputs 1 and 2. The final
output of the system is the weighted average of all rule outputs, computed as

N
zWi Zi
Final Output = =——

2"

A Sugeno rule operates as shown in the following diagram.

2-77

2 Tutorial

2-78

Input MF
Input 1 Filx)
- u
Rule
Tnput WF AND W Weight
Input 2 (tiring strength)
- 2
Cutput MF
Output
=z Level
z = ai+by+c
2. Appl 3. Apply
1. Fuzzify inputs fuzz‘;p v implication
operation method (prod).
(OR = max)
1 L) poor rancid
Z, (cheap) 2
| If service is poor or food is rancid then tip = cheap
2.
no dependency
good on input 2
z,(average) z,
| If service is good then tip = average
excellent
3 ® delicious
Z;(generous) Z3
| If service is excellent or food is delicious then tip = generous
service = 3 food = 8
input 1 input 2 output
tip =16.3%

The figure above shows the fuzzy tipping model developed in previous
sections of this manual adapted for use as a Sugeno system. Fortunately, it is
frequently the case that singleton output functions are completely sufficient
for the needs of a given problem. As an example, the system tippersg.fis is
the Sugeno-type representation of the now-familiar tipping model. If you load

Sugeno-Type Fuzzy Inference

the system and plot its output surface, you will see it is almost the same as
the Mamdani system we've been looking at.

a = readfis('tippersg');
gensurf(a)

food

service

The easiest way to visualize first-order Sugeno systems is to think of each rule
as defining the location of a moving singleton. That is, the singleton output
spikes can move around in a linear fashion in the output space, depending

on what the input is. This also tends to make the system notation very
compact and efficient. Higher order Sugeno fuzzy models are possible, but
they introduce significant complexity with little obvious merit. Sugeno fuzzy
models whose output membership functions are greater than first order are
not supported by the Fuzzy Logic Toolbox.

Because of the linear dependence of each rule on the input variables of a
system, the Sugeno method is ideal for acting as an interpolating supervisor
of multiple linear controllers that are to be applied, respectively, to different
operating conditions of a dynamic nonlinear system. For example, the
performance of an aircraft may change dramatically with altitude and Mach

2-79

2 Tutorial

2-80

number. Linear controllers, though easy to compute and well-suited to any
given flight condition, must be updated regularly and smoothly to keep up
with the changing state of the flight vehicle. A Sugeno fuzzy inference system
is extremely well suited to the task of smoothly interpolating the linear gains
that would be applied across the input space; it is a natural and efficient
gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear
systems by interpolating between multiple linear models.

An Example: Two Lines

To see a specific example of a system with linear output membership
functions, consider the one input one output system stored in sugenoi.fis.

fismat = readfis('sugenoi’);
getfis(fismat,'output’,1)
Name = output
NumMFs = 2
MFLabels =
linet
line2
Range = [0 1]

The output variable has two membership functions.

getfis(fismat,'output',1,'mf',1)
Name = line1
Type = linear
Params =
-1 -1
getfis(fismat,'output',1,'mf',2)
Name = line2
Type = linear
Params =
1 -1

Further, these membership functions are linear functions of the input
variable. The membership function line1 is defined by the equation

output = (-1)*input + (-1)

Sugeno-Type Fuzzy Inference

and the membership function 1ine2 is defined by the equation
output = (1)*input + (-1)

The input membership functions and rules define which of these output
functions will be expressed and when.

showrule(fismat)

ans =

1. If (input is low) then (output is linel) (1)
2. If (input is high) then (output is 1line2) (1)

The function plotmf shows us that the membership function low generally
refers to input values less than zero, while high refers to values greater
than zero. The function gensurf shows how the overall fuzzy system output
switches smoothly from the line called 1ine1 to the line called 1ine2.

subplot(2,1,1), plotmf(fismat,'input’,1)
subplot(2,1,2),gensurf(fismat)

io

5 0.8
3

output

2-81

2 Tutorial

2-82

This is just one example of how a Sugeno-type system gives you the freedom
to incorporate linear systems into your fuzzy systems. By extension, you could
build a fuzzy system that switches between several optimal linear controllers
as a highly nonlinear system moves around in its operating space.

Conclusion

Because it is a more compact and computationally efficient representation
than a Mamdani system, the Sugeno system lends itself to the use of adaptive
techniques for constructing fuzzy models. These adaptive techniques can be
used to customize the membership functions so that the fuzzy system best
models the data.

Note You can use the MATLAB command-line function mam2sug to convert a
Mamdani system into a Sugeno system (not necessarily with a single output)
with constant output membership functions. It uses the centroid associated
with all of the output membership functions of the Mamdani system. See
Chapter 4, “Functions — Alphabetical List” for details.

Here are some final considerations about the two different methods.

Advantages of the Sugeno Method

It is computationally efficient.

It works well with linear techniques (e.g., PID control).

It works well with optimization and adaptive techniques.

It has guaranteed continuity of the output surface.

It is well-suited to mathematical analysis.
Advantages of the Mamdani Method

= It is intuitive.
< It has widespread acceptance.

= It is well suited to human input.

anfis and the ANFIS Editor GUI

anfis and the ANFIS Editor GUI

The basic structure of the type of fuzzy inference system that we've seen thus
far is a model that maps input characteristics to input membership functions,
input membership function to rules, rules to a set of output characteristics,
output characteristics to output membership functions, and the output
membership function to a single-valued output or a decision associated

with the output. We have only considered membership functions that have
been fixed, and somewhat arbitrarily chosen. Also, we've only applied

fuzzy inference to modeling systems whose rule structure is essentially
predetermined by the user’s interpretation of the characteristics of the
variables in the model.

In this section we discuss the use of the function anfis and the ANFIS Editor
GUI in the Fuzzy Logic Toolbox. These tools apply fuzzy inference techniques
to data modeling. As you have seen from the other fuzzy inference GUIs, the
shape of the membership functions depends on parameters, and changing
these parameters will change the shape of the membership function. Instead
of just looking at the data to choose the membership function parameters, we
will see how membership function parameters can be chosen automatically
using these Fuzzy Logic Toolbox applications.

A Modeling Scenario

Suppose you want to apply fuzzy inference to a system for which you already
have a collection of input/output data that you would like to use for modeling,
model-following, or some similar scenario. You don't necessarily have a
predetermined model structure based on characteristics of variables in your
system.

There will be some modeling situations in which you can't just look at the
data and discern what the membership functions should look like. Rather
than choosing the parameters associated with a given membership function
arbitrarily, these parameters could be chosen so as to tailor the membership
functions to the input/output data in order to account for these types of
variations in the data values. This is where the so-called neuro-adaptive
learning techniques incorporated into anfis in the Fuzzy Logic Toolbox can
help.

2-83

2 Tutorial

2-84

Model Learning and Inference Through ANFIS

The basic idea behind these neuro-adaptive learning techniques is very
simple. These techniques provide a method for the fuzzy modeling procedure
to learn information about a data set, in order to compute the membership
function parameters that best allow the associated fuzzy inference system to
track the given input/output data. This learning method works similarly to
that of neural networks. The Fuzzy Logic Toolbox function that accomplishes
this membership function parameter adjustment is called anfis. The anfis
function can be accessed either from the command line, or through the ANFIS
Editor GUI. Since the functionality of the command line function anfis and
the ANFIS Editor GUI is similar, they are used somewhat interchangeably in
this discussion, until we distinguish them through the description of the GUI.

What Is ANFIS?

The acronym ANFIS derives its name from adaptive neuro-fuzzy inference
system. Using a given input/output data set, the toolbox function anfis
constructs a fuzzy inference system (FIS) whose membership function
parameters are tuned (adjusted) using either a backpropagation algorithm
alone, or in combination with a least squares type of method. This allows your
fuzzy systems to learn from the data they are modeling.

FIS Structure and Parameter Adjustment

A network-type structure similar to that of a neural network, which maps
inputs through input membership functions and associated parameters, and
then through output membership functions and associated parameters to
outputs, can be used to interpret the input/output map.

The parameters associated with the membership functions will change
through the learning process. The computation of these parameters (or their
adjustment) is facilitated by a gradient vector, which provides a measure of
how well the fuzzy inference system is modeling the input/output data for a
given set of parameters. Once the gradient vector is obtained, any of several
optimization routines could be applied in order to adjust the parameters so
as to reduce some error measure (usually defined by the sum of the squared
difference between actual and desired outputs). anfis uses either back
propagation or a combination of least squares estimation and backpropagation
for membership function parameter estimation.

anfis and the ANFIS Editor GUI

Familiarity Breeds Validation: Know Your Data

The modeling approach used by anfis is similar to many system identification
techniques. First, you hypothesize a parameterized model structure (relating
inputs to membership functions to rules to outputs to membership functions,
and so on). Next, you collect input/output data in a form that will be usable by
anfis for training. You can then use anfis to train the FIS model to emulate
the training data presented to it by modifying the membership function
parameters according to a chosen error criterion.

In general, this type of modeling works well if the training data presented
to anfis for training (estimating) membership function parameters is fully
representative of the features of the data that the trained FIS is intended to
model. This is not always the case, however. In some cases, data is collected
using noisy measurements, and the training data cannot be representative
of all the features of the data that will be presented to the model. This is
where model validation comes into play.

Model Validation Using Checking and Testing Data Sets

Model validation is the process by which the input vectors from input/output
data sets on which the FIS was not trained, are presented to the trained
FIS model, to see how well the FIS model predicts the corresponding data
set output values. This is accomplished with the ANFIS Editor GUI using
the so-called testing data set, and its use is described in a subsection that
follows. You can also use another type of data set for model validation in
anfis. This other type of validation data set is referred to as the checking
data set and this set is used to control the potential for the model overfitting
the data. When checking data is presented to anfis as well as training data,
the FIS model is selected to have parameters associated with the minimum
checking data model error.

One problem with model validation for models constructed using adaptive
techniques is selecting a data set that is both representative of the data

the trained model is intended to emulate, yet sufficiently distinct from the
training data set so as not to render the validation process trivial. If you have
collected a large amount of data, hopefully this data contains all the necessary
representative features, so the process of selecting a data set for checking or
testing purposes is made easier. However, if you expect to be presenting noisy
measurements to your model, it is possible the training data set does not
include all of the representative features you want to model.

2-85

2 Tutorial

2-86

The basic idea behind using a checking data set for model validation is that
after a certain point in the training, the model begins overfitting the training
data set. In principle, the model error for the checking data set tends to
decrease as the training takes place up to the point that overfitting begins,
and then the model error for the checking data suddenly increases. In the first
example in the following section, two similar data sets are used for checking
and training, but the checking data set is corrupted by a small amount of
noise. This example illustrates of the use of the ANFIS Editor GUI with
checking data to reduce the effect of model overfitting. In the second example,
a training data set that is presented to anfis is sufficiently different than the
applied checking data set. By examining the checking error sequence over
the training period, it is clear that the checking data set is not good for model
validation purposes. This example illustrates the use of the ANFIS Editor
GUI to compare data sets.

Constraints of anfis

anfis is much more complex than the fuzzy inference systems discussed

so far, and is not available for all of the fuzzy inference system options.
Specifically, anfis only supports Sugeno-type systems, and these must have
the following properties:

= Be first or zeroth order Sugeno-type systems.

= Have a single output, obtained using weighted average defuzzification. All
output membership functions must be the same type and either be linear
or constant.

= Have no rule sharing. Different rules cannot share the same output
membership function, namely the number of output membership functions
must be equal to the number of rules.

< Have unity weight for each rule.
An error occurs if your FIS structure does not comply with these constraints.
Moreover, anfis cannot accept all the customization options that basic fuzzy

inference allows. That is, you cannot make your own membership functions
and defuzzification functions; you must use the ones provided.

anfis and the ANFIS Editor GUI

The ANFIS Editor GUI
To get started with the ANFIS Editor GUI, type

anfisedit

The following GUI will appear on your screen.

Load or save a fuzzy
Sugeno system, or open
new Sugeno system.

Open or edit a FIS with any
of the other GUIs. Plot

region membership functions.

< ANFIS Editor: Untitled

Status of the number of inputs, outputs,
input membership functions, and output

After you generate
or load a FIS, this
button allows you to
open a graphical
representation of its
input/output
structure.

Test data against

File Edit View
— AMFIS Info. —
i~
oal # of inputs: 1
Testing data appears on the ' ﬁ 0: F'ulDtLJlei 1
plot in blue as - aal . of input rfs:
Training data appears on
the plot in blue as 0 0 =
Checking data appears on
the plot in blue as ++ 02+ |
T
FIS output appears on the 0 ! L L L |
plot in red as ** 0 0.2 0.4 0.6 0.8 } | _ClearPt |
[Load data —][GeneateFIS —][TrainFIS | TestFIS]
Tupe: Fram: Optim. Method:
& Trairing = Load from digk, hybrid - Plot against:
o di . : & Traini
£~ Testing disk. Load from warksp. Elrjror Tolerance: Training data
& Gid pari C—
. N Fichechnollr Trcies) ¥ [Gnid partition Enochs: Testing data
Load either training, ™ Sub. clustering 3 " Checking data
testing, or checking " Demo
data from disk or 1
workspace, or load Load Data... | Clear Data | Generate FIS . | \\| |
demo data. Data AN
appears in the plot N
region. Help Cloze |
\\

Clear Data unloads the data
set selected under Type:
and clears the plot region.

Load FIS or generate FIS
from loaded data using
your chosen number of MFs

and rules or fuzzy. in the plot region.

the FIS model. The
plot appears in the
plot region.

Train FIS after setting optimization
method, error tolerance, and number
of epochs. This generates error plots

2-87

2 Tutorial

2-88

From this GUI you can:

<« Load data (training, testing, and checking) by selecting appropriate radio
buttons in the Load data portion of the GUI and then clicking Load Data

The loaded data is plotted on the plot region.

= Generate an initial FIS model or load an initial FIS model using the options
in the Generate FIS portion of the GUI

< View the FIS model structure once an initial FIS has been generated or
loaded by clicking the Structure button

= Choose the FIS model parameter optimization method: backpropagation or
a mixture of backpropagation and least squares (hybrid method)

<« Choose the number of training epochs and the training error tolerance
<« Train the FIS model by clicking the Train Now button

This training adjusts the membership function parameters and plots the
training (and/or checking data) error plot(s) in the plot region.

< View the FIS model output versus the training, checking, or testing data
output by clicking the Test Now button

This function plots the test data against the FIS output in the plot region.

You can also use the ANFIS Editor GUI menu bar to load an FIS training
initialization, save your trained FIS, open a new Sugeno system, or open any
of the other GUIs to interpret the trained FIS model.

Data Formalities and the ANFIS Editor GUI: Checking and
Training

To start training an FIS using either anfis or the ANFIS Editor GUI, first
you need to have a training data set that contains desired input/output data
pairs of the target system to be modeled. Sometimes you also want to have
the optional testing data set that can check the generalization capability

of the resulting fuzzy inference system, and/or a checking data set that
helps with model overfitting during the training. The use of a testing data
set and a checking data set for model validation are discussed in “Model
Validation Using Checking and Testing Data Sets” on page 2-85. As we
mentioned previously, overfitting is accounted for by testing the FIS trained
on the training data against the checking data, and choosing the membership

anfis and the ANFIS Editor GU

function parameters to be those associated with the minimum checking error
if these errors indicate model overfitting. You will have to examine your
training error plots fairly closely in order to determine this. These issues are
discussed later in an example. Usually these training and checking data sets
are collected based on observations of the target system and are then stored
in separate files.

Note Any data set you load into the ANFIS Editor GUI, (or that is applied
to the command-line function anfis) must be a matrix with the input data
arranged as vectors in all but the last column. The output data must be in
the last column.

ANFIS Editor GUI Example 1: Checking Data Helps
Model Validation

In this section we look at an example that loads similar training and checking
data sets, only the checking data set is corrupted by noise.

Loading Data

To work both of the following examples, you load the training data

sets (fuzexitrnData and fuzex2trnData) and the checking data sets
(fuzexichkData and fuzex2chkData), into the ANFIS Editor GUI from the
workspace. You may also substitute your own data sets.

To load these data sets from the directory fuzzydemos into the MATLAB
workspace, type

load fuzexitrnData.dat
load fuzex2trnData.dat
load fuzexichkData.dat
load fuzex2chkData.dat

from the command line.

2-89

2 Tutorial

2-90

Note You may also want to load your data set from the fuzzydemos or any
other directory on the disk, using the ANFIS Editor GUI, directly.

Open the ANFIS Editor GUI by typing anfisedit. To load the training data
set, click Training worksp. and then Load Data.

The small GUI window that opens allows you to type in a variable name from
the workspace. Type in fuzexitrnData, as shown below.

input vwanable name

I fuzexTtmData

Cancel | Ok |

The training data appears in the plot in the center of the GUI as a set of circles.

anfis and the ANFIS Editor GUI

AMFIS Editor: Untitled M=) &2
File Edit View
Training Data (ooo) — AMFIS Info. —
i
o] # of inputs: 1
Qoo © f of outputs; 1
05k o o of autputs:
Qoo @ # of imput ms:
5— ok o # of train data
S o o o pairs: 25
o] o
05t ° Yo o 4
00 f'e] Sticture |
-1 1 1 1 1 1 Cl Plat
0 5 10 15 20 25 | _ CearPlot |
data set index
[Loaddata | [GenerateFIS — Train FIS 1 TestFIS]
Type: Fram: Optirn. Method:
& Training ' Load fram disk Ih_l,Jbrid 'I Plat against:
; disk = Load from worksp. Error Tolerance: & Training data
™~ Testing . N — .
€ Checking & worksp, ' Grid part|t|nr? - [Te$t|ng-| data
& Demo = Sub. clustering I'H £ Checking data
Load Data... | | Clear Data | Generate FIS .. | T Tiest faw |
train data loaded ‘ | Help | Close | |

Notice the horizontal axis is marked data set index. This index indicates
the row from which that input data value was obtained (whether or not the
input is a vector or a scalar). Next select the Checking check box in the Type
column of the Load data portion of the GUI to load fuzexichkData from

the workspace. This data appears in the GUI plot as plusses superimposed

on the training data.

2-91

2 Tutorial

2-92

<4 ANFIS Editor: Untitled M=
File Edit View
Checking Data (+++) — AMFIS Info. —
i
+ .
=+ o] # of inputs; —1
oTete) O+t | fofinputs1—
0.5- t O+ + _—HToutputs: 1
CBEBES+O # of input mfs:
=1 +
§— Ok + G4 # of check data
= pairs: 26
© + oC o o] Q
05 o + & e} i ES N 6
G+ p)
_1 1 1 1 1 1 |
0 5 10 15 20 25 20 | —CearPlot |
data set index
[Loaddata [Generate FIS — | [TrainFIS | TestFIs]
Type: From: Optim. Method:
 Trairing " Load from disk. hybrid hd Plat against:
& Tesiig ™ digk, " Load from worksp. Egor Tolerance: & Training data
& G - ~ .
& Checking & worksp. Grid partition Epachs: Testing data
i i [i
£ Dema Sub. clustering 3 Checking data
Load Data... | Clear Data | Generate FIS ... | | |

check data

loaded

Initializing and Generating Your FIS

You can either initialize the FIS parameters to your own preference, or if you
do not have any preference for how you want the initial membership functions
to be parameterized, you can let anfis do this for you.

Automatic FIS Structure Generation with ANFIS
To initialize your FIS using anfis,

+++ Checking data

+——000 Training data

This data set will be used to train a fuzzy system by adjusting the membership
function parameters that best model this data. The next step is to specify an
initial fuzzy inference system for anfis to train.

1 Choose Grid partition, the default partitioning method. The two partition

methods, grid partitioning and subtractive clustering, are described
later in “Fuzzy C-Means Clustering” on page 2-113, and in “Subtractive
Clustering” on page 2-116.

anfis and the ANFIS Editor GUI

2 Click on the Generate FIS button. This displays a menu from which
you can choose the number of membership functions, MFs, and the type
of input and output membership functions. Notice there are only two
choices for the output membership function: constant and linear. This
limitation of output membership function choices is because anfis only
operates on Sugeno-type systems.

3 Fill in the entries as we've done below, and click OK.

—INPUT
Murnber of MFs: MF Tope:
trirnf -
4 traEmf J
To azzign a different g:ﬂzzrz“:nf
nurmber of MFs to each gimf
input, uze spaces to 5$igmf
zeperate these numbers. Seent
—OUTRUT
constant i
MF Type: _|
Cancel | 0K |

You can also implement this FIS generation from the command line using
the command genfisi (for grid partitioning) or genfis2 (for subtractive
clustering). A command line language example illustrating the use of genfis1
and anfis is provided later.

Specifying Your Own Membership Functions for ANFIS

Although we don't expect you to do this for this example, you can choose your
own preferred membership functions with specific parameters to be used by
anfis as an initial FIS for training.

2-93

2 Tutorial

2-94

To define your own FIS structure and parameters:

5

Open the Edit membership functions menu item from the View menu.

Add your desired membership functions (the custom membership option
will be disabled for anfis). The output membership functions must either
be all constant or all linear. For carrying out this and the following step,
see “The FIS Editor” on page 2-33 and “The Membership Function Editor”
on page 2-37.

Select the Edit rules menu item in the View menu. Use the Rule Editor to
generate the rules (see “The Rule Editor” on page 2-41).

Select the Edit FIS Properties menu item from the View menu. Name
your FIS, and save it to either the workspace or the disk.

Use the View menu to return to the ANFIS Editor GUI to train the FIS.

To load an existing FIS for ANFIS initialization, in the Generate FIS portion
of the GUI, click Load from worksp. or Load from disk. You will load your
FIS from the disk if you have saved an FIS previously that you would like to
use. Otherwise you will be loading your FIS from the workspace. Either of
these radio buttons toggle the Generate FIS button to Load.... Load your
FIS by clicking this button.

Viewing Your FIS Structure

After you generate the FIS, you can view the model structure by clicking the
Structure button in the middle of the right side of the GUI. A new GUI
appears, as follows.

anfis and the ANFIS Editor GUI

Node labels—for
example, leftmost
node is the
input node.

Return to other open GUIs
using the Window menu.

Color coding of branches
characterizes the rules.

<} Anfis Model Structure
input inputmt rule cutputmf cutput
Legical O perations
anc]
. of
net
Click on each node to zee detailed information Update | HM Cloze

Node representing a normalization
factor for the rules.

The branches in this graph are color coded to indicate whether or not and,
not, or or are used in the rules. Clicking on the nodes indicates information
about the structure.

You can view the membership functions or the rules by opening either the
Membership Function Editor, or the Rule Editor from the View menu.

ANFIS Training

The two anfis parameter optimization method options available for FIS
training are hybrid (the default, mixed least squares and backpropagation)
and backpropa (backpropagation). Error Tolerance is used to create a

2-95

2 Tutorial

training stopping criterion, which is related to the error size. The training
will stop after the training data error remains within this tolerance. This is
best left set to O if you don't know how your training error is going to behave.

To start the training,

= Leave the optimization method at hybrid.

<« Set the number of training epochs to 40, under the Epochs listing on the
GUI (the default value is 3).

« Select Train Now.

The following should appear on your screen.

<+ ANFIS Editor: Untitled [_TC]
Fil= Edit Wiew
Training Error — ANFIS Info. —
016 -
tra e, aret Tt T Y aaas # of input: 1
014 k + e, P # af outputs: 1
-JH&_ Frrsaaent # of input mfs:
.*.
a_ HHH—*—* 4
= -*.*_*
£ 012r * 4 +
Ll *y
*4
+
01k ‘*_*_

0 08 . . | | . | *—*—** Shucture
o 5 10 15 20 25 30 a5 a0 | _ Ceafiet |
Epaochs
— Loaddata — | [[Generate FIS — | [TrainFIS — | TestFIS]
Type: From: Optirn. Method:
¢ Training £ Load from disk hwbrid e Plot againzt:
O di . : & Traini
 Testing disk Load fram worksp. Elr]mr Tolerance: Training data
o . L. Ii ~ .
& Checking & worksp, Grid partition Epochs: Testing data
" 1 " I
 Demo Sub. cluztering 40l Checking data
Load Data. . | Clear Data Generate FIS .. | Train Mo | Test How |
Epoch 40:erar= 0033462 Help | Cloze |

2-96

=== Training error

... Checking error

anfis and the ANFIS Editor GUI

Notice how the checking error decreases up to a certain point in the training
and then it increases. This increase represents the point of model overfitting.
anfis chooses the model parameters associated with the minimum checking
error (just prior to this jump point). This is an example for which the checking
data option of anfis is useful.

Testing Your Data Against the Trained FIS
To test your FIS against the checking data, select the Checking data check
box in the Test FIS portion of the GUI, and click Test Now. Now when you
test the checking data against the FIS, it looks pretty good.

<4 ANFIS Editor: Untitled M=
File Edit iew
Checking data . + FIS output : * — AMFIS Info. —
1-
ii i# # af input; 1
05 * + # of outputs: 1
* ¥ ** * H# of input mfs:
= 4
[+ ok #
s |+
= t % * T
N5k " *+¢¢¢+* +#
¥+ * Structure
-1 1 1 I 1 1 1
0 5 10 15 20 25 50 | —ClearPlot |
[ndlex
[Loaddata — | [[Generate FIS — | TrainFIS — 1 TestFIS]
Type: Fram: Optim. Method:
¢ Training £ Load from disk hybrid < Plat against:
© di r~ : " Traini
™~ Testing disk Load from warksp. Egu:ur T olerance: Training data
o . .. ,7 ~ .
& Checking € worksp. + Girid partltlnr? Epachs: TE‘.'StII"l? data
8 D= " Sub. clustering a0 f+ Checking data
Load Data... | Clear Data | Generate FIS ... | Train Mow | Test Mow |
Average testing emor: 0.7461 Help | Cloze |

2-97

2 Tutorial

2-98

Note on loading more data with anfis If you load data into anfis after
clearing previously loaded data, you must make sure that the newly loaded
data sets have the same number of inputs as the previously loaded ones did.
Otherwise, you will have to start a new anfisedit session from the command
line.

Note on the checking data option and clearing data If you don’t want
to use the checking data option of anfis, don't load any checking data before
you train the FIS. If you decide to retrain your FIS with no checking data, you
can unload the checking data in one of two ways. One method is to select the
Checking radio button in the Load data portion of the GUI and then click
Clear Data to unload the checking data. The other method you can use is
to close the GUI and go to the command line and retype anfisedit. In this
case you will have to reload the training data. After clearing the data, you
will need to regenerate your FIS. Once the FIS is generated, you can use
your first training experience to decide on the number of training epochs you
want for the second round of training.

ANFIS Editor GUI Example 2: Checking Data Does
not Validate Model

In this example, we examine what happens when the training and checking
data sets are sufficiently different. To see how the ANFIS Editor GUI can be
used to learn something about data sets and how they differ:

1 Clear both the training and checking data.

2 You can also click the Clear Plot button on the right, although you don't
have to.

3 Load fuzex2trnData and fuzex2chkData (respectively, the training data
and checking data) from the MATLAB workspace just as you did in the
previous example.

anfis and the ANFIS Editor GUI

You should get something that looks like this.

<4 ANFIS Editor: Untitled M=l
Eile Edit View
Training Data (ooo) — AMFIS Infa. —
1-
of inputs: 1
0.5_+ o 42 + + ++O o O$O + # of outputs: 1
o] + oo+ # of input mfs:
= o} +
2 ot + e} o) # of train data
= pairz; 25
o+
S+ + ES e} o] +
0.5 & +
e} o o) + * i
Structure
- L 1 1 L L |
0 5 10 15 20 25 30 | —ClearPlot_|
data set index
[Loaddats [Generate FIS B Train FI5 | TestFIS]
Type: Fram: Optim. kethod:
¢ Training ¢ Load from disk hwbrid = Plot against:
i s : ¢ Traini
£ Testing disk Load from worksp. ErDmr Tolerance: Training data
o G iti '7 i i
¥ Checking & warksp. o partltmr? Epochs: TeStIn? ats
» s ™ Sub. clustering lam + Checking data
Load Data... | Clear Data | Generate FIS ... | Train Maw | Test Mow |
train data loaded ‘ | Help | Close | ‘

+++ Checking data
000 Training data

Train the FIS for this system exactly as you did in the previous example,
except now choose 60 Epochs before training. You should get the following.

2-99

2 Tutorial

2-100

< ANFIS Editor: Untitled
File Edit iew
Training Error — AMFIS Infa. —
1r
of input: 1 *** Training error
oal # of outputs: 1 .
ooo-l-""“ocOo..........ooooooooooooooooooo i of inDUt mfs: ChECkmg error
5 o.o.oooo.o"""'
= DGF
L
0.4
Ty Structure |
02 L L 1 h 1 1
[0} 10 20 20 40 50 &0 Clear Plot
Epochs
[Loaddata | [Generate FIS — | [TrainFIS — [TestFI5]
Type: Fram: Optim. Method:
"~ Training " Load from disk hybrid - Plat against:
C di . : Traini
" Testing disk Load from warksp. Egor Tolerance: Training data
5 G . ~)
* Checking * warksp. B part|t|orl1 Epachs: TBStIn? data
‘& Oz ™ Sub. clustering B &+ Checking data
Load Data... Clear Data Generate FIS .. | Train Mow | Test Now |
Epoch Blternor= 0.25336 ‘ | Hep | Clase | ‘

Notice the checking error is quite large. It appears that the minimum
checking error occurs within the first epoch. Recall that using the checking
data option with anfis automatically sets the FIS parameters to be those

associated with the minimum checking error. Clearly this set of membership
functions would not be the best choice for modeling the training data.

What's wrong here? This example illustrates the problem discussed earlier
wherein the checking data set presented to anfis for training was sufficiently
different from the training data set. As a result, the trained FIS did not
capture the features of this data set very well. This illustrates the importance
of knowing the features of your data set well enough when you select your
training and checking data. When this is not the case, you can analyze the
checking error plots to see whether or not the checking data performed
sufficiently well with the trained model. In this example, the checking error is
sufficiently large to indicate that either more data needs to be selected for
training, or you may want to modify your membership function choices (both
the number of membership functions and the type). Otherwise the system

anfis and the ANFIS Editor GUI

can be retrained without the checking data, if you think the training data
captures sufficiently the features you are trying to represent.

To complete this example, let's test the trained FIS model against the
checking data. To do so, select Checking data in the Test FIS portion of the
GUI, and click Test Now. The following plot in the GUI indicates that there
is quite a discrepancy between the checking data output and the FIS output.

ANFIS Editor: Untitled - (O] =]
File Edit ‘iew
Checking data . + FIS output : 7 — ANFIS Info. —
1-
4+ # of input: 1
oslt + + t+ * + # of outputs: 1
t# ++ +* # + * # of input mfs:
= *
£ of + + 4 N + ++
° * t + + + ! * + *
051 +
0.5 4 % i +y
* Structure |
-1 L L L L Lk I
0 5 10 18 20 25 50 | —CeaPfit |
Index
Load data [Generate FIS [TrainFIS [TestFIS]
Tvpe: From: Optim. Method:
" Traiving " Load fram disk Ihyblid YI Flot against:
. = disk " Load from work sp. Error Tolerance: = Training data
" Testing ; N IU— :
& Checking & worksp. * Grid partltlor? e (o Testln? data
 Demo " Sub. clustering I'gu; (¥ Checking data
Load Data... | Clear Data | Generate FIS .. | Train Mow | Test Mow |
Awverage testing emror: 0.70421 ‘ ‘ Help | Close | |

anfis from the Command Line

As you can see, generating an FIS using the ANFIS Editor GUI is quite
simple. However, as you saw in the last example, you need to be cautious
about implementing the checking data validation feature of anfis. You must
check that the checking data error does what is supposed to. Otherwise you
need to retrain the FIS.

In this section we describe how to carry out the command line features of
anfis on a chaotic times-series prediction example.

2-101

2 Tutorial

2-102

Using anfis for Chaotic Time-Series Prediction

The demo mgtsdemo uses anfis to predict a time series that is generated by
the following Mackey-Glass (MG) time-delay differential equation.

(1) = 0.2x(t-1)

=0 (0 -0.1x(t)

This time series is chaotic, and so there is no clearly defined period. The
series will not converge or diverge, and the trajectory is highly sensitive to
initial conditions. This is a benchmark problem in the neural network and
fuzzy modeling research communities.

To obtain the time series value at integer points, we applied the fourth-order
Runge-Kutta method to find the numerical solution to the above MG equation;
the result was saved in the file mgdata.dat. Here we assume x(0) = 1.2, T =
17, and x(t) = 0 for t < 0. To plot the MG time series, type

load mgdata.dat
t = mgdata(:, 1); x = mgdata(:, 2); plot(t, x);

Mackey-Glass chaotic time series
T T T

0.8

0.6

0.4

0.z

0 200 400 o0 aoo 1000 1200
time (sec)

In time-series prediction, we want to use known values of the time series up to
the point in time, say, t, to predict the value at some point in the future, say,
t+P. The standard method for this type of prediction is to create a mapping

anfis and the ANFIS Editor GU

from D sample data points, sampled every A units in time, (X(t-(D-1)A),...,
X(t-A), x(1)), to a predicted future value x(t+P). Following the conventional
settings for predicting the MG time series, we set D =4 and A =P = 6. For
each t, the input training data for anfis is a four-dimensional vector of the
following form.

w(t) = [x(t-18) x(t-12) x(t-6) x(t)]
The output training data corresponds to the trajectory prediction.
s(t) = x(t+6)

For each t, ranging in values from 118 to 1117, the training input/output data
will be a structure whose first component is the four-dimensional input w,
and whose second component is the output s. There will be 1000 input/output
data values. We use the first 500 data values for the anfis training (these
become the training data set), while the others are used as checking data for
validating the identified fuzzy model. This results in two 500-point data
structures, trnData and chkData.

Here is the code that generates this data.

for t=118:1117,

Data(t-117,:)=[x(t-18) x(t-12) x(t-6) x(t) x(t+6)];
end

trnData=Data(1:500, :);

chkData=Data(501:end, :);

To start the training, we need an FIS structure that specifies the structure
and initial parameters of the FIS for learning. This is the task of genfis1.

fismat = genfisi(trnData);

Since we did not specify numbers and types of membership functions used in
the FIS, default values are assumed. These defaults provide two generalized
bell membership functions on each of the four inputs, eight altogether. The
generated FIS structure contains 16 fuzzy rules with 104 parameters. In
order to achieve good generalization capability, it is important to have the
number of training data points be several times larger than the number
parameters being estimated. In this case, the ratio between data and
parameters is about five (500/104).

2-103

2 Tutorial

2-104

The function genfis1 generates initial membership functions that are equally
spaced and cover the whole input space. You can plot the input membership

functions using the following commands.

subplot(2,2,1)
plotmf (fismat,
subplot(2,2,2)
plotmf (fismat,
subplot(2,2,3)
plotmf (fismat,
subplot(2,2,4)
plotmf (fismat,

'input', 1)
input’, 2)
'input’, 3)

'input', 4)

These initial membership functions are shown below.

1] 1
0.8 yd 0.8
/

06 / 0.6

//
0.4 // 0.4
0.2 e 0.2
=
06 08 1 12
Input 1
1 — 1
08 yd 0.8
/
06 / 0.6
//
0.4 0.4
e
0.2 - 0.2
o
06 08 1 12

Input 3

0.6 0.8 1 1.2
Input 4

anfis and the ANFIS Editor GU

To start the training, type

[fismat1,errori,ss,fismat2,error2] = ...
anfis(trnData,fismat,[],[],chkData);

This takes about 4 minutes on a Sun SPARCstation 2 for 10 epochs of
training. Because the checking data option of anfis was invoked, the final
FIS you choose would ordinarily be the one associated with the minimum
checking error. This is stored in fismat2. The following code will plot these
new membership functions.

subplot(2,2,1)
plotmf (fismat2, 'input', 1)
subplot(2,2,2)
plotmf (fismat2, 'input', 2)
subplot(2,2,3)
plotmf(fismat2, 'input', 3)
subplot(2,2,4)
plotmf (fismat2, 'input', 4)

Here is the result.

1 1 _—

0.8 / 0.8 //
/ /
06 06 //
0.4 / 0.4
/ //

0.2 4 0.2 e

0 — ob—

06 08 1 1.2 06 08 1 1.2
Input 1 Input 2
1) 1 e
s
0.8 / 0.8 /
/ /
0.6 / 0.6
/)
0.4 / 0.4 /,,/
/

0.2 - 0.2 e

o—— o

0.6 0.8 1 1.2 0.6 0.8 1 1.2
Input 3 Input 4

2-105

2 Tutorial

2-106

To plot the error signals, type

plot([errori; error2]);

Here errori and error2 are the root mean squared error for the training and
checking data, respectively.

In addition to these error plots, you may want to plot the FIS output versus
the training or checking data. To compare the original MG time series and
the fuzzy prediction side by side, try

anfis_output = evalfis([trnData; chkData], fismat2);
index = 125:1124;

subplot(211), plot(t(index), [x(index) anfis_output]);
subplot(212), plot(t(index), x(index) - anfis_output);

MG Time Serise and ANFIS Prediction

200 300 400 500 600 700 800 900 1000 1100

%107 Prediction Errors
T T T T

-5} i

-10t& I I I I I I I I I 14
200 300 400 500 600 700 800 900 1000 1100

Note that the difference between the original MG time series and the anfis
estimated values is very small. This is why you can only see one curve in the
first plot. The prediction error is shown in the second plot with a much finer
scale. Note that we have only trained for 10 epochs. Better performance is
expected if we apply more extensive training.

anfis and the ANFIS Editor GU

More on anfis and the ANFIS Editor GUI

The command anfis takes at least two and at most six input arguments.
The general format is

[fismat1,trnError,ss,fismat2,chkError] = ...
anfis(trnData,fismat,trnOpt,dispOpt,chkData,method);

where trnOpt (training options), dispOpt (display options), chkData (checking
data), and method (training method), are optional. All of the output
arguments are also optional. In this section we discuss the arguments

and range components of the command line function anfis, as well as the
analogous functionality of the ANFIS Editor GUI.

When the ANFIS Editor GUI is invoked using anfisedit, only the training
data set must exist prior to implementing anfis. In addition, the step-size will
be fixed when the adaptive neuro-fuzzy system is trained using this GUI tool.

Training Data

The training data, trnData, is a required argument to anfis, as well as to
the ANFIS Editor GUI. Each row of trnData is a desired input/output pair of
the target system to be modeled. Each row starts with an input vector and

is followed by an output value. Therefore, the number of rows of trnData is
equal to the number of training data pairs, and, since there is only one output,
the number of columns of trnData is equal to the number of inputs plus one.

Input FIS Structure

The input FIS structure, fismat, can be obtained either from any of the fuzzy
editors: the FIS Editor, the Membership Function Editor, and the Rule Editor
from the ANFIS Editor GUI, (which allows an FIS structure to be loaded from
the disk or the workspace), or from the command line function, genfis1 (for
which you only need to give numbers and types of membership functions).
The FIS structure contains both the model structure, (which specifies such
items as the number of rules in the FIS, the number of membership functions
for each input, etc.), and the parameters, (which specify the shapes of
membership functions). There are two methods that anfis learning employs
for updating membership function parameters: backpropagation for all
parameters (a steepest descent method), and a hybrid method consisting of
backpropagation for the parameters associated with the input membership

2-107

2 Tutorial

2-108

functions, and least squares estimation for the parameters associated with
the output membership functions. As a result, the training error decreases,
at least locally, throughout the learning process. Therefore, the more the
initial membership functions resemble the optimal ones, the easier it will be
for the model parameter training to converge. Human expertise about the
target system to be modeled may aid in setting up these initial membership
function parameters in the FIS structure.

Note that genfis1 produces an FIS structure based on a fixed number of
membership functions. This invokes the so-called curse of dimensionality, and
causes an explosion of the number of rules when the number of inputs is
moderately large, that is, more than four or five. The Fuzzy Logic Toolbox
offers a method that will provide for some dimension reduction in the fuzzy
inference system: you can generate an FIS structure using the clustering
algorithm discussed in “Subtractive Clustering” on page 2-116. From the
ANFIS Editor GUI, this algorithm is selected with a radio button before the
FIS is generated. This subtractive clustering method partitions the data into
groups called clusters, and generates an FIS with the minimum number rules
required to distinguish the fuzzy qualities associated with each of the clusters.

Training Options
The ANFIS Editor GUI tool allows you to choose your desired error tolerance
and number of training epochs.

Training option trnOpt for the command line anfis is a vector that specifies
the stopping criteria and the step-size adaptation strategy:

< trnOpt(1): number of training epochs, default = 10.

* trnOpt(error tolerance, default = 0.

2
« trnOpt (3

trnOpt (4

. initial step-size, default = 0.01.
. step-size decrease rate, default = 0.9.

)
)
)
)

trnOpt(5): step-size increase rate, default = 1.1.

If any element of trnOpt is an NaN or missing, then the default value is taken.
The training process stops if the designated epoch number is reached or the
error goal is achieved, whichever comes first.

anfis and the ANFIS Editor GUI

Usually we want the step-size profile to be a curve that increases initially,
reaches some maximum, and then decreases for the remainder of the training.
This ideal step-size profile is achieved by adjusting the initial step-size and
the increase and decrease rates (trnOpt(3) - trnOpt(5)). The default values
are set up to cover a wide range of learning tasks. For any specific application,
you may want to modify these step-size options in order to optimize the
training. However, as we mentioned previously, there are no user-specified
step-size options for training the adaptive neuro fuzzy inference system
generated using the ANFIS Editor GUI.

Display Options
Display options apply only to the command-line function anfis.

For the command line anfis, the display options argument, dispOpt, is a
vector of either ones or zeros that specifies what information to display, (print
in the MATLAB command line window), before, during, and after the training
process. A one is used to denote print this option, whereas a zero denotes
don’t print this option:

= dispOpt(1): display ANFIS information, default = 1.

(
< dispOpt(2): display error (each epoch), default = 1.
= dispOpt(3): display step-size (each epoch), default = 1.
= dispOpt(4): display final results, default = 1.

The default mode displays all available information. If any element of
dispOpt is NaN or missing, the default value is taken.

Method

Both the ANFIS Editor GUI and the command line anfis apply either

a backpropagation form of the steepest descent method for membership
function parameter estimation, or a combination of backpropagation and the
least-squares method to estimate membership function parameters. The
choices for this argument are hybrid or backpropagation. These method
choices are designated in the command line function, anfis, by 1 and O,
respectively.

2-109

2 Tutorial

2-110

Output FIS Structure for Training Data

fismat1 is the output FIS structure corresponding to a minimal training
error. This is the FIS structure that you will use to represent the fuzzy system
when there is no checking data used for model crossvalidation. This data also
represents the FIS structure that is saved by the ANFIS Editor GUI when
the checking data option is not used.

When the checking data option is used, the output saved is that associated
with the minimum checking error.

Training Error

The training error is the difference between the training data output value,
and the output of the fuzzy inference system corresponding to the same
training data input value, (the one associated with that training data output
value). The training error trnError records the root mean squared error
(RMSE) of the training data set at each epoch. fismat1 is the snapshot

of the FIS structure when the training error measure is at its minimum.
The ANFIS Editor GUI will plot the training error versus epochs curve as
the system is trained.

Step-Size

You cannot control the step-size options with the ANFIS Editor GUI. Using
the command line anfis, the step-size array ss records the step-size during
the training. Plotting ss gives the step-size profile, which serves as a
reference for adjusting the initial step-size and the corresponding decrease
and increase rates. The step-size (ss) for the command-line function anfis
is updated according to the following guidelines:

= If the error undergoes four consecutive reductions, increase the step-size by
multiplying it by a constant (ssinc) greater than one.

< |If the error undergoes two consecutive combinations of one increase and
one reduction, decrease the step-size by multiplying it by a constant
(ssdec) less than one.

The default value for the initial step-size is 0.01; the default values for ssinc
and ssdec are 1.1 and 0.9, respectively. All the default values can be changed
via the training option for the command line anfis.

anfis and the ANFIS Editor GU

Checking Data

The checking data, chkData, is used for testing the generalization capability
of the fuzzy inference system at each epoch. The checking data has the same
format as that of the training data, and its elements are generally distinct
from those of the training data.

The checking data is important for learning tasks for which the input number
is large, and/or the data itself is noisy. In general we want a fuzzy inference
system to track a given input/output data set well. Since the model structure
used for anfis is fixed, there is a tendency for the model to overfit the data
on which is it trained, especially for a large number of training epochs. If
overfitting does occur, we cannot expect the fuzzy inference system to respond
well to other independent data sets, especially if they are corrupted by noise.
A validation or checking data set can be useful for these situations. This data
set is used to crossvalidate the fuzzy inference model. This crossvalidation

is accomplished by applying the checking data to the model, and seeing how
well the model responds to this data.

When the checking data option is used with anfis, either via the command
line, or using the ANFIS Editor GUI, the checking data is applied to the
model at each training epoch. When the command line anfis is invoked,
the model parameters that correspond to the minimum checking error are
returned via the output argument fismat2. The FIS membership function
parameters computed using the ANFIS Editor GUI when both training and
checking data are loaded are associated with the training epoch that has

a minimum checking error.

The use of the minimum checking data error epoch to set the membership
function parameters assumes

= The checking data is similar enough to the training data that the checking
data error will decrease as the training begins

= The checking data increases at some point in the training, after which
data overfitting has occurred.

As discussed in “ANFIS Editor GUI Example 2: Checking Data Does not
Validate Model” on page 2-98, depending on the behavior of the checking data
error, the resulting FIS may or may not be the one you should be using.

2-111

2 Tutorial

2-112

Output FIS Structure for Checking Data

The output of the command line anfis, fismat2, is the output FIS structure
with the minimum checking error. This is the FIS structure that should be
used for further calculation if checking data is used for cross validation.

Checking Error

The checking error is the difference between the checking data output value,
and the output of the fuzzy inference system corresponding to the same
checking data input value, (the one associated with that checking data output
value). The checking error chkError records the RMSE for the checking data
at each epoch. fismat2 is the snapshot of the FIS structure when the checking
error is at its minimum. The ANFIS Editor GUI will plot the checking error
VS. epochs curve as the system is trained.

Fuzzy Clustering

Fuzzy Clustering

Clustering of numerical data forms the basis of many classification and
system modeling algorithms. The purpose of clustering is to identify natural
groupings of data from a large data set to produce a concise representation
of a system’s behavior. The Fuzzy Logic Toolbox is equipped with some tools
that allow you to find clusters in input-output training data. You can use
the cluster information to generate a Sugeno-type fuzzy inference system
that best models the data behavior using a minimum number of rules. The
rules partition themselves according to the fuzzy qualities associated with
each of the data clusters. This type of FIS generation can be accomplished
automatically using the command line function, genfis2.

Fuzzy C-Means Clustering

Fuzzy c-means (FCM) is a data clustering technique wherein each data point
belongs to a cluster to some degree that is specified by a membership grade.
This technique was originally introduced by Jim Bezdek in 1981 [Bez81] as an
improvement on earlier clustering methods. It provides a method that shows
how to group data points that populate some multidimensional space into a
specific number of different clusters.

The Fuzzy Logic Toolbox command line function fcm starts with an initial
guess for the cluster centers, which are intended to mark the mean location
of each cluster. The initial guess for these cluster centers is most likely
incorrect. Additionally, fcm assigns every data point a membership grade for
each cluster. By iteratively updating the cluster centers and the membership
grades for each data point, fcm iteratively moves the cluster centers to the
right location within a data set. This iteration is based on minimizing an
objective function that represents the distance from any given data point to a
cluster center weighted by that data point’'s membership grade.

fcm is a command line function whose output is a list of cluster centers and
several membership grades for each data point. You can use the information
returned by fcm to help you build a fuzzy inference system by creating
membership functions to represent the fuzzy qualities of each cluster.

2-113

2 Tutorial

An Example: 2-D Clusters

Let’'s use some quasi-random two-dimensional data to illustrate how FCM
clustering works. Load a data set and take a look at it.

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),'0")

091
0.8
0.71
06 o o
%o
L o
0.5 °
o
0.4f °Q % o _eg
Q,
0.3 o® OO
0.21 Q o

0.1r

Now we invoke the command-line function, fcm, and ask it to find two clusters
in this data set

[center,U,objFcn] = fcm(fcmdata,?2);
Iteration count = 1, obj. fcn
Iteration count = 2, obj. fcn

8.941176
7.277177

until the objective function is no longer decreasing much at all.

The variable center contains the coordinates of the two cluster centers, U
contains the membership grades for each of the data points, and objFcn
contains a history of the objective function across the iterations.

The fcm function is an iteration loop built on top of several other routines,
namely initfcm, which initializes the problem, distfcm, which is used for
distance calculations, and stepfcm, which steps through one iteration.

Plotting the objective function shows the progress of the clustering.

plot(objFcn)

2-114

Fuzzy Clustering

objective function values
10 . . T T

Finally, here is a plot displaying the two separate clusters classified by the
fcm routine. The following figure is generated using

load fcmdata.dat

[center, U, obj_fcn] = fcm(fcmdata, 2);

maxU = max(U);

index1 = find(U(1, :) == maxU);

index2 = find(U(2, :) == maxU);

line(fcmdata(index1, 1), fcmdata(index1, 2), 'linestyle’,...
‘none’,'marker', 'o','color','q');
line(fcmdata(index2,1),fcmdata(index2,2),'linestyle’,...
‘none’,'marker', 'x','color','r');

hold on
plot(center(1,1),center(1,2),'ko','markersize',15,'LineWidth’,2)
plot(center(2,1),center(2,2),'kx','markersize',15,'LineWidth’,2)

Cluster centers are indicated in the following figure by the large characters.

2-115

2 Tutorial

2-116

L OO
O . °
o ©f
08 oo©O
%0 g0 094
[¢) o
07t © O@@o
0%y o °
o ©
0.6 o o
% %)ox X
L e} X X XXX
0.5 X %Xi%x X
t x x* X
0.4 . % X X XXXX
X X X x X
0.3l o %K x KX %(X 1
X
X ><><><>><< PO
0.2F X X
X XX
X OXXX X X x
0.1r
><><>3><< «
0 .
0 0.2 0.4 0.6 0.8 1

Subtractive Clustering

Suppose we don’'t have a clear idea how many clusters there should be for a
given set of data. Subtractive clustering, [Chi94], is a fast, one-pass algorithm
for estimating the number of clusters and the cluster centers in a set of data.
The cluster estimates obtained from the subclust function can be used to
initialize iterative optimization-based clustering methods (fcm) and model
identification methods (like anfis). The subclust function finds the clusters
by using the subtractive clustering method.

The genfis2 function builds upon the subclust function to provide a
fast, one-pass method to take input-output training data and generate a
Sugeno-type fuzzy inference system that models the data behavior.

An Example: Suburban Commuting

In this example we apply the genfis2 function to model the relationship
between the number of automobile trips generated from an area and the area’s
demographics. Demographic and trip data are from 100 traffic analysis zones
in New Castle County, Delaware. Five demographic factors are considered:
population, number of dwelling units, vehicle ownership, median household
income, and total employment. Hence the model has five input variables and
one output variable.

Fuzzy Clustering

Load the data by typing
tripdata
subplot(2,1,1), plot(datin)
subplot(2,1,2), plot(datout)

50

40t 8

201 1

10 1

0 WS A::é§%2€§

0 10 20 30 40 50 60 70 80

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

tripdata creates several variables in the workspace. Of the original 100
data points, we will use 75 data points as training data (datin and datout)
and 25 data points as checking data, (as well as for test data to validate

the model). The checking data input/output pairs are denoted by chkdatin
and chkdatout. The genfis2 function generates a model from data using
clustering, and requires you to specify a cluster radius. The cluster radius
indicates the range of influence of a cluster when you consider the data space
as a unit hypercube. Specifying a small cluster radius will usually yield many
small clusters in the data, (resulting in many rules). Specifying a large cluster
radius will usually yield a few large clusters in the data, (resulting in fewer
rules). The cluster radius is specified as the third argument of genfis2. Here
we call the genfis2 function using a cluster radius of 0.5.

2-117

2 Tutorial

2-118

fismat=genfis2(datin,datout,0.5);

genfis2 is a fast, one-pass method that does not perform any iterative
optimization. An FIS structure is returned; the model type for the FIS
structure is a first order Sugeno model with three rules. We can use evalfis
to verify the model.

fuzout=evalfis(datin,fismat);
trnRMSE=norm(fuzout-datout)/sqrt(length(fuzout))
trnRMSE =

0.5276

The variable trnRMSE is the root mean square error of the system generated
by the training data. To validate the model, we apply test data to the FIS.
For this example, we use the checking data for both checking and testing
the FIS parameters.

chkfuzout=evalfis(chkdatin,fismat);
chkBRMSE=norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout))
chkRMSE =

0.6170

Not surprisingly, the model doesn’t do quite as good a job on the testing data.
A plot of the testing data reveals the difference.

plot(chkdatout)
hold on
plot(chkfuzout,'o')
hold off

Fuzzy Clustering

At this point, we can use the optimization capability of anfis to improve the
model. First, we will try using a relatively short anfis training (50 epochs)
without implementing the checking data option, but test the resulting FIS
model against the test data. The command-line version of this is as follows.

fismat2=anfis([datin datout],fismat,[50 0 0.11]);

After the training is done, we type

fuzout2=evalfis(datin,fismat2);
trnRMSE2=norm(fuzout2-datout)/sqrt(length(fuzout2))
trnRMSE2 =

0.3407
chkfuzout2=evalfis(chkdatin,fismat2);
chkBRMSE2=norm(chkfuzout2-chkdatout)/sqrt(length(chkfuzout2))
chkRMSE2 =

0.5827

The model has improved a lot with respect to the training data, but only a little
with respect to the checking data. Here is a plot of the improved testing data.

plot(chkdatout)

2-119

2 Tutorial

2-120

hold on
plot(chkfuzout2,'o’)
hold off

0 5 10 15 20 25

Here we see that genfis2 can be used as a stand-alone, fast method for
generating a fuzzy model from data, or as a pre-processor to anfis for
determining the initial rules. An important advantage of using a clustering
method to find rules is that the resultant rules are more tailored to the input
data than they are in an FIS generated without clustering. This reduces the
problem of combinatorial explosion of rules when the input data has a high
dimension (the dreaded curse of dimensionality).

Overfitting

Now let's consider what happens if we carry out a longer (200 epoch) training
of this system using anfis, including its checking data option.

[fismat3,trnErr,stepSize,fismat4,chkErr]= ...
anfis([datin datout],fismat2,[200 0 0.1],[],
[chkdatin chkdatout]);

Fuzzy Clustering

The long list of output arguments returns a history of the step-sizes, the
RMSE versus the training data, and the RMSE versus the checking data
associated with each training epoch.

ANFIS training completed at epoch 200.
Minimal training RMSE = 0.326566
Minimal checking RMSE 0.582545

This looks good. The error with the training data is the lowest we've seen,
and the error with the checking data is also lower than before, though not
by much. This suggests that maybe we had gotten about as close as possible
with this system already. Maybe we have even gone so far as to overfit the
system to the training data. Overfitting occurs when we fit the fuzzy system
to the training data so well that it no longer does a very good job of fitting the
checking data. The result is a loss of generality. A look at the error history
against both the training data and the checking data reveals much.

9

0 5 10 15 20 25
Here we can see that the training error settles at about the 50th epoch

point. In fact, the smallest value of the checking data error occurs at epoch
52, after which it increases slightly, even as anfis continues to minimize

2-121

2 Tutorial

2-122

the error against the training data all the way to epoch 200. Depending on
the specified error tolerance, this plot also indicates the model’s ability to
generalize the test data.

A Clustering GUI Tool

There is also the Clustering GUI tool, which implements fcm and subclust,
along with all of their options. Its use is fairly self evident.

The clustering GUI looks like this, and is invoked using the command line
function, findcluster.

51 'Elusleling
File Edit “indow Help

ready

data7

o] 02 0.4 0.6 0.8
-aris - ¥-aniz data_1 -

Load a data set(*.dat)
into your directory.

Load Data...
subtractiv '}

Choose fcm

|- or subtractive

clustering method.

1.25 _ Options change
with method.

the data.

[~ Start clustering
:L he d

Clear Plot N

Infa
Cloze

M

Choose two of your data
variables to be plotted on
the screen. Once the data
is loaded, select them
with the pull-down tabs.

Save the value of
the cluster center.

Fuzzy Clustering

You can invoke findcluster with a data set directly, in order to open the GUI
with a data set. The data set must have the extension .dat. For example, to
load the data set, clusterdemo.dat, type findcluster('clusterdemo.dat'’).

You use the pull-down list under Methods to change between fcm (fuzzy
c-means) and subtractive (subtractive clustering). More information on the
options can be found in the entries for fcm, and subclust, respectively.

The Clustering GUI tool works on multidimensional data sets, but only

displays two of those dimensions. Use the lists under X-axis and Y-axis to
select which data dimension you want to view.

2-123

