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Outline 
• Introduction, inspiration, motivation 
• Modelling hierarchical systems that can integrate 

Perceptual Objects with Spoken and Written Names  
• Building blocks: functions, input and output signals 
• Three versions of such systems: 

– binding concepts to spoken names, 
– binding written words to mental objects, 
– integrating visual and auditory stimuli. 

• Working with signals on hyper-spheres.  
• Incremental learning 
• Transferring knowledge between perceptual systems. 
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How it started 
• The work on modelling perception originates from 

our earlier involvement in modelling autism.  
• Autism is considered to be a complex developmental 

disorder and one of its manifestations is the 
attentional deficit that we modelled.  

• We have obtained some results related also to the 
problem of early intervention.   

• At this stage we decided to model the “normal” brain 
first and to come back to the autistic brain.  

• We have not finished the first part yet. 
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Perception 
• Perception describes the way in which our brain 

interprets sensory information and creates the 
representation of the environment. 

• We study systems that can integrate visual and 
auditory sensory information and bind it to the 
internal mental concepts. 

• Two divergent objectives in  studying how the brain 
works: 
– medical aspects  
– computational aspects 
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Inspiration 1: Speech Processing 
• Spectro-temporal analysis 

module  
• phonological network  
from which the processing 
diverges into two broad 
streams:  
• the articulatory stream   
• the lexical stream 
These two streams are 
interconnected by  
• combinatorial network 

integrating lexical and 
articulatory processing, 

• conceptual, higher-level 
network  

Dual stream model:   
G.Hickok & D.Poeppel: The cortical organization of speech 
processing. Nature Rev., Neurosci., vol.8, 2007 
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Inspiration 2: Reading in the brain 

• visual input,  
• visual word form,  
• access to meaning,  
• access to 

pronunciation and 
articulation,  

• top-down attention 
and serial reading. 

S. Dehaene, Reading in the Brain, Viking 2009 

Thirteen interconnected  cortical areas, arranged in five groups:  
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Modelling action plan 

Common to both models is:  
• phenomenological description of functions 

attributed to cortical areas, 
• specification of interconnections between areas 
Our action plan for modelling is to: 
• formally specify functions/mappings of selected 

“cortical-like” areas.   
• Specify signals between the areas in terms of a 

uniform “neuronal code” 
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Example: Integrating Perceptual Objects with 
Spoken and Written Names 

• Imagine a child learning 
about animals. 

• Three types of sensory 
inputs and information 
processing path:  
– perceptual,  
– auditory (speech),  
– visual (written names) 

• Sensory data is 
converted in a “neuronal 
code” also produced by 
all modules 

• The codes are combined 
as the afferent signal to 
“cortical” modules 

• Nine modules mapping 
input/output signals 
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A building block (module) maps signals from the 
input space to the latent/neuronal space 

• A module, (e.g. Self-Organizing Map, SOM) performs mapping of input signals 𝒙𝑈𝑈 into 
the latent/neuronal space represented by colour dots located at points 𝒗𝑈𝑈  

• The input signals 𝐱UA applied at the “synapses” of the module, and representing related 
objects, are combined with the synaptic weights 𝐖UA of all neuronal units into the 
postsynaptic activity/strength 𝑑𝑈𝑈(𝒗𝑈𝑈) = 𝑾𝑈𝑈 ∙ 𝐱UA  

• Each object, e.g. leng3 (a label) is mapped into a group of neuronal units, say, 𝛾 = 20. 
• The neuron located at  𝒗𝑤 with the highest postsynaptic strength 𝑑𝑤 is call the winner. 
• The output  signal  𝒚𝑈𝑈 = [𝒗𝑤,𝑑𝑤(𝒗𝑤)]  aka neuronal code, combines the position of 

the winner with its postsynaptic activity/strength 
• In other applications the number of neuronal nodes is smaller that the number of data 
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Binding percepts (of animals) with their spoken names 

• Sensory observation/features of 
animals are converted into their 
semantic description or percepts 

• The spoken names are coded in 
frequency domain: time samples are 
replaced by 36 mel-cepstral coefficients 

• Two sensory level modules: P (storing 
percepts aka mental objects) and SA 
(storing internal representation of 
spoken words) 

• At the top level, M+A, mental objects 
are bound with the spoken names 

• Two intermediate level modules, MO 
and UA, accommodate the modulatory 
feedback from M+A 
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Binding Percepts (of animals) to Spoken Names 
• The learning 

process develops 
the maps 

• After learning we 
can test the 
behaviour of the 
maps for different 
percepts and names 
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think 
“tiger” 

say 
“tiger” 

• During testing with congruent thought and spoken name the system 
quickly settles for the percept, e.g. “tiger” 

• In the case of incongruent thoughts and names at least two cases can be 
considered: when either objects, or names are similar, e.g. 

“cat – dog”  or  “frog – dog” 
© Andrew P Paplinski 



Similar percepts, dissimilar names 
• The modules try to 

negotiate between the 
conflicting thoughts (think 
“cat”, hear “dog”) 

• Initial values of 
postsynaptic strength is at 
the maximum and after 
six relaxation steps settle 
at the lower final values. 

• Similar percepts make the 
auditory entry prevailing: 

• all maps settle for “dog” 
with the varying degree of 
confidence measured by d 

14 “cat” 

“dog” 
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Binding percepts (of animals) with their written names 

• Same five maps as before 
• Written names of animals are pre-

processed and converted into 
bigrams 

• Two sensory level modules: P 
(storing percepts aka mental 
objects) and Wrd (storing internal 
representation of written words) 

• At the top level, M+W, mental 
objects are bound with the written 
names 

• Two intermediate level modules, 
MO and UW, accommodate the 
modulatory feedback from M+W 
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Percepts + written names: testing 
• The learning 

process 
develops the 
maps 

• After learning 
we can test the 
behaviour of 
the maps when 
percepts are 
incongruent 
with the 
written words 
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• Trajectories in the association maps go from initial “dog” to the percept “frog” 
• The misspelled name “grog” is corrected in the Unimodal Word map UW 
• The confidence of the proper guess is measured by the postsynaptic strength, 

𝑑 = 𝒘 ∙ 𝒙 normalised to 1 for the “learned” object. 
• The feedback loops settle in five relaxation steps. 
• Note the values of the feedback gains. 

Misspelled 
word “grog” 

Initial state: “dog” 
“frog” 
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Technicality: putting vectors on unity 
hyper-spheres.  

• All multidimensional data:  
– Sensory data, 𝒙S  
– Internal neuronal codes 𝒙 
– Weight vectors 𝒘 
– Neuronal position vectors 𝒗 

• are projected on a unity hyper-
sphere 

• Hence, we work with unity 
vectors. 

• The distance between vectors 
is calculated as inner product 
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Comments re. Learning 
• The objective of learning is  

– to map multidimensional input objects/vectors into 
neuronal/latent space in such a way that 

– vectors close to each other in the input space remains such 
in the latent space  

• In addition, in our case, we aim at maintaining stochastically 
constant ratio of neuronal units to the objects, e.g. 𝛾 = 20 

• The motivation  comes from the redundancy required in 
biological systems and ability to place noisy signals within the 
neurons allocated to the given objects 

• Two learning systems are considered:  
– Kohonen SOMs with dot-product learning law, 
– Elastic Nets, ENs, implementing Gaussian Mixture Models 

(GMM) with the Expectation Maximization learning law 
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Incremental learning 

• Start with some initial number of stimuli (three in the example) 
and nodes (3𝛾 = 60) 

• Apply the selected learning law. 
• For 𝑛 added new objects we generate additional  𝑛𝛾  neuronal 

units randomly distributed in the neuronal space. 
• The selected  learning law is applied again 
• As expected, at each stage the map organizes the stimuli 

according to their visual features, e.g., keeping `f’, `l’, and `i‘ 
together.   
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Demo 
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Integrating written and spoken Chinese 
• A learning system 

incrementally maps stimuli 
of different modalities 
(Chinese characters and 
related Mandarin utterances) 
into the latent spaces. 

• Note a number of 
hierarchical processing levels 
and modulated feedback 

• Each afferent signal at each 
module excites the group of 
neuronal unit 

• Location of the highest 
excited unit and the strength 
of the excitation form the 3D 
“neuronal code” 

• Bimodal association module 
store the accumulated 
knowledge and can drive 
writing and articulation 
effectors 
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Integrating written and spoken Chinese 
• Showing mapping in all 

modules after incremental 
learning 

• Chinese characters are 
converted into vectors using 
the angular integral of Radon 
transform (aniRT) 

• Mandarin utterances are 
coded using 36 mel-cepstral 
coefficients 

• Sensory maps show 
similarities based on the 
respective coding vectors. 

• Unimodal association maps 
combine information from the 
sensory modules and from the 
bimodal module 
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Writing and Articulation 
• The bimodal module accumulates 

the body of the system knowledge 
• We assume that an endogenous 

“action thought” applied to the 
bimodal module can induce the 
writing and/or articulation action, 
e.g. 
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demo 
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Closing the loop: from teacher to learner 
• The output from the articulation and writing 

effectors can be used as an input to another 
learning system. 

• We consider this issue in the paper presented 
in this conference 

Each system has three main parts: 
• Rc — Receptors that receive the external 

sensory information, auditory and visual in our 
case, 

• MI — Multimodal Integration part that 
interprets the sensory information and 
incorporates it within the internal knowledge 
structure of self-organizing modules 

• Ef — Effectors that produce an external 
representation of knowledge, articulation and 
writing effectors in our case. 27 © Andrew P Paplinski 
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Transferring the knowledge from teacher to learner 

• The teacher has its knowledge stored in the 
three modules: 
– two unimodal association modules, UV 

and UA   
– the bimodal map representing the top 

level of the system hierarchy. 
• The transfer of knowledge between the 

teacher and the learner can occur in one of 
the following three modes: 
– Incrementally from the “fully learned” 

teacher. 
– Concurrently with the teacher in the 

incremental way, 
– All in one step (batch mode) 29 © Andrew P Paplinski 



Example of the incremental learning 
• Example of bimodal maps for the 

teacher and the learner.  
• The teacher and the learner maps 

are different  
• the teacher and the learner are 

different individuals in the sense that 
they have formed different bimodal 
associations between the written and 
spoken language components,  

• More generally: they created 
different views of their limited 
“worlds” due to the history of the 
learning process. 
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teacher 

learner 

© Andrew P Paplinski 



Summary 
• We model aspects of perception showing how 

– meaning,  
– speech,  
– reading, 
– writing, 
can be integrated together inside learning systems. 

• Building blocks of the systems are self-organizing 
modules (Kohonen SOMs or Elastic Nets) 

• The blocks generate a universal “neuronal code” which 
combines the position of the winner in the 
neuronal/latent space with its post-synaptic strength. 

• We show how knowledge can be transferred  between 
the teacher and the learner systems. 
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