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Introduction, inspiration, motivation

Modelling hierarchical systems that can integrate
Perceptual Objects with Spoken and Written Names

Building blocks: functions, input and output signals

Three versions of such systems:
— binding concepts to spoken names,
— binding written words to mental objects,
— integrating visual and auditory stimuli.

Working with signals on hyper-spheres.
Incremental learning
Transferring knowledge between perceptual systems.



How it started

The work on modelling perception originates from
our earlier involvement in modelling autism.

Autism is considered to be a complex developmental
disorder and one of its manifestations is the
attentional deficit that we have modelled.

We have obtained some results related also to the
problem of early intervention.

|H

At this stage we decided to model the “normal” brain

first and to come back to the autistic brain.
We have not finished the first part yet.



Perception

* Perception describes the way in which our brain
interprets sensory information and creates the
representation of the environment.

* We study systems that can integrate visual and
auditory sensory information and bind it to the

internal mental concepts.

 Two divergent objectives in studying how the brain
works:

— medical aspects
— computational aspects



Dual stream model:

processing. Nature Rev., Neurosci., vol.8, 2007

Inspiration 1: Speech Processing

G.Hickok & D.Poeppel: The cortical organization of speech

a Via higher-order frontal networks
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e Spectro-temporal analysis
module

from which the processing
diverges into two broad
streams:

 the articulatory stream
* the lexical stream

These two streams are
interconnected by

e combinatorial network
integrating lexical and
articulatory processing,

e conceptual, higher-level
network



Inspiration 2: Reading in the brain

S. Dehaene, Reading in the Brain, Viking 2009

Thirteen interconnected cortical areas, arranged in five groups:

A modern vision of the cortical networks for reading
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Simplified “reading in the brain”

Simplified view with “just” five interconnected functional

modules/areas:

7 ™
Top—down attention
and
serial reading

- . . ™
Articulation and
pronunciation

/

Visual
mnput

l
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Modelling action plan

Common to both models is:

 phenomenological description of functions
attributed to cortical areas,

e specification of interconnections between areas

Our action plan for modelling is to:

* formally specify functions/mappings of selected
“cortical-like” areas.

* Specify signals between the areas in terms of a
uniform “neuronal code”



Top view of a learning system to be modelled

Sensorimotor A

rticulaion,
Effectors ) Writing
"Cortex"
Multimodal
Integration

A

Audio—Visual
Percepts
(e.g. perception of a dog)

Audio—Visual
sensory inputs
(e.g. speach and text)

* A child observes environment and see a dog in all its audio-visual
manifestations forming a mental object for a dog

* Mum, a teacher, says “this is a dog”. The name is learned and
integrated with the dog’s mental image.

* The teacher writes the name “dog” and a student incorporates it
in its cortical system

[ Receptors j

© Andrew P Paplinski 9



Example: Integrating Perceptual Objects with

Spoken and Written Names

e More technical

sensory inputs i
l e.g. fluffy 4-leg barking object |ree c—l;) rrs |S|:]egn;a/§![cérr]T]Of j

* Three types of sensory

Percepts inputs and information
thought Writing processing path:
commands l /Articulation — perceptu al,
Multimodal — auditory (speech),
/ (1\)/[1?3(:2:; \ — visual (written names)
Auditory / ! Written * Sensory data is converted
Mental Me.ntal . “ I d ” |
Objects Objects in a “neuronal code” also
produced by all modules
( ) o ) * The codes are combined as
o Hmodd ‘\ the afferent signal to
Auditory ntegration Written/Visual “cortical” modules
Unimodal / \, Unimodal . “ T
Associafs S * Nine “cortical” modules
ssociation Association S
mapping input/output
‘ ‘ signals
Spoken . Written
Namies sensory inputs, e.g a teacher Nanies

says: "a dog" writes: "a ddg"



Outline

* Building blocks: functions, input and output signals



A building block (module) maps signals from the
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A module, (e.g. Self-Organizing Map, SOM) ;;erforms mapping of input signals x4 into
the latent/neuronal space represented by colour dots located at points v4

The input signals X5 applied at the “synapses” of the module, and representing related
objects, are combined with the synaptic weights Wy of all neuronal units into the
postsynaptic activity/strength d; 4, (vy4) = Wya - Xpa

Each object, e.g. leng3 (a label) is mapped into a group of neuronal units, say, y = 20.
The neuron located at v,, with the highest postsynaptic strength d,, is call the winner.

The output signal yy4 = [vy, dy (V)] aka neuronal code, combines the position of
the winner with its postsynaptic activity/strength

In other applications the number of neuronal nodes is smaller that the number of data
points aka objects © Andrew P Paplinski 12



Outline

* Three versions of such systems:
— binding concepts to spoken names,
— binding written words to mental objects,
— integrating visual and auditory stimuli.
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Binding percepts (of animals) with their spoken names

Sensory observation/features of
animals are converted into their
semantic description or percepts

The spoken names are coded in
frequency domain: time samples are
replaced by 36 mel-cepstral coefficients

Two sensory level modules: P (storing
percepts aka mental objects) and SA
(storing internal representation of
spoken words)

At the top level, M+A, mental objects
are bound with the spoken names

Two intermediate level modules, MO
and UA, accommodate the modulatory
feedback from M+A
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Binding Percepts (of animals) to Spoken Names

* The learning
process develops
the maps

* After learning we
can test the
behaviour of the
maps for different
percepts and names

* During testing with congruent thought and spoken name the system
quickly settles for the percept, e.g. “tiger”

* In the case of incongruent thoughts and names at least two cases can be
considered: when either objects, or names are similar, e.g.

o 7) o )
cat — dog” or “frog —do
g@ Andrew P Paplingski g 15



Similar percepts, dissimilar names

* The modules try to

* |nitial values of

e Similar percepts make the

* all maps settle for “dog”

negotiate between the
conflicting thoughts (think
“cat”, hear “dog”)

postsynaptic strength is at
the maximum and after
six relaxation steps settle
at the lower final values.

auditory entry prevailing:

with the varying degree of
confidence measured by d




Outline

* Three versions of such systems:
— binding concepts to spoken names,
— binding written words to mental objects,
— integrating visual and auditory stimuli.
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Binding percepts (of animals) with their written names

Y MW
Same five maps as before 3 z 8
. . W vd V)8 &
Written names of animals are pre- e M+W [S S
- = 3
processed and converted into £x
. Xuw I L
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representation of written words) Zg Xuols < XUW}@ o
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Percepts + written names: testing

Mental Objects Map Mental objects+Ward Map Unimodal Word Map
g=090 M+W

* The learning
process
develops the
maps

» After learning
we can test the
behaviour of N /
the maps when T |Initia| state: “dog” | o
percepts are “frog” 1008} ,,,,,,,,,, rrrrrrrrr — Misspelled
incongruent IS — word “grog]
with the R e
written words I

* Trajectories in the association maps go from initial “dog” to the percept “frog”
 The misspelled name “grog” is corrected in the Unimodal Word map UW

* The confidence of the proper guess is measured by the postsynaptic strength,
d = w - x normalised to 1 for the “learned” object.

 The feedback loops settle in five relaxation steps.
* Note the values of the feedback gains.
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Outline

* Working with signals on hyper-spheres.



Technicality: putting vectors on unity
hyper-spheres.

All multidimensional data:

A Xn+l
— Sensory data, xg 1
— Internal neuronal codes x SOZINAN N
— Weight vectors w X it“
— Neuronal position vectors v of |
are projected on a unity hyper- 0 : '1
sphere A

Hence, we work with unity X
vectors.

The distance between vectors
is calculated as inner product



Comments re. Learning

The objective of learning is
— to map multidimensional input objects/vectors into
neuronal/latent space in such a way that
— vectors close to each other in the input space remains such
in the latent space
In addition, in our case, we aim at maintaining stochastically
constant ratio of neuronal units to the objects, e.g. y = 20
The motivation comes from the redundancy required in
biological systems and ability to place noisy signals within the
neurons allocated to the given objects
Two learning systems are considered:
— Kohonen SOMs with dot-product learning law,
— Elastic Nets, ENs, implementing Gaussian Mixture Models
(GMM) with the Expectation Maximization learning law



Outline

* Incremental learning



Start with some initial number of stimuli (three in the example)
and nodes (3y = 60)

Apply the selected learning law.

For n added new objects we generate additional ny neuronal
units randomly distributed in the neuronal space.

The selected learning law is applied again

As expected, at each stage the map organizes the stimuli
according to their visual features, e.g., keeping f, I, and ‘i’
together.


iSOMdemo100.mp4

Outline

— integrating visual and auditory stimuli.



Integrating written and spoken Chinese
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Integrating written and spoken Chinese

Bimodal Map, adding: cuil

Showing mapping in all
modules after incremental
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Writing and Articulation

B —

Bimodal
Association

|
|
!
Top—Down l'eedback

Unimodal
Association

Effectors
\
writing ]“ ,4—[ articulation |—s
“:’ y,
2 ,
E 5
= |
z
- = Xyva 6 =
_______ T d . ___]%
4%
Yov }s Youaks o
2
W ovd V W vd V| |
: | Eua
3=-—-~==-=---
S
=
&
g
e
o
. . D
Visual Auditory g
coding Coding e
Visual Learnmg Auditory
stimulus System stimulus
Rer.lde.red Spoken
Chinese Teacher syllable
Character
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say_write_demo.exe

Closing the loop: from teacher to learner

The output from the articulation and writing
effectors can be used as an input to another
learning system.

We consider this issue in the paper presented
in this conference

Each system has three main parts:

Rc — Receptors that receive the external
sensory information, auditory and visual in our
case,

M| — Multimodal Integration part that
interprets the sensory information and
incorporates it within the internal knowledge
structure of self-organizing modules

Ef — Effectors that produce an external
representation of knowledge, articulation and
writing effectors in our case.

LEARNER

TEACHER

MI: Multimodal
Integration

t

R: Receptors

Visual |Auditory

__._.Sensory |____
Inputs

Write |Articulate

Ef: Effectors

t

MI: Multimodal
Integration

o

Rc: Receptors

Visual |Auditory

Sensory
Inputs



Outline

* Transferring knowledge between perceptual systems.



Transferring the knowledge from teacher to learner

 The teacher has its knowledge stored in the
three modules:

— two unimodal association modules, UV
and UA

— the bimodal map representing the top
level of the system hierarchy.

* The transfer of knowledge between the
teacher and the learner can occur in one of
the following three modes:

— Incrementally from the “fully learned”
teacher.

— Concurrently with the teacher in the
incremental way,

— All in one step (batch mode)
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Example of the incremental learning

Bimodal Map, adding: da4
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Summary

We model aspects of perception showing how

— meaning,

— speech,

— reading,

— writing,

can be integrated together inside learning systems.

Building blocks of the systems are self-organizing
modules (Kohonen SOMs or Elastic Nets)

The blocks generate a universal “neuronal code” which
combines the position of the winner in the
neuronal/latent space with its post-synaptic strength.

We show how knowledge can be transferred between
the teacher and the learner systems.



