In this section we will give an (extremely) brief introduction to the concept of interior point methods.

- Logarithmic Barrier Method
- Method of Centers

We have previously seen methods that follow a path on the boundary of the feasible region (Simplex).

As the name suggest, interior point methods instead follow a path through the interior of the feasible region.
Importance of Interior Point Methods

For linear problems, interior point methods that are based on primal-dual formulations are competitive to Simplex for large scale problems.

Interior point methods are of central importance for optimizing large convex sub-classes of non-linear problems, in particular, so-called geometric programs and semi-definite programs.

There is an enormous variety of interior point methods and we will only look at two very very basic methods to illustrate the general idea.
NLP

minimize \(f(x) \)
subject to \(g_i(x) \geq 0 \)

Assume \(f \) is convex and \(g_i \) are concave, And that the feasible region is bounded.

Then the above NLP is a convex program
Log Barrier

Phi defines a barrier function grows fast when we Approach the boundary of the feasible set.

\[\Phi(x) = -\sum_{i} \log g_i(x) \]

Note that phi is convex on the feasible region!
Log Barrier Method

The idea is to use this as a penalty on the current position to make sure that we cannot cross the boundary of the feasible region.

The revised problem becomes

$$\minimize \quad f(x) + \frac{1}{\alpha} \phi(x)$$

We solve iteratively for increasing values of alpha.

Note as alpha increases the barrier is more strongly localized. In the limit of very large alpha, the two problems coincide.
Sequential Unconstrained Minimization

Input: Start point x_0, tolerance ε, initial barrier multiplier α_0 barrier step factor β; m is number of constraints

begin
 $x := x^{(0)}$, $\alpha := \alpha^{(0)}$.
 repeat
 $v := - (\nabla^2 f(x) + \frac{1}{\alpha} \nabla^2 \phi(x))^{-1} (\nabla f(x) + \frac{1}{\alpha} \nabla \phi(x))$; (Newton direction)
 $\delta^* := \text{argmin}_\delta f(x + \delta v) + \frac{1}{\alpha} \phi(x + \delta v)$; (a line search)
 $x := x + \delta^* v$;
 until $\|v\|$ very small
 return if $m/\alpha < \varepsilon$
 $\alpha := \alpha \beta$.
end.

The stopping condition is based on the Theorem:

$$0 \leq f(x^*_\alpha) - f^* \leq \frac{m}{\alpha}.$$
Method of Centers

The method of centers is based on the idea of a center point of
The feasible set.

The defined center point is called the “analytic center”

\[x_{ac} := \arg \max_{x \text{ feasible}} \prod_{i=1}^{m} g_i(x) \]

It is obvious that the “analytic center” is always somewhere in
The feasible region.
Revised Problem for MoC

Again, we turn the original constraint problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \geq 0
\end{align*}
\]

Into an unconstrained problem and perform a series of
Increasingly tight approximations. We look at the analytic center of
The original \(g_i \) and the additional constraint \(f(x) < t \).

\[
x_{ac} := \arg \max_{x \ \text{feasible}} \quad (t - f(x)) \prod_{i=1}^{m} g_i(x)
\]

\[
= \arg \min_{x \ \text{feasible}} \quad - \log(t - f(x)) - \sum_{i=1}^{m} \log(g_i(x))
\]
Geometric Interpretation of MoC

The analytic center is always in the intersection. By reducing \(t \) we narrow the region of this intersection until we are in an \(\varepsilon \)-neighborhood of the tangential point of \(f < f^* \) and \(gi(x) > 0 \).

We have

\[
0 \leq f(x_c^*(t)) - f^* \leq m(t - f(x_c^*(t))).
\]

(as \(t \) approaches \(f^* \), the optimum of the revised approaches the optimum of the original problem).
Method of Centers

Input: Start point x_0, tolerance ε, initial upper bound t
update interpolation rate Θ

```
begin
  $x := x^{(0)}$
  repeat
    $v := -[\nabla^2 (\log(t - f(x)) + \log \phi(x))]^{-1}
      \times \nabla (\log(t - f(x)) + \phi(x))$ (Newton direction)
    $\delta^* := \text{argmin}_\delta -\log(t - f(x + \delta v)) + \phi(x + \delta v)$ (line search)
    $x := x + \delta^* v$
  until $\|v\|$ very small
  return if $m(t - f(x)) < \varepsilon$
  $t := (1 - \Theta) f(x) + \Theta t$
end
```
The initial feasible point

Both methods discussed require an initial feasible interior point.

How can we find this?

• Think about how we did this for the Simplex method:
 • find a phase 0 problem with a trivial feasible point
 • Optimize this problem to obtain a starting point for the original problem