
Page 1

This is a series of extracts from Object Oriented Perl, a new book from Manning Publications that
will be available in August 1999. For more information on this book, see
http://www.manning.com/Conway/.

What is object-oriented Perl?
Object-oriented Perl is a small amount of additional syntax and semantics, added to the
existing imperative features of the Perl programming language. Those extras allow regular
Perl packages, variables, and subroutines to behave like classes, objects, and methods.

It's also a small number of special variables, packages and modules, and a large number
of new techniques, that together provide inheritance, data encapsulation, operator
overloading, automated definition of commonly used methods, generic programming,
multiply-dispatched polymorphism, and persistence.

It's an idiosyncratic, no-nonsense, demystified approach to object-oriented
programming, with a typically Perlish disregard for accepted rules and conventions. It
draws inspiration (and sometimes syntax) from many different object-oriented predecessors,
adapting their ideas to its own needs. It reuses and extends the functionality of existing Perl
features, and in the process throws an entirely new slant on what they mean.

In other words, it's everything that regular Perl is, only object-oriented.
Using Perl makes object-oriented programming more enjoyable, and using object-

oriented programming makes Perl more enjoyable too. Life is too short to endure the
cultured bondage-and-discipline of Eiffel programming, or to wrestle the alligators that lurk
in the muddy semantics of C++. Object-oriented Perl gives you all the power of those
languages, with very few of their tribulations. And best of all, like regular Perl, it's fun!

Before we look at object orientation in Perl, let’s talk about what object orientation is in general...

The essentials of object orientation
You really need to remember only five things to understand 90% of the theory of object
orientation:

• an object is anything that provides a way to locate, access, modify, and secure data;

• a class is a description of what data is accessible through a particular kind of object, and
how that data may be accessed;

• a method is the means by which an object's data is accessed, modified, or processed;

• inheritance is the way in which existing classes of object can be upgraded to provide
additional data or methods;

• polymorphism is the way that distinct objects can respond differently to the same
message, depending on the class they belong to;

This section discusses each of these ideas.

http://www.manning.com/Conway/

Page 2

Objects
An object is an access mechanism for data. In most object-oriented languages that means that
objects act as containers for data (or at least, containers for pointers to data). But in the more
general sense, anything that provides access to data (a variable, a subroutine, a file handle)
may be thought of as an object.

The various data to which an object provides access are known as its attribute values, and
the containers storing those attribute values are called attributes. Attributes are (usually)
nothing more than variables that have somehow been exclusively associated with a given
object.

Objects are more than just collections of variables however. In most languages, objects
have an extra property called encapsulation. Encapsulation1 means that the attributes of an
object are not directly accessible to the entire program. Instead, they can only be accessed
through certain subroutines that are associated with the object. Those subroutines are called
methods, and they are (usually) universally accessible. This layer of indirection means that
methods can be used to limit the ways in which an object's attribute values may be accessed
or changed. In other words, an object's attribute values can only be retrieved or modified in
the ways permitted by that object's methods.

Let's take a real-world example of an object: an automated teller machine. An ATM is an
object because it provides (controlled) access to certain attribute values, such as your account
balance, or the bank's supply of cash. Some of those attribute values are stored in attributes
within the machine itself (i.e. its cash trays), whilst others are stored elsewhere (i.e. in the
bank's central accounts computer). From the client's point of view, it doesn't matter where
the attribute values actually are, so long as they're accessible via the ATM object.

Access to the ATM's various attributes is restricted by the interface of the machine. That
is, the various buttons, screens, and slots of the ATM control how encapsulated attribute
values (cash, information, etc.) may be accessed. Those restrictions are designed to ensure
that the object maintains a consistent internal state and that any external interactions with its
attributes are valid and appropriate.

For example, most banks don't use ATMs consisting of a big basket of loose cash and a
note pad on which you record exactly how much you took. Even if the bank could assume
that everyone was honest, it couldn't assume that everyone was infallible. People would
inevitably end up taking (or recording) the wrong amount by mistake, even if no-one did so
deliberately.

The restrictions on access are in the client's interest too. The machine can provide access
to attribute values that are private to a particular client (e.g. their account balance) and it
shouldn't make that information available to just anyone. Even if we are pretending that all
the ATMs clients are entirely honest, the account information shouldn't be universally

1 Encapsulation is an awkward term, because it has two distinct meanings: "bundling things
together" and "isolating things from the outside world". In the literature of object orientation
both senses of the word have been used at different times. Originally, encapsulation was used in
the "bundling" sense, as a synonym for aggregation. More recently, encapsulation has
increasingly been used in the "isolation" sense, as a synonym for data hiding. It's in that more
modern sense that the term is used hereafter.

Page 3

available, because eventually someone will access and modify the wrong account data by
accident.

In object-oriented programming, an object's methods provide the same kinds of
protection for data. The question is: how does an object know which methods to trust?

Classes
Setting up an association between a particular kind of object and a set of trusted subroutines
(i.e. methods) is the job of the object's class. A class is a formal specification of the attributes
of a particular kind of object, and of the methods that may be called to access those
attributes.

In other words, a class is a blueprint for a given kind of object. Every object belonging to
a class has an identical interface (a common set of methods that may be called) and
implementation (the actual code defining those methods and the attributes they access).
Objects are said to be instances of the class.

When a program is asked to create an object of a particular kind, it consults the
appropriate class definition (blueprint) to determine how to build such an object. Typically
the class definition will specify what attributes the class's objects possess and where those
attributes are stored (i.e. inside the object, or remotely through a pointer or reference).

When a particular method is called on an object, the program again consults the object's
class definition to ensure that the method is "legal" for that object (i.e. the method is part of
the object's blueprint), and that the method has been called correctly (i.e. in line with the
definition in the class blueprint).

For example, in software controlling a bank's automated teller network there might be a
class called ATM that describes the structure and behaviour of objects that represent
individual ATMs. The ATM class might specify that each ATM object has the attributes
cash_remaining, transaction_list, cards_swallowed, etc., and methods such as
start_up(), withdraw_cash(), list_transactions(), restrict_withdrawal(),
chew_cards(), close_down().

Thereafter, when an ATM object receives a request to invoke a method called
withdraw_cash_without_debiting_account(), it can check the ATM class blue-print
and ascertain that the method cannot be called. Alternatively, if the (valid) method
close_down() is defined to increment a (non-existent) attribute called downtime, then this
coding error can be detected.

Class attributes and methods
So far, we've only considered attributes that are accessed through (i.e. "belong to") an
individual object. Such attributes are more formally known as object attributes. Likewise,
we've only talked about methods that were called on a particular object to manipulate its
object attributes. No prizes for guessing that such methods are called object methods.

Unfortunately, object attributes and methods don't always provide an appropriate
mechanism for controlling the data associated with the objects of a particular class. In
particular, the attributes of an individual object of a class are not usually suitable for
encapsulating data that belongs—collectively—to the complete set of objects of that class.

Let's go back to the ATM example for a moment. At the end of each day, the bank will
want to know how much money in total has been dispensed from all its ATM machines.

Page 4

Each of those machines will have a record of how much it has dispensed individually, but no
machine will have a record of how much all the bank's machines have dispensed
collectively. That information is not a property of a particular ATM. Rather, it's a collective
property of the entire set of ATMs.

The most obvious solution is to design another kind of machine—an ATM
coordinator—that gathers and stores the collective data of the set of ATMs (i.e. total cash
dispensed, average number of transactions, funniest hidden video, etc.). We then create
exactly one of these coordinator machines and arrange for each of the ATMs to feed data to
it. Now we can access the accumulated ATM data through the interface of the coordinator
machine.

In object-oriented terms, the design of the coordinator machine is the design of a
separate class (say ATM_Coordinator), and the construction of such a machine
corresponds to the creation of a single ATM_Coordinator object. This is certainly a viable
solution to the problem of collective data, but it is unattractive in several respects.

For a start, this approach means that every time a class needs to handle collective data,
we have to define yet another class and then create a single instance of it. Moreover, we have
to be careful not to create more than one instance, to ensure that the collective data is not
somehow duplicated or, worse still, fragmented.

Next, we have to provide some mechanism for connecting the collection of "individual"
objects of the original class to the single object of the new "collective" class. That, in turn,
means that the "collective" object has to be accessible anywhere that any "individual" object
might be created. Hence the "collective" object must be globally accessible, which is generally
considered a Bad Thing.

For these reasons, most object-oriented languages don't take this "helper class" approach
to regulating collective data. Instead, they allow classes to specify a second kind of attribute,
one that is "shared" by every object of that class, rather than being "owned" by a single object.
Such attributes are, unimaginatively, called class attributes.

Of course, to maintain the appropriate protection for this kind of class-wide data2, a
class must also provide class methods, through which its class attributes may be safely
accessed. A class method differs from an object method in that it is not called on a specific
object (because, unlike an object attribute, a class attribute doesn't "belong" to a specific
object). Instead, a class method is called on the class itself. This usually means that to call a
class method we must specify both the class name and the method name (e.g. invoke the
daily_total() method for the class ATM).

In some object-oriented languages, class methods provide strong encapsulation of a class's
class attributes. In other words, there is no way to access a class attribute, except through the
appropriate class method. Other languages offer only weak encapsulation of class attributes,
by making them directly visible to any method of a class (i.e. to a class method or an object
method). This means that class attributes may be accessed through individual objects as
well. Perl enforces neither of these approaches, but allows us to use either or both.

2 After all, the bank certainly doesn't want devices outside the ATM network accessing its
collective ATM records.

Page 5

Inheritance
If you're building an extension to your house, or customizing a car, or upgrading your
computer, you normally start with an existing blueprint and add on (or replace) certain bits.
If your original blueprints are good, it's a waste of time and resources to start from nothing
and separately reconstruct nearly the same thing as you already have.

The same thing happens in object-oriented programming. Often you have a class of
objects that partially meets your requirements (say a class that represents a truck), and you
want to create a new class that exactly meets your needs (say a class that represents a fire-
truck).

To produce a class representing fire-trucks, it's not necessary to code that class from
scratch, reproducing (or maybe cutting and pasting) the original truck code, and then adding
new methods to implement alarms, ladders, hoses, red braces, etc.

Instead, we can just tell the program that the new FireTruck class is based on (or is
derived from or inherits) the existing Truck class. Then we tell it to add certain extra features
(i.e. additional attributes and methods) to the FireTruck class, over and above those it
inherited from the Truck class. Any class like FireTruck that inherits attributes and
methods from another is called a derived class or sometimes a child class. The class from which
it inherits (i.e. Truck in this case) is called its base class or its parent class.

The relationship between a base class and its derived class is called the is-a relationship,
because an object of a derived class must necessarily have all the attributes and methods of
an object of the base class, and hence it "is a" base-class object for all practical purposes. This
idea corresponds to our inherent sense of the hierarchy of categories: a fire-truck is-a truck,
an automated teller machine is-a machine, a hench-person is-a person, an unnecessarily long
list of analogies is-a list of analogies.

The is-a relationship is transitive, so you can have increasingly general categories over
more than two levels: a fire-truck is-a truck is-a vehicle is-a device is-a thing; a hench-person
is-a person is-a animal is-a life-form is-a thing3.

Note however that the is-a relationship is not bi-directional. Though an object of a
derived class is always an object of a base class, it's not always (or even usually) true that an
object of a base class is-a object of a derived class. That is, although a fire-truck always is-a
truck, it's not the case that a truck always is-a fire-truck.

Inheritance and abstraction

Naturally, having created a useful base class like Truck, we are immediately going to derive
from it not just a FireTruck class, but also classes representing dump trucks, tow trucks,
pickup trucks, armored cars, cement mixers, delivery vans, etc. Each of these will
(separately) inherit the same set of characteristics from the original Truck class, but each
will extend or modify those characteristics uniquely. The relationship between the Truck
class and its numerous child classes is shown in Figure 1.

3 In fact, just about any class of object can be traced back to being a "thing". Of course, that
doesn't mean we have to represent all those higher levels of categorization in an actual
program. The universal "thing-ness" of a fire-truck, an ATM, or a hench-person is probably
completely irrelevant to most applications.

Page 6

Using inheritance means that we only have to specify how a fire-truck or a cement mixer
or an armored car differs from a regular truck, rather than constantly needing to restate all
the standard features of trucks as well. That makes the code that defines each type of truck
shorter (assuming we already have the code for a truck).

More importantly, it reduces our maintenance load because any change to the behaviour
of the general Truck class (for example, modifying its register() method in response to
some change in transport regulations) is automatically propagated to all the specific truck
classes (FireTruck, DumpTruck, ArmoredCar, etc.) that inherit from Truck.

In this way, inheritance also provides a way of capturing the abstract relationships
between specific classes of object within a program. Thus, the class of fire-trucks is a special
case of the more general class of trucks, which in turn might be a special case of the very
general class of vehicles. The more abstract classes are generalized blueprints that define the
common features of a wide range of kinds of objects. The more specialized classes
presuppose those common features, and then describe the additional attributes and methods
unique to their particular kind of object.

Figure 1: Inheriting from the Truck class

Inheritance hierarchies

The relative ease with which we can create and maintain new classes by inheriting from
existing one will almost certainly encourage us to create more complex chains of inheritance.
For example, there are many specialized types of fire-trucks: ladders, tankers, pumpers,
snorkels, tarmac crash vehicles, etc. Likewise there are many species of dump truck: double
bottom, highside end, lowside end, two-axle tractor, three-axle tractor, bob-tail, etc.

We may need individual classes for each of these very specific types of trucks, perhaps
because each of them has unique regulations governing their registration and inspection. By

FireTruck ArmoredCar Van

Truck
register()

DumpTruck
register()

Semi
register()

FireTruck
register()

sound_siren()

ArmoredCar
register()

is-a is-a

is-ais-a

Page 7

deriving such classes from FireTruck and DumpTruck, we might extend the set of class
relationships shown in Figure 1 to the hierarchy shown in Figure 2.

Figure 2: Extending the Truck hierarchy

Within such a hierarchy, every class offers all the methods offered by any class above it
in the hierarchy. Therefore, objects of a particular class can always be treated as if they were
objects of some class higher in the inheritance tree.

For example, both a TankerFireTruck object and a DoubleBottomDumpTruck object
may be treated as if they were Truck objects (i.e. you could call their register() method),
because both of them can trace their "ancestry" back to the primordial Truck class.
However, of the two, only the Tanker object can be treated as a FireTruck object (i.e. you
could call its sound_siren() method), because only the Tanker object can trace its
ancestry to class FireTruck.

Note that some of the classes in the Truck hierarchy choose to redefine one or more of
the methods they inherit (see the next section for an explanation of why they might want do
that). For example, the Semi class redefines the register() method it inherits from class
Truck. We can distinguish a method that has been (re-)defined in a class, from a method that
a class merely inherits from its parent, by listing inherited methods in italics.

Polymorphism
If you've ever gone up to someone in a bar or club and introduced yourself, you know that
people can respond to the very same message ("I'd like to get to know you better") in very
different ways. If we were to categorize those ways, we could create several classes of
person: ReceptivePerson, IndifferentPerson, ShyPerson, RejectingPerson,
RejectingWithExtremePrejudicePerson, JustPlainWeirdPerson.

Truck
register()

FireTruck DumpTruck ArmoredCar VanDumpTruck
register()

Semi
register()

FireTruck
register()

sound_siren()

ArmoredCar
register()

is-a is-a

is-ais-a

DumpTruck ArmoredCar Van
Tanker
register()

sound_siren()

Snorkel
register()

sound_siren()

Pumper
register()

sound_siren()
FireTruckHighSideEnd
register()

is-a is-ais-ais-ais-a

DoubleBottom
register()

Page 8

Turning that around, we can observe that the way in which a particular person will
respond to your message depends on the kind of person they are. A ReceptivePerson
will respond enthusiastically, a ShyPerson will respond tentatively, and a
JustPlainWeirdPerson will probably respond in iambic pentameter. The original
message is always the same; the response depends on the kind of person who receives it.

Language theorists4 call this type of behaviour polymorphism. When a method is called
on a particular object, the actual method that's involved may depend on the class to which
the object belongs. For instance, if we call an object's ignite() method, its response will be
quite different depending on whether it belongs to the Paper, Rocket, Passion, or
FlameWar class.

Randomly calling an identically named method on objects of different classes is not, of
course, a recommended programming technique. However, polymorphic behaviour does
prove extremely useful when there is some explicit relationship between the various classes
of objects, or when there is an implicit relationship or a common universal property shared
between them. The following subsections discuss each of these cases.

Inheritance polymorphism

Suppose we are creating an object-oriented system for tracking the registration and
inspection of trucks. We'd almost certainly want to use our Truck class (and its many
descendents) to implement the parts of the system that represent individual trucks.

Typically, the objects representing the various trucks would be collected in some kind of
container, probably a list. Some operations will need to be carried out on individual objects
(e.g. register this particular truck, schedule an inspection for that one, etc.), but many tasks
will have to be performed on every truck in the system (e.g. send out an annual registration
notice for each, print a complete list of recent inspection dates, etc.)

For operations that need to be performed on every truck, the application is likely to walk
along the truck list using a loop, calling the appropriate method for each object in turn. For
example, the loop might call each object's print_registration_reminder() method.

The problem is that the actual procedure to be followed by each object may be different,
depending on the actual kind of truck the object represents (i.e. the actual class to which it
belongs). For instance, the form for registering a semi-trailer may be very different from the
one for a fire-truck, or for an armored car. If that's the case, the processing loop will have to
determine the class of each object and then branch to perform a separate method call for each
distinct class. That's a pain to code, and a bigger pain to re-code every time we add or
remove another class of truck.

This situation is the ideal place to use polymorphism. If the ancestral Truck class has a
register() method, then we are guaranteed that every derived class also has a
register() method (i.e. the one that it inherits from Truck). However, when we specify
the various derived classes, we may choose to replace the inherited register() method
with one specific to the needs of the derived class.

Having given each class its own unique register() method, we can then walk the list
of objects and simply call register() on each. We're sure each can respond to that method

4 …most of whom live at ground-zero in the JustPlainWeirdPerson category…

Page 9

call because at the very least they'll use the register() they inherited from the Truck
class. However, if they have a more specialized way of registering themselves, then that
more specialized method will be automatically invoked instead. In other words, we can
arrange that each object has a register() method, but not necessarily the same
register() method.

The result is that, although our loop code is very simple:

for each object in the list…
call its register() method

the response to those calls is always appropriate to the particular object on which the
method is called. Better yet, if we subsequently add a new class derived from Truck, and
then put objects of that new class in the list, the old code will continue to work without
modification. When the loop encounters an object of the new class, it will simply call that
object's new register() method, and execute the new behaviour specified by the object's
class definition. If the new class didn't define any new behaviour, the old behaviour
inherited from class Truck will be used instead.

This kind of polymorphism is known as inheritance polymorphism, because the objects
whose methods are called belong to a hierarchy of classes that are related by inheritance. The
presence of the required method in the base class of the hierarchy ensures that objects of any
derived class can always respond (if only generically) to a given method call. The ability to
redefine individual methods in derived classes allows objects of those classes to respond
more specifically to a particular method call, if they so wish.

All object-oriented languages support inheritance polymorphism5; for some, it's the only
form of polymorphism they permit. But it certainly isn't the only form that's possible. In fact,
there's no need for objects that are treated polymorphically to have any kind of class
relationship at all.

Interface polymorphism

The alternative approach to polymorphism is to allow any object with a suitable method to
respond to a call to that method. This is known as interface polymorphism, because the only
requirement is that a particular object's interface provide a method of the appropriate name6.

For example, since there are probably no actual Truck objects used in the truck registry
application, there's no real need for the Truck class at all (at least, as far as the
polymorphism in the registration loop is concerned). So long as each object in the list belongs
to a class that has a register() method, the loop doesn't really care what their ancestral
class was (i.e. whether they are trucks, truckers, trucking companies, or truculents).
Provided they can respond to a call on their register() method, the loop proceeds with
serene indifference.

5 But that's rather a circular definition, since most language lawyers insist that this form of
polymorphism is one of the essential characteristics a language must possess if it's to be
considered object-oriented in the first place.

6 Statically-typed object-oriented languages (e.g. Java or Ada) usually also require that the
argument list passed in the method call be type-compatible with the parameter list specified by
the object's method.

Page 10

Of course, that's a mighty big proviso. With inheritance polymorphism we could be sure
that every object in the list did have a register() method (at the very least, the one it
inherited from Truck). With interface polymorphism there's no such guarantee.

Worse still, because the list is almost certainly built at run-time, and modified as the
program executes, unless we're very careful in setting up the logic of our application, we're
not likely to know beforehand whether a particular object in the list can respond to a
register() request. In fact, we're unlikely to find out until the application attempts to
invoke the object's register() method, and finds that it doesn't have one.

Consequently, languages that allow interface polymorphism must also provide some
run-time mechanism for handling cases where an object is unable to provide a requested
method. Typically, this involves providing a means of specifying a "fall-back" subroutine
that is called whenever an object cannot respond to a particular method invocation.
Alternatively, such languages may have some form of exception system, and will trigger a
well-defined exception (e.g. "No such method!") if the object cannot respond more
appropriately.

Inheritance polymorphism is a special case of interface polymorphism, because a
common base class guarantees that objects share a specific inherited method. Hence any
language that supports interface polymorphism automatically supports inheritance
polymorphism as well. As we shall see, Perl is such a language.

In order to understand object-oriented Perl, it's important to have a reasonable grasp of the
language's non-object-oriented features. For example, the following extract explains the difference
between package variables and lexicals—forever a source of confusion amongst novice Perl
programmers...

Package variables
Perl variables come in two "flavours": package variables and lexical variables. They look and act
much the same, but there are fundamental differences between them.

As the name suggests, each package variable belongs to a package (normally to the
current one). Package variables are the ones that most casual Perl programmers use most of
the time. They're the standard no-preparation-necessary, ready-to-serve, instant variables
that are frequently used in small throw-away programs:

for ($i=0; $i<100; $i++)
{

$time = localtime();
print "$i at $time\n";

}
print "last time was: $time\n";
print "last index was: $ i\n";

Here, the variables $time and $i are both package variables. They are created
automatically the first time they're referred to, and continue to exist until the end of the
program. They belong to the current package (i.e. "main").

Whenever it's necessary to make a package variable's ownership explicit, its "personal"
name can be qualified with the name of its package.

Page 11

Package variables belonging to packages other than the current package are not
accessible unless you use their fully-qualified name. For example, this code:

package main;

for ($i=0; $i<100; $i++)
{

$Other_package::time = localtime();
print "$i at $Other_package::time\n";

}

package Other_package;
print "last time was: $time\n";
print "last index was: $main::i\n";

uses the package variable $time belonging to the package called "Other_package", and the
package variable $i belonging to the main package. Within their home packages, they can
be referred to directly; elsewhere, you have to give their package name as well.

Note that the package name prefix always comes after the leading symbol. That is, you
write $Other_package::time, not Other_package::$time.

Lexical variables
The other type of variable is a lexical variable. Unlike package variables, lexicals have to be
explicitly declared, using the my keyword:

package main;

my $i;
for ($i=0; $i<100; $i++)
{

my $time = localtime();
print "$i at $time\n";

}

Lexical variables differ from package variables in that:

• They don't belong to any package (so you can't prefix them with a package name).

• They are only directly accessible within the physical boundaries of the code block or file
in which they're declared. Hence in the code above, $time is only accessible to code that
is physically located inside the for loop (and not to code that is called during or after
that loop).

• They (usually) cease to exist each time the program leaves the code block in which they
were declared. Hence in the code above, the variable $time ceases to exist at the end of
each iteration of the for loop (and is recreated at the beginning of the next iteration).

It may help to think of the two types of variables (package and lexical) in the way the
Ancient Greeks thought of their gods. They had big general-purpose gods like Uranus, Zeus,
Aphrodite, and Atropos, who existed for all time and could appear anywhere without
warning. These are analogous to package variables7.

7 The big Greek gods even came in "packages": $Titans::Uranus, $Olympians::Zeus,
$Olympians::Aphrodite, $Fates::Atropos.

Page 12

Then there were the small, specialized gods like the spirits of trees, or door-steps, or a
hearth. They were restricted to a well-defined domain (a tree, a building, the fireplace) and
existed only for a specific period (the life of the tree, the occupation of the building, the
duration of a fire). These are like lexical variables: localized and transient.

Generally speaking, package variables are fine for very short programs, but cause
problems in larger code. This is because they're accessible throughout the program source,
which means that changes made at one point in the code can unexpectedly affect the
program's behaviour elsewhere. The typical example is something like this:

package Recipe;

sub print_recipes
{

for ($i=0; $i<@_; $i++)
{

print_ingredients($_[$i]);
print_directions($_[$i]);

}
}

sub print_ingredients
{

for ($i=0; $i<$#recipes; $i++)
{

print $_[0]->{ingredients}[$i], "\n";
}

}

The problem is that $i is a package variable (since it's not pre-declared as a lexical with
a my declaration). That means that the subroutines Recipe::print_recipes and
Recipe::print_ingredients both use the same package variable ($Recipe::i) in
their respective for loops. So after Recipe::print_ingredients has been called from
within Recipe::print_recipe, $Recipe::i will no longer contain the index of the
current recipe. Instead, it will contain a number one greater than the number of ingredients
of the current recipe (since that's the value left in it by the for loop in
Recipe::print_ingredients).

If we'd used lexical variables instead:

package Recipe;

sub print_recipes
{

for (my $i=0; $i<@_; $i++)
{

print_ingredients($_[$i]);
print_directions($_[$i]);

}
}

sub print_ingredients
{

for (my $i=0; $i<@_; $i++)
{

print $_[0]->{ingredients}[$i], "\n";
}

}

Page 13

there would have been no unexpected interaction between the two subroutines8. Each lexical
$i is distinct, unrelated to any other lexical $i (or to the package variable $Recipe::i, for
that matter). Most importantly, each is confined to the body of the for loop in which it's
declared.

The only problem is that, in Perl, lexical variables and package variables look the same,
and since package variables can be conjured into existence just by mentioning them, this
similarity can lead to subtle difficulties. For example, if we added an extra statement to the
end of the loop timer shown earlier:

package main;

my $i;
for ($i=0; $i<100; $i++)
{

my $time = localtime();
print "$i at $time\n";

}
print "last time was: $time\n";

we'd find that the last line printed:

last time was:

That's because the lexical variable $time exists only inside the for loop, so Perl assumes
that when we referred to $time outside the loop we meant the (undefined) package variable
$main::time. This problem doesn't arise if you always put a use strict at the start of
your code, because use strict requires that all package variables be fully qualified (to
avoid just this kind of confusion).

Object-oriented programming in Perl can involve darker mysteries too, such as references, closures
modules, and even the enigmatic typeglob...

Typeglobs
Typeglobs are amongst the most poorly understood features of Perl (right up there with
closures, in fact). But, like closures, they're actually very easy to understand and use, once
you unravel their mysterious syntax and their polymorphic behaviour.

Perl maintains separate namespaces for each package, and for each type of named
construct within a package. Hence within a given package you can have the variables
$FILE, @FILE, and %FILE as well as the subroutine &FILE. Best of all, you can use them all
at the same time.

Unlike many other languages, where an identifier must be associated with exactly one
thing in the symbol table, in Perl there's no confusion because each identifier has a unique
prefix symbol indicating its type. In fact, they all live together in the very same entry of their
package's symbol table, as Figure 3 illustrates.

Each Perl symbol table entry is like a "sampler" box of chocolates: you get a slot holding
a reference to one scalar, a slot holding a reference to one array, a slot holding a reference to

8 An interaction of this kind between subroutines is known as coupling, and just as in real life, it
can cause no end of difficulties.

Page 14

one hash, and a slot holding a reference to one subroutine (as well slots holding references to
one filehandle, and one format).

You can access an entire symbol table entry via a special piece of syntax called a
typeglob9: *symbol_name. For example, to refer to the complete symbol table entry for
anything that's called "FILE" (i.e. $FILE, %FILE, &FILE, etc.), we would use the typeglob
*FILE. The slots in that symbol table entry would contain a reference to the package scalar
variable $FILE, a reference to the package array variable @FILE, a reference to the package
subroutine &FILE, etc.

Figure 3: An entry (typeglob) in a package's symbol table

Once the necessary groundwork has been laid, we can finally start to talk about object-oriented
programming in Perl...

Three little rules
If you've ever used another object-oriented programming language, or been traumatized by
some prior exposure to object orientation, you're probably dreading tackling object
orientation in Perl—more syntax, more semantics, more rules, more complexity. On the
other hand, if you're entirely new to object orientation, you're likely to be equally nervous
about all those unfamiliar concepts, and how you're going to keep them all straight in your

9 …because it "globs" (generically matches) any type of variable with the correct name.

1

“make“ “nail” “anglo”

“dir” “.”

“type” “ASCII”

open FILE, shift
 or die “Could open”;

print FILE, @_
 or die “Could print”;

close FILE
 or die “Could close”;

return 1;

SCALAR

ARRAY

HASH

CODE

IO

FORMAT
handle

“X”

“date” 1304312

*FILE

formline($l1,@a1);

formline($l2,@a2)
 while grep {length} @a2;

formline($l3,@a3);

formline($l4,@a4);

formline($l5,@a5);

Page 15

head while you learn the specific Perl syntax and semantics.
Relax!
Object-oriented Perl isn't like that at all. To do real, useful, production-strength, object-

oriented programming in Perl you only need to learn about one extra function, one
straightforward piece of additional syntax, and three very simple rules10. Let's start with the
rules…

Rule 1: To create a class, build a package
Perl packages already have a number of class-like features:

• They collect related code together;

• They distinguish that code from unrelated code;

• They provide a separate namespace within the program, which keeps subroutine names
from clashing with those in other packages;

• They have a name, which can be used to identify data and subroutines defined in the
package.

In Perl, those features are sufficient to allow a package to act like a class.
Suppose we wanted to build an application to track faults in a system. Here's how to

declare a class named "Bug" in Perl:

package Bug;

That's it! Of course, such a class isn't very interesting or useful, since it has no attributes
or behaviour. And that brings us to the second rule…

Rule 2: To create a method, write a subroutine
Methods are just subroutines that are associated with a particular class. They exist
specifically to operate on objects that are instances of that class.

Happily, in Perl a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package that is
acting as our class.

For example, here's how we provide an object method to print our Bug objects:

package Bug;

sub print_me
{

The code needed to print the Bug goes here

}

Again, that's it. The subroutine print_me is now associated with the package Bug, so
whenever we treat Bug as a class, Perl automatically treats Bug::print_me as a method.

Calling the Bug::print_me method involves that one extra piece of syntax—an
extension to the existing Perl "arrow" notation. If you have a reference to an object of class

10 The three rules were originally formulated by Larry Wall, and appear in a slightly different
form in the perlobj documentation.

Page 16

Bug (we'll see how to get such a reference in a moment), you can access any method of that
object by using a -> symbol, followed by the name of the method.

For example, if the variable $nextbug holds a reference to a Bug object, you could call
Bug::print_me on that object by writing:

package main;

set $nextbug to refer to a Bug object, somehow, and then…

$nextbug->print_me();

Calling a method through an arrow should be very familiar to any C++ programmers;
for the rest of us, it’s at least consistent with other Perl usages:

$hsh_ref->{"key"}; # Access the hash referred to by $hashref
$arr_ref->[$index]; # Access the array referred to by $arrayref

$sub_ref->(@args); # Access the sub referred to by $subref
$obj_ref->method(@args); # Access the object referred to by $objref

The only difference with the last case is that the thing referred to by $objref has many
ways of being accessed (namely, its various methods). So, when we want to access an object,
we have to specify which particular way (i.e. which method) should be used.

Just to be a little more flexible, Perl doesn't actually require that we "hard-code" the
method name in the call. It's also possible to specify the method name as a scalar variable
containing a string matching the name (i.e. a symbolic reference), or as a scalar variable
containing a real reference to the subroutine in question. For example, instead of:

$nextbug->print_me();

we could write:

$method_name = "print_me"; # i.e. "symbolic reference" to some &print_me

$nextbug->$method_name(); # Method call via symbolic reference

or:

$method_ref = \&Bug::print_me; # i.e. reference to &Bug::print_me

$nextbug->$method_ref(); # Method call via hard reference

In practice, the method name is almost always hard-coded.
When a method like Bug::print_me is called, the argument list that it receives begins

with the object reference through which it was called11, followed by any arguments that were
explicitly given to the method. That means that calling Bug::print_me("logfile") is
not the same as calling $nextbug->print_me("logfile"). In the first case, print_me is
treated as a regular subroutine so the argument list passed to Bug::print_me is equivalent
to:

("logfile")

In the second case, print_me is treated as a method so the argument list is equivalent
to:

11 The object on which the method is called is known as the invoking object, or sometimes the
message target. It is the reference to this object that is passed as the first argument of any method
invoked using the -> notation.

Page 17

($objref, "logfile")

Having a reference to the object passed as the first parameter is vital, because it means
that the method then has access to the object on which it's supposed to operate12. Hence
you'll find that most methods in Perl start with something equivalent to this:

package Bug;

sub print_me
{

my ($self) = shift;
The @_ array now stores the explicit argument list passed to &Bug::print_me
The rest of the &print_me method uses the data referred to by $self and

the explicit arguments (still in @_)

}

or, better still:

package Bug;

sub print_me
{

my ($self, @args) = @_;
The @args array now stores the explicit argument list passed to &Bug::print_me

The rest of the &print_me method uses the data referred to by $self and
the explicit arguments (now in @args)

}

This second version is better because it provides a lexically scoped copy of the argument
list (@args). Remember that the @_ array is "magical" in that changing any element of it
actually changes the caller's version of the corresponding argument. Copying argument
values to a lexical array like @args prevents nasty surprises of this kind, as well as
improving the internal documentation of the subroutine (especially if a more meaningful
name than @args is chosen).

The only remaining question is: how do we create the invoking object in the first place?

Rule 3: To create an object, bless a referent
Unlike other object-oriented languages, Perl doesn't require that an object be a special kind
of record-like data structure. In fact, you can use any existing type of Perl variable—a scalar,
an array, a hash, etc.—as an object in Perl13.

Hence, the issue isn't so much how to create the object (you create them exactly like any
other Perl variable), but rather how to tell Perl that such an object belongs to a particular
class. That brings us to that one extra built-in Perl function you need to know about. It's
called bless, and its only job is to mark a variable as belonging to a particular class.

12 There are similar automatic features in all object-oriented languages. C++ member functions
have a pointer called this, Java member functions have a reference called this, Smalltalk
methods have the self pseudo-object, and Python's methods (like Perl's) receive the invoking
object as their first argument.

13 You can also bless other things, such as subroutines, regular expressions, and typeglobs.

Page 18

The bless function takes two arguments: a reference to the variable to be marked, and
a string containing the name of the class. It then sets an internal flag on the variable,
indicating that it now belongs to the class14.

For example, suppose that $nextbug actually stores a reference to an anonymous hash:

$nextbug = {
_id => "00001",
_type => "fatal",
_descr => "application does not compile",

};

To make turn that anonymous hash into an object of class Bug we write:

bless $nextbug, "Bug";

And, once again, that's it! The anonymous array referred to by $nextbug is now
marked as being an object of class Bug. Note that the variable $nextbug itself hasn't been
altered in any way (i.e. we didn't bless the reference); only the nameless hash it refers to has
been marked (i.e. we blessed the referent). Figure 4 illustrates where the new class
membership flag is set.

Figure 4: What changes when an object is blessed

14 Actually, the second argument is optional, and defaults to the name of the current package.
However, although omitting the second argument may occasionally be convenient, it's never a
good idea. Hence it's better to think of both arguments as being (morally) required, even if
(legally) they're not.

i. Before bless($nextbug,”Bug”)

$nextbug

_id “00001”

_type “fatal”

_descr “app...

ii. After bless($nextbug,”Bug”)

$nextbug

_id “00001”

_type “fatal”

_descr “app...

Bug

Page 19

You can check that the blessing succeeded by applying the built-in ref function to
$nextbug. Normally when ref is applied to a reference, it returns the type of that
reference. Hence, before $nextbug was blessed, ref($nextbug) would have returned the
string 'HASH'.

Once an object is blessed, ref returns the name of its class instead. So after the blessing,
ref($nextbug) will return 'Bug'. Of course the object itself still is a hash, but now it’s a
hash that belongs to the Bug class.

Perl classes use object methods to control access to encapsulated data. Typically such methods are
named after the object attributes they provide access to. They usually take an optional argument
through which new values may be assigned to a particular object attribute. But some attributes
shouldn't be publicly writable and, unfortunately, Perl doesn't provide any built-in mechanism to
enforce that. You have to resort to Psychology...

Catching attempts to change read-only attributes
Of course, because users of a class are often allowed to change some of an object's attributes
by passing new values to the appropriate accessor methods, they may well expect to do the
same with all the object's attribute values. This is not always the case and such a
misgeneralization could lead to subtle logical errors in the program, since accessor methods
for "read-only" attributes often simply ignore any extra parameters they are given.

There are several ways to address this potential source of errors. The most obvious
solution is to resort to brute force, and simply kill any program that attempts to call a "read-
only method" with arguments. For example:

package CD::Music;
use strict;
use Carp;

sub read_only
{

croak "Can't change value of read-only attribute " . (caller 1)[3]
if @_ > 1;

}

read-only accessors

sub name { &read_only; $_[0]->{_name} }
sub artist { &read_only; $_[0]->{_artist} }
sub publisher { &read_only; $_[0]->{_publisher} }
sub ISBN { &read_only; $_[0]->{_ISBN} }

read-write accessors

sub last_played
{

my ($self, $when) = @_;
$self->{_played} = $when if @_ > 1;
$self->{_played};

}

sub rating
{

my ($self, $rating) = @_;
$self->{_rating} = $rating if @_ > 1;
$self->{_rating};

}

Page 20

Here, each read-only access method calls the subroutine CD::Music::read_only,
passing its original argument list (by using the "old-style" call syntax—a leading & and no
parentheses). The read_only subroutine checks for extra arguments, and throws an
informative exception if it finds any. Note that there will always be at least one argument to
any method, namely the object reference through which the method was originally called.

Think of this technique as a form of Pavlovian conditioning for programmers: every
time their code actually attempts to assign to a read-only attribute of your class, their
program dies. Bad programmer!

As enjoyable as it may be to mess with people's minds in this way, this approach does
have a drawback; it imposes an extra cost on each attempt to access a read-only attribute.
Moreover, it isn't proactive in preventing users from making this type of mistake; it only
trains them not repeat it, after the fact.

Besides, psychology has a much more subtle tool to offer us, in the form of a technique
known as affordances15. Affordances are features of a user interface that make it physically or
psychologically easier to do the right thing, than to do the wrong thing. For example, good
architects don't put handles on unlatched doors that can only be pushed. Instead, they put a
flat plate where the handle would otherwise be. Just about the only thing you can do with a
plate is to push on it, so the physical structure of the plate helps you to operate the door
correctly. In contrast, if you approach a door with a fixed handle, your natural tendency is to
pull on it, which usually proves to be the right course of action.

Affordances work well in programming too. In this case, we want to make it
psychologically awkward to attempt to change read-only object data. The best way to do that
is to avoid raising the expectation that it is even possible in the first place.

For instance, we could change the names of the read-only methods to "get_…" and
separate the two functions of each read-write accessor into distinct "get…" and "set…"
methods:

package CD::Music;
use strict;

read accessors

sub get_name { $_[0]->{_name} }
sub get_artist { $_[0]->{_artist} }
sub get_publisher { $_[0]->{_publisher} }
sub get_ISBN { $_[0]->{_ISBN} }
sub get_last_played{ $_[0]->{_publisher} }
sub get_rating { $_[0]->{_ISBN} }

write accessors

sub set_last_played{ $_[0]->{_played} = $_[1] }
sub set_rating { $_[0]->{_rating} = $_[1] }

Now the user of our class has no incentive to try to pass arguments to the read-only
methods, because it doesn't make sense to do so. And because there are no set_name,
set_artist, etc., it's obvious that these attributes can't be changed.

15 The concept of affordances comes from the work of user-interface guru Donald Norman. His
landmark book The Psychology of Everyday Things (later renamed The Design of Everyday Things)
is essential reading for anyone who creates interfaces of any kind, including interfaces to
classes.

Page 21

Most real object-oriented Perl classes use objects based on blessed hashes. But one of Perl's defining
characteristics is flexibility, and in keeping with its unofficial motto—"There's more than one way to
do it"—you can just as easily use any other Perl data type as the basis for object. There are at least six
alternative ways of implementing a class: basing it on arrays, pseudo-hashes, scalars, anonymous
subroutines, precompiled regular expressions, and typeglobs. But before considering some of the
alternatives, it's important to explain why hashes aren't always the right choice...

What's wrong with a hash?
Hashes are well suited to act as the basis for objects. They can store multiple values of
differing types, they give each value a descriptive label, they can be expanded to store
additional items at need16, and they can be made hierarchical (by storing references to other
anonymous hashes in an entry).

Hashes are usually a good choice for implementing class objects, but they're by no
means perfect. For a start, they are a comparatively expensive way to store collections of
data, occupying more space than an equivalent array, and providing slower access as well.
Often those small overheads are insignificant, but occasionally (such as when large numbers
of objects are involved, or when a much simpler data structure would do just as well) the
difference in performance, or in style, matters.

A more serious problem with hashes has to do with an otherwise very convenient
feature they possess, called autovivification. Autovivification is the name for what happens
when you attempt to access a non-existent entry of a hash. Rather than complaining, Perl just
automatically creates the missing hash entry for the key you specified, giving the new entry
the value undef.

And that's the problem. If you have a reference to hash-based object (say, $objref),
and you're using an attribute such as $objref->{_weirdness_factor}, then chances are
that somewhere in the heat of coding, you'll accidentally write something like
$objref->{_wierdness_factor}++.

The first time that code is executed, Perl won't complain about the spelling mistake or
the fact that it causes your code to access a non-existent entry. Instead it will try to be
helpful: autovivifying the new hash entry, then silently converting its undef value to zero,
and finally incrementing it to 1. Thereafter you'll spend about a week trying to work out
why that increment operator seems to increase the real world's weirdness factor, but not
$objref's.

One of those six alternate ways of implementing a class makes use of a feature only recently added to
Perl–the pseudo-hash. The standard documentation on the feature is still rather terse, so the following
explanation may be useful...

16 ...for example, if the class is later inherited by another...

Page 22

Blessing a pseudo-hash
Neither a hash nor an array seems to provide the ideal basis for a Perl object. Hash entries
are accessed by comprehensible keys, but hashes are big and slow. Arrays are compact and
fast, but the use of integer indices can lead to obscure code. And both approaches are prone
to autovivification-induced bugs. Ideally, we'd like the best of both worlds—fast access,
compact storage, readable tags, and no autovivification.

A pseudo-what???
As of Perl release 5.005, that wish has been granted, in the form of a new (and
experimental17) data structure called a pseudo-hash, which is really just an array reference
that’s pretending to be a hash reference.

To maintain the pretense, the array that's actually being referred to must have a
reference to a real hash as its first element. That real hash is used to map key names onto
array indices. In other words, a pseudo-hash has a structure like that shown in Figure 5, and
is declared like this:

my $pseudo_hash = [{a=>1,b=>2,c=>3}, "val a", "val b", "val c"];

Such an array can still be accessed as an array, by specifying a numerical index in square
brackets:

$pseudo_hash->[1];

Figure 5: The structure of a pseudo-hash

17 Hence, if you're currently using a later version of Perl, you may need to check in the perlref
documentation to see whether the details presented in this section are still correct.

$pseudo_hash

“val a” “val b” “val c”

“a” 1

“c” 3

“b” 2

Page 23

But it can also be accessed as if it were a hash, by using one of the specified keys in curly
braces:

$pseudo_hash->{"a"};

Whenever Perl encounters an array reference that is being used as a hash reference in
this way, it translates the expression to something equivalent to the following:

$pseudo_hash->[$pseudo_hash->[0]->{"a"}];

In other words, it first retrieves the hash reference stored in element zero of the array
($pseudo_hash->[0]). It then uses that hash to look up the index corresponding to the
specified key ($pseudo_hash->[0]->{"a"}), and finally it uses that index to access the
appropriate element in the original array
($pseudo_hash->[$pseudo_hash->[0]->{"a"}]).

Limitations of a pseudo-hash
If the first element of a pseudo-hash array isn't a hash reference:

my $pseudo_hash = ["not a hash ref", "val a", "val b", "val c"];

and later…

$pseudo_hash->{"a"};

then the program throws an exception with the message: can't coerce array into hash. If
the first element is a hash reference, but the corresponding hash doesn't contain the given
key:

my $pseudo_hash = [{a=>1,b=>2,c=>3}, "val a", "val b", "val c"];

and later…

$pseudo_hash->{"z"};

then the program throws an exception with the message: no such array field18. In other
words, unlike a real hash, pseudo-hash entries aren't autovivifying; they don't spring into
existence the first time you attempt to access them.

You can add new entries to a pseudo-hash, but it's a two-step procedure. First you add a
new key-to-index mapping:

$pseudo_hash->[0]->{"z"} = @{$pseudo_hash};

which maps the key "z" on to the first unused index in the pseudo-hash array. After that,
you can access the new entry directly, to assign it a value:

$pseudo_hash->{"z"} = "value z";

Of course, if your stomach is strong enough, you can do those two steps in a single
statement:

$pseudo_hash->[$pseudo_hash->[0]{"z"} = @{$pseudo_hash}] = "value z";

18 The reason it refers to a "field" instead of an "entry" will become clear in a moment.

Page 24

Advantages of a pseudo-hash
The awkwardness of having to "manually" add new keys to a pseudo-hash is actually a
useful property, because it helps to prevent hard-to-detect bugs that can easily find their
way into classes built on ordinary hashes. Consider the Transceiver class defined in
Figure 6. The class provides sentinel methods (start_transmit and end_transmit,
start_receive and end_receive) that may be used to ensure that transmission and
reception do not overlap.

package Transceiver;
$VERSION = 1.00;
use strict;

sub new
{

my $class = ref($_[0])||$_[0];
my $self = { receive=>0, transmit=>0 };
bless $self, $class;

}

sub start_transmit
{

my ($self) = @_;
++$self->{transmit} unless $self->{recieve};
return $self->{transmit};

}

sub end_transmit
{

my ($self) = @_;
--$self->{transmit};

}

sub start_receive
{

my ($self) = @_;
++$self->{receive} unless $self->{transmit};
return $self->{receive};

}

sub end_receive
{

my ($self) = @_;
--$self->{receive};

}

Figure 6: A simple hash-based transceiver class

The problem is that the Transceiver::transmit method has accidentally been
coded to check the status of the hash entry $self->{recieve} (instead of
$self->{receive}). The first time it does so, this non-existent entry will produce a value
of undef. Hence the unless test will never fail and transmission will always be allowed, no
matter what the current state of reception is.

If we had implemented Transceiver objects as pseudo-hashes instead:

Page 25

package Transceiver;
use strict;

sub Transceiver::new
{

my $class = ref($_[0])||$_[0];
my $self = [{receive=>1, transmit=>2}];
$self->{transmit} = 0;
$self->{receive} = 0;
bless $self, $class;

}

etc. as before

then the first time Transceiver::transmit was called, we would get an exception
indicating: No such array field…, which would eventually lead us to the misspelled key.

Another unusual, but interesting choice of datatype for building classes is the scalar variable. Scalars
can only hold a single value, which would seem like a serious limitation for an object. But sometimes
less is more....

Blessing a scalar
You almost never see a Perl class that is based on a blessed scalar value. Although there are
several good reasons for that, a scalar can occasionally prove to be the best choice for
implementing an object.

The main reason that a scalar so rarely forms the basis of a Perl class, is that classes so
rarely store only a single piece of information. One of the main reasons for building a class is
to bind together a set of related attribute values and then provide controlled access to them.
If the data is really only a single datum, then building an object-oriented shell around it
usually seems like serious overkill.

In Perl we can't even use the excuse that data ought to be encapsulated, since Perl's
encapsulation is almost entirely voluntary. If we have blessed a scalar and are passing
around a reference to it (as $sref), there's absolutely nothing to prevent any part of the
program completely ignoring the lovely controlled object-oriented interface we provided,
and just manipulating the underlying scalar directly:

$$sref = undef; # Bwah-ha-ha-ha!!!

What's more, in those few cases where an object does only possess a single value, it's just
as easy to go with a more familiar hash-based implementation, using only a single entry.
Allocating an entire hash to store a single value may be considerably less efficient (both in
terms of memory usage and access speed), but it has the advantages of:

• Familiarity to the implementer. The selection of a hash as the underlying object
representation is often the automatic choice, and frequently not even a conscious one.

• Familiarity to others. A better reason for choosing a hash when a scalar would suffice, is
that the hash-based implementation is also likely to be far more familiar to anyone else
attempting to understand or modify the code.

Page 26

• Readability. If nothing else, storing the single value as a hash entry means that the value
has to be given a meaningful key, which ought to improve the code's readability.

• Extensibility in subclasses. After all, a class can never be sure that an internal
representation sufficient to its own needs will serve derived classes equally well.

An object-oriented password
Despite all those factors against the practice, there's nothing immoral or illegal about
blessing a scalar. In most cases, it's even slimming19. For example, Figure 7 illustrates the
simple case of a class that implements an encrypted password as a single scalar string.

package Password;
$VERSION = 1.00;
use strict;

my @salt = ("A".."Z","a".."z","0".."9","/",".");

sub new
{

my ($class, $cleartext) = @_;
my $salt = $salt[rand @salt].$salt[rand @salt];
my $pw = crypt($cleartext,$salt);
return bless \$pw, ref($class)||$class;

}

sub verify
{

my ($self, $candidate) = @_;
my $salt = substr($$self,0,2);
return crypt($candidate,$salt) eq $$self;

}

Figure 7: A scalar-based password class

The only tricky part about using scalars as objects is how to create one in the first place.
Unlike arrays and hashes, scalars are not provided with a special syntax for creating
anonymous instances. There's no syntax corresponding to […] (which creates anonymous
arrays), or to {…} (which creates anonymous hashes). Instead, we have to hijack a lexical
variable (e.g. $pw in the Password constructor).

The constructor takes a text string as its argument, randomly creates a "salt" value20,
encrypts the string with a call to the in-built crypt function, assigns the encrypted version
to a lexical variable $pw, and then blesses $pw into the class.

19 "Reads faster, less memory!"

20 The crypt function implements a family of related one-way encryption schemes. The actual
scheme crypt uses is determined by a two-character "salt" string that is passed as its second
argument.

Page 27

The important point to understand is that, even though $pw is a lexical, it does not cease
to exist at the end of the call to Password::new. That's because bless returns a reference
to $pw and that reference is then returned as the result of new.

Assuming that the reference is immediately assigned to a variable in some outer scope:

my $password = Password->new("fermat");

then the number of "live" references to the scalar remains greater than zero, and the lexical
scalar escapes destruction at the end of the scope in which it was declared.

The verify method is equally straightforward. It encrypts the candidate string and
compares the result to the password string (i.e. to the invoking object itself). This process
takes advantage of the fact that the first two letters of a crypt'ed string are identical to the
"salt" with which the original call to crypt was seasoned.

Note that accessing the object's data is slightly different when the object is a scalar. We
can't use the arrow notation to access an entry or an element (as we do with references to
hashes or arrays). With a scalar-based object, we need to explicitly dereference the scalar
reference. Thus the single value stored in the object referred to by $self, is always accessed
as $$self.

The class could be used like so:

use Password;

print "Enter password: ";
my $password = Password->new(scalar <>);

and later…

while (<>)
{

last if $password->verify($_);
print "Sorry. Try again: ";

}

It could reasonably be argued that the use of object orientation in this implementation is
needlessly ostentatious. However, good software engineering practice would suggest that
the mechanics of password creation and verification should be encapsulated in subroutines.
Suppose, for example, that we later decide that the crypt algorithm is insufficiently secure,
and that MD5 or PGP or SHA must be used instead? Clearly, we don't want raw calls to
crypt spread throughout the code, to be hunted down and changed one at a time.

Class inheritance can be very complicated in some object-oriented languages, but Perl strips the
concept back to a surprisingly simple idea: that inheritance tells an object where to look next...

How Perl handles inheritance
Perl's approach to inheritance is typically low-key and uncomplicated. Packages that are
acting as classes simply announce their "allegiance" to some other class, and dynamically
inherit all its methods. Perl also provides some standard methods that all classes inherit, and
a small dose of syntactic sugar to make rewriting inherited methods easier. Let's start with
the pledge of allegiance…

Page 28

The @ISA array
A class informs Perl that it wishes to inherit from another class by adding the name of that
other class to its @ISA package variable. For example, the class PerlGuru could specify that it
wishes to inherit from class PerlHacker as follows:

package PerlGuru;
@ISA = ("PerlHacker");

And that's it. From that point on, whenever Perl needs to determine if PerlGuru has any
inherited methods, it checks the contents of the array @PerlGuru::ISA. Any package
whose name appears in that array is considered to be a parent class of PerlGuru. Of course,
since it's an array, we can have many class names in @PerlGuru::ISA, allowing the class to
inherit methods from more than one parent:

package PerlGuru;
@ISA = qw(PerlHacker LanguageMaestro Educator PunMeister);

And, of course, if those four parent classes also inherited from other classes:

package PerlHacker;
@ISA = qw(Programmer Obfuscator);

package PunMeister;
@ISA = qw(Writer Humorist OneSickPuppy);

then PerlGuru would also inherit methods from those "grandparents". All this inheritance
creates the hierarchy shown in Figure 8.

Figure 8: PerlGuru's inheritance hierarchy

What inheritance means in Perl
Inheritance in Perl is a much more casual affair than in other object-oriented languages. In
essence, inheritance means nothing more than: if you can't find the method requested in an
object's blessed class, look for it in the classes that blessed class inherits from.

Programmer Obfuscator Writer Humorist
OneSick-

Puppy

PerlGuru

EducatorLanguage-
Maestro

PerlHacker PunMeister

Page 29

In other words, if we call:

my $guru = PerlGuru->new();

and later…

my $question = <>;
print $guru->answer($question);

then, if class PerlGuru doesn't provide a PerlGuru::answer method, Perl starts trying the
various parent classes (as specified by the current value of the @PerlGuru::ISA array). The
parents are searched in a depth-first recursive sequence21, so Perl would look for one of the
following (in this order):

• &PerlGuru::answer (look in the actual class of $guru),

• &PerlHacker::answer (look in the class specified by the first entry in the variable
@PerlGuru::ISA),

• &Programmer::answer (look in the class specified by the first entry in the
variable @PerlHacker::ISA)

• &Obfuscator::answer (look in the class specified by the second entry in the
variable @PerlHacker::ISA),

• &LanguageMaestro::answer (look in the class specified by the second entry in
the variable @PerlGuru::ISA),

• &Educator::answer (look in the class specified by the third entry in the variable
@PerlGuru::ISA),

• &PunMeister::answer (look in the class specified by the fourth entry in the
variable @PerlGuru::ISA),

• &Writer::answer (look in the class specified by the first entry in the variable
@PunMeister::ISA),

• &Humorist::answer (look in the class specified by the second entry in the
variable in @PunMeister::ISA),

• &OneSickPuppy::answer (look in the class specified by the third entry in the
variable @PunMeister::ISA).

 If any of these methods is defined, the search terminates at once and that method is
immediately called22. This process of searching for the right method to call is known as
method dispatch.

21 Sean M. Burke's Class::ISA module (available from the CPAN) allows you to extract the exact
sequence in which a class's parent's are searched, as a list of class names.

22 Note that, when looking in a parent class, Perl checks the left-most parent first, and then checks
the left-most parent of that class, and the left-most parent of that class etc. Hence, if a class's left-
most great-great-great-grandparent has a method of the right name (e.g. answer) then that
method will be called, even if another of the object's direct parents also has a suitable method.
In other words, you don't necessarily get the method that is "closest" up the inheritance
hierarchy; you get the method that was inherited through the left-most inheritance chain. This
is known as "left-most ancestor wins".

Page 30

If you're used to the complicated inheritance semantics in some other object-oriented
language, it's important to realize that inheritance in Perl is merely a way of specifying
where else to look for a method, and nothing else! There is no direct inheritance of attributes
(unless you arrange for it), nor any hierarchical calling of constructors or destructors (unless
you explicitly write those methods that way), nor any compile-time consistency checks of the
interface or implementation of derived classes.

This process of finding the correct method to call also explains why Perl ignores any
prototype associated with a method, and why you can't use prototypes to constrain the
number of arguments given to a method. The prototype check occurs when the code is being
compiled, but at that point the compiler has no idea which of the many potential answer
subroutines will actually be called (since it will depend on the contents of the various @ISA
arrays at the time the method is actually called). So the compiler has no way of determining
which subroutine's prototype to check the argument list against.

Where the call goes
The exact semantics of where (and in what order) Perl looks for a method are relatively
straightforward, but warrant a brief discussion. The rules for handling a call such as
$obj->method() can be summarized as follows:

1. If the class into which $obj's referent is blessed (say MyClass) has a subroutine
method, call that.

2. Otherwise, if MyClass has an @ISA array, step through each parent class in that array
and apply steps 1 and 2 to it (i.e. recursively search in depth-first, left-to-right order up
the hierarchy). If a suitable method subroutine is found in any package in the hierarchy,
call that.

3. Otherwise, if the UNIVERSAL class has a subroutine method, call that.

4. Otherwise, if MyClass has an AUTOLOAD method, call that.

5. Otherwise, if one of the ancestral classes of $obj's referent (once again searched in
depth-first, left-to-right order) has an AUTOLOAD method, call that.

6. Otherwise, if the UNIVERSAL class has an AUTOLOAD method, call that.

7. Otherwise, give up and throw an exception: Can't locate object method "method" via
package "MyClass".

Once a suitable method has been found for an object of a particular class, a reference to
it is cached within the class. Thereafter, any subsequent call to the same method through
objects of the same class doesn't need to repeat the search. Instead, it uses the cached
reference to go directly to the appropriate method.

If the class's @ISA array (or that of any of its ancestors) is modified, or if new methods
are defined somewhere in the hierarchy, then the cached method may no longer be correct.
In such cases, the cache is automatically cleared and the next method call simply does a new
search (and, of course, re-caches the resulting subroutine reference).

Page 31

The biggest hurdle that most budding object-oriented programmers face is coming to grips with
polymorphism. But Perl removes the mystery (and the misery) with its straightforward and pragmatic
approach...

Polymorphism in Perl
Those of us who hate having injections usually appreciate when our doctor says: "Okay, I'll
count to 3: …1…2…<jab!>…3", and the nastiness is over before it begins.

Guess what.
If you've been apprehensive about this section—either because you've heard

polymorphism is "difficult", or because you've had trouble with it in other languages—you
can relax. The nastiness is over. If you've read this far, you've already seen everything you
need to know about polymorphism. Whilst some object-oriented languages have special
syntaxes and a long list of rules, constraints, and conditions on the use of polymorphic
methods, as you'll have realized by now, Perl has a different attitude.

In Perl, every method of every class is (potentially) polymorphic, as a direct
consequence of the way that methods are automatically dispatched up the class hierarchy.
There's no special syntax, no requirement for type-compatibility of method arguments, no
need for inheritance relationships between classes. Just define your method, redefine it in
any derived classes that need to act differently, and without even knowing it you're
polymorphizing.

Interface polymorphism
Suppose we have an object reference (say, $datum) and we call a method (say, print_me)
on it:

foreach my $datum (@data)
{

$datum->print_me();
}

 The method dispatch mechanism determines the class of the invoking object (i.e. of
$datum), and then looks in the corresponding package for a method of the appropriate
name (i.e. print_me). Provided the object belongs to a class with a method named
print_me, the method call succeeds and some action is taken. That action depends on the
class of the invoking object, even though the call syntax is always the same.

The elements in the @data array might have been blessed into completely unrelated
classes:

my @data = (
GIF_Image->new(file=>"camelopard.gif", format=>"interlaced"),
XML::File->new("./lamasery.xml"),
PGP_Coded->new("Software is *not* a munition!"),
HTTP::Get->new("http://www.perl.org/news.html"),
Signature->new(),

);

but the same method call (i.e. $datum->print_me()) handles them all appropriately, so
long as each object's class's interface provides a print_me method. That's known as interface
polymorphism.

Page 32

Inheritance polymorphism
Of course, the dispatch mechanism also has a fall-back strategy if the class of the invoking
object doesn't provide a matching method. As explained earlier, it immediately searches
through the object's ancestor classes, trying to find an inherited method with the correct
name.

This means that if the object belongs to a class that inherits a method named print_me,
the method call succeeds and some action is taken. Once again, that action depends on the
class of the invoking object (or more accurately, on the "genealogy" of that class), even
though the call syntax is still always the same. That's known as inheritance polymorphism.

Like some other object-oriented languages, Perl has a mechanism that allows class designers to
redefine the behaviour of its standard arithmetic, logical, and other operators. Some software
engineering purists decry such facilities, but there are good reasons for wanting them...

The problem
One aspect of object-oriented programming that seems to turn some people away is the need
to call methods on objects, rather than manipulating the objects directly. It's not so much the
efficiency of so many function calls (although that can be a concern too); it's the sheer
ugliness of the code they produce.

Take Mark Biggar's standard Math::BigFloat module for example23. Math::BigFloat
objects store floating point numbers as character strings, and provide a range of methods for
manipulating those string representations: fneg to negate them, fadd to add them, fmul to
multiply them, etc.

We could use those methods to work out some calculation involving large numbers,
such as the expected difference in per-capita gross domestic product between China and the
USA in 199824. Given the most recent available statistics (i.e. for 1997):

%China =
(

pop => Math::BigFloat->new("1 221 591 778"), # people

gdp => Math::BigFloat->new("3 390 000 000 000"), # US dollars

pop_incr => Math::BigFloat->new("1.0093"), # annual % change

gdp_incr => Math::BigFloat->new("1.097"), # annual % change

);

%USA =
(

pop => Math::BigFloat->new("267 954 764"), # people
gdp => Math::BigFloat->new("7 610 000 000 000"), # US dollars
pop_incr => Math::BigFloat->new("1.0087"), # annual % change

23 Not that there's anything inherently wrong with the Math::BigFloat package! On the
contrary, it's well-implemented and very useful. We're just going to use it inappropriately in
order to make a point about method-based operations in general.

24 US$25,814.89, in case you actually needed to know.

Page 33

gdp_incr => Math::BigFloat->new("1.024"), # annual % change

);

the following calculation is required:

$diff = Math::BigFloat->new((Math::BigFloat->new((Math::BigFloat->
new((Math::BigFloat->new($China{gdp}->fmul($China{gdp_incr}))
)->fdiv(Math::BigFloat->new($China{pop}->fmul($China{pop_incr}
)))))->fsub(Math::BigFloat->new((Math::BigFloat->new($USA{gdp}
->fmul($USA{gdp_incr})))->fdiv(Math::BigFloat->new($USA{pop}->
fmul($USA{pop_incr})))))))->fabs());

Yuck. Even breaking up the computation doesn't help the readability much:

$cpop = Math::BigFloat->new($China{pop}->fmul($China{pop_incr}));
$cgdp = Math::BigFloat->new($China{gdp}->fmul($China{gdp_incr}));
$upop = Math::BigFloat->new($USA{pop}->fmul($USA{pop_incr}));
$ugdp = Math::BigFloat->new($USA{gdp}->fmul($USA{gdp_incr}));
$cgdp_pc = Math::BigFloat->new($cgdp->fdiv($cpop));
$ugdp_pc = Math::BigFloat->new($ugdp->fdiv($upop));
$sdiff = Math::BigFloat->new($cgdb_pc->fsub($ugdb_pc));
$diff = Math::BigFloat->new($sdiff->fabs());

The standard method-based object-oriented interface just doesn't work here, because the
numerous method calls swamp the meaning of the code in a sea of arrows, parentheses, and
constructors. What we'd really like to be able to write is something like:

$diff =
abs(($China{gdp} * $China{gdp_incr}) / ($China{pop} * $China{pop_incr})

- ($USA{gdp} * $USA{gdp_incr}) / ($USA{pop} * $USA{pop_incr}));

which is at least decipherable by normal humans.
To make that possible, we have to be able to change the meaning of operations (such as

$cpop * $cpop_incr, or $cgdp_pc - $ugdp_pc, or abs($sdiff)) on objects of a
given class. Fortunately, Perl provides a simple mechanism to do exactly that.

Changing the way a Perl's in-built operators behave when applied to a user-defined type
is known as operator overloading. By overloading them, operators can be given new semantics
when applied to objects of a specific class. For example, given:

$six = Math::BigFloat->new("6");
$seven = Math::BigFloat->new("7");
$forty_two = $six * $seven;

to evaluate the last statement Perl might attempt to multiply the integer representations of
the two references stored in $six and $seven (i.e. the internal memory addresses of the
two Math::BigFloat objects). That's unlikely to produce the desired result.

However, by overloading the multiplication operator, we could arrange for the
multiplication of any two Math::BigFloat objects to produce a new Math::BigFloat object
containing the correct value25.

25 The Math::BigFloat module actually does overload the basic arithmetic operators in this way, so
operations on Math::BigFloat objects do work as expected.

Page 34

Perl's operator overloading mechanism
Ilya Zakharevich's overload.pm module, which comes with the standard Perl distribution,
provides access to Perl's built-in mechanism for overloading operators. To overload
operators for a given class, you use the module, passing the use statement a list of
operator/implementation pairs:

package Math::BigFloat;

use overload "*" => \&fmul,
"+" => "fadd",
"neg" => sub { Math::BigInt->new($_[0]->fneg()) };

Each pair consists of a keyword (which specifies the operator that is to be overloaded)
and a subroutine reference (which specifies a subroutine that is to be performed when the
specified operator is encountered).

The keyword must be one from the list shown in Table 1. These are the only operators
that may be overloaded. Note that simple assignment isn't one of them.

Category Operators/
Keywords

Notes

Arithmetic "+" "-" "*" "/"
"%" "**" "x" "."

"neg"

"neg" implements unary negation. There is no
overloading for unary identity (i.e. +$obj).

Bitwise "<<" ">>"
"&" "|" "^"

"~"

"^" is bitwise exclusive OR, not exponentiation.

Assignment "+=" "-=" "*="
"/=" "%=" "**="
"<<=" ">>=" "x="

".="

"++" "--"

"++" and "--" are mutators and their handler is
expected to actually change the value of its first
argument (e.g. $_[0]->{val}++ for "++"). Handlers
for other assignment operators may alter the first
argument, but there's little point since the argument is
always assigned the return value.

Comparison "<" "<=" ">" ">="
"==" "!=" "<=>"
"lt" "le" "gt"
"ge" "eq" "ne"

"cmp"

All other operators may be automatically generated
from the "<=>" and "cmp" operators.

Built-in
functions

"atan2"

"cos" "sin" "exp"
"abs" "log" "sqrt"

These override the equivalent built-in function for a
specific class only.

Conversions q{""} "0+" "bool" Automatically called when the context requires a string,
number, or boolean.

Pseudo-
operators

"nomethod"
"fallback" "="

"=" does not overload the assignment operation.

Table 1: Overloadable operators in Perl

Page 35

The subroutine reference may either be a reference to a named subroutine, or a symbolic
reference (i.e. the name of the subroutine), or a reference to an anonymous subroutine. Note
that all three alternatives may be used in the same use overload statement.

The implementation subroutine is called any time a reference to an object of the
corresponding class (in the above examples, Math::BigFloat) is an operand of corresponding
operator. If the operation was specified as a subroutine reference, then it's called as a non-
method subroutine. If it is specified as a symbolic reference (i.e. a name), then it is called as a
method.

In other words, if $six and $seven store Math::BigFloat objects, and multiplication,
addition and negation are overloaded as shown above, the following series of operations:

$six * $seven;
$six + $seven;
-$six;

is automatically translated to:

Math::BigFloat::fmul($six,$seven,"");
$six->fadd($seven,"");
(sub { Math::BigInt->new($_[0]->fneg()) })->($six,undef,"");

Regardless of how it is invoked, each implementation subroutine is called with three
arguments:

• The first operand of the operation,

• The second operand of the operation (or undef if the operation is unary, as for fneg
above),

• A flag indicating whether the operands were reversed.

The flag is needed because—as in all other object methods—the first argument must be a
reference to an object of the appropriate class (i.e. in this case a reference to a
Math::BigFloat). If Perl detects an operation such as:

6 + $seven;

it obviously can't translate that to:

6->fadd($seven,""); # huh?

so it translates it to:

$seven->fadd(6,1);

and sets the third argument to a true value, to indicate that the arguments had to be reversed
Notice that in all the earlier examples, this argument was an empty string (i.e. false), since
the first operand was always a Math::BigNum and so the arguments didn't need to be
reversed.

Hence, for operations where the order of the operands matters (e.g. for subtraction or
division), it's common to see implementation subroutines implemented like this:

sub subtract
{

my ($op1, $op2, $reversed) = @_;
($op2,$op1) = ($op1,$op2) if $reversed;
then perform $op1 - $op2 as appropriate

}

use overload "-" => \&subtract;

Page 36

It's important to bear in mind that problems may arise if both operands of a binary
operator are references to objects. If the object's classes have both overloaded the operator,
it's the overloading in the first operand's class that is invoked. In such cases it may be
necessary to resort to multiple dispatch techniques to ensure that the appropriate subroutine
is invoked regardless of the order of operands.

Of course, just because the operator overloading facility is sometimes useful, doesn't mean it should
always be used...

The use and abuse of operators
The operator overloading mechanism gives you a powerful mechanism with which you can
alter the normal behaviour of expressions and conversions involving any new class you
create. The question is: should you?

Clearly, there are cases when overloading certain operations makes perfect sense,
especially if you're creating a class to represent something that has a well-defined algebra
(such as large integers, or complex numbers, or vectors, or matrices). As illustrated by the
GDP calculation at the start of this section, an appropriate set of operators can greatly
improve the usability of such classes and the readability of the code that uses them.

Likewise, it's often useful to overload the stringification conversion for a class. For
example:

package CD::Music;

use overload

q{""} => sub { qq("$_[0]->{name}" by $_[0]->{artist}) };

That way, if someone writes:

my $cd = CD::Music->new(@messiah_data);

and later…

print $cd, "\n";

they get something useful like:

"Messiah" by George Frideric Handel

rather than something merely accurate like:

CD::Music=HASH(0x1001c3e0)

Then there are cases where the "appropriateness" of specific overloadings is less certain.
Consider a class implementing three-dimensional vectors, such as might be found in a
graphics package:

Page 37

$view_dir = Vector->new(x=>100,y=>0,z=>-50);
$move_dir = Vector->new(x=>20,y=>20,z=>0);

$motion_normal = $view_dir x $move_dir;
$motion_angle = $view_dir * $move_dir;

Clearly for such a class "x" is an appropriate operator for the cross-product operation,
but is "*" the right choice for the dot-product? It certainly conveys the multiplicative nature
of the operation, and it looks somewhat like a dot (albeit a big, hairy one), but would the
actual "dot" operator (i.e. ".") be a better choice? That operator already has a strong
association with concatenation in regular Perl, but a vector algebraist might well find:

$motion_angle = $view_dir . $move_dir;

more "intuitive". Or perhaps not. It certainly won't be intuitive when the "dot" operator is
called to concatenate two string-interpolated variables (e.g. "$vector1$vector2") and
produces their dot-product instead. And what would such mathematicians then make of the
"^" operator? Would they expect:

$unit_view_dir = ^$view_dir;

to create a unit vector? How will they react when it produces a syntax error instead?
The problem is that, having provided some overloaded operators for a class, we have

also set up an expectation in the mind of the users of that class. Because objects of the class
can sometimes be used in the "natural" way, clients may expect that such objects can always be
used that way. That will probably not be the case, so it's vital to document where the
metaphor breaks down.

Sometimes operator overloading is used purely to provide coding expediency, rather
than to promote clarity. For example, suppose we created a database class that was entirely
operator-driven:

use OpDBM;

my $db = OpDBM->new($dbfile);

$db += [item=>"oatmeal", category=>"breakfast"];
$db += [item=>"marmalade", category=>"breakfast"];
$db += [item=>"potatoes", category=>"dinner"];

my $relation = sqrt(~$db * [category=>"breakfast"]);

print "$_->{item}\n" while ($relation++);

The dozen or so people on the planet who are well-versed in abstract database theory,
may rejoice in the decision to overload "+=" to handle insertions, "~" for database
normalization, "*" to perform selections, "++" to iterate a set of records, and sqrt to
implement the "Sort, Quashing Repeated Tuples" operation:

package OpDBM;
use overload

'+=' => sub { $_[0]->insert_tuple(@{$_[1]}) },
'~' => sub { $_[0]->normalize() },
'*' => sub { if ($_[2]) { $_[1]->insert_tuple(@{$_[0]}) }

else { $_[0]->insert_tuple(@{$_[1]}) } };

package OpDBM::Relation;
use overload

'++' => sub { $_[0]->next() },
'sqrt'=> sub { $_[0]->sort_quash_reps() };

Page 38

To database theoreticians, the resulting code may be obvious, intuitive, and even
elegant. But it's also likely to make the task of developing and maintaining such code very
much harder for the rest of us.

So when should you overload? Clearly it's a least partially a "religious issue", so there's
no correct answer26. As a general rule of thumb, overloading the algebraic operators for a
class is appropriate when the same operators are used in the normal (non-programming)
notation for whatever the class represents. Numerical and other mathematical classes are the
usual candidates here.

Overloading conversion operations is also often a good idea, as it allows objects to act in
standard ways the programmers may expect, especially when they are stringified.
Comparison operators are another reasonable candidate for overloading in most cases,
provided the values represented by objects have an obvious ordering.

A few operators are sufficiently generalized in their meaning (e.g. "+=" meaning "add
to") that they can reasonably be overloaded in almost any suitable context. Code like:

$db += [item=>"oatmeal", category=>"breakfast"];

or:

$dictionary += "algebraist";

or:

$process_group += $new_process;

will probably be readily intelligible to almost any programmer.
Apart from that, it's probably best to use operator overloading sparingly, the way an

expert chef uses salt. Without it, your creations may be bland and indigestible, but using it
indiscriminately or too often will only raise your clients' blood pressure.

Encapsulation is one of the cornerstones of object orientation, but it's the area in which Perl's support
for object-oriented programming is weakest. Many would argue that enforced encapsulation is against
Perl's philosophy of freedom and flexibility in programming. But there are situations when too much
freedom becomes a trap, and too much flexibility makes it hard to build solid code...

The perils of trust
In practice, the lack of an in-built encapsulation mechanism rarely seems to be a problem in
Perl. Most Perl programmers build classes out of standard hashes, and they and the users of
their classes get by quite happily with the principle of "encapsulation by good manners". The
lack of formal encapsulation doesn't matter because everybody plays nicely, keeps off the
grass, and respects the "official" interface of objects. Those who don't play by the rules, and
directly access a method or attribute that is supposed to be private, get what they deserve
(i.e. either better performance or a nasty surprise).

26 Or perhaps: '…so there are nothing but "correct" answers, most of which are mutually
exclusive'.

Page 39

The only problem is, this convivial arrangement doesn't scale very well. Leaving your
front door open may be fine in a small town, but it's madness in the big city. Likewise,
informal mechanisms that are suitable for a few hundred lines of code written by a single
programmer, don't work nearly as well when the code is tens of thousands of lines long and
developed by a team. Even if you could trust the entire team to maintain sufficient
programming discipline to respect the notional encapsulation of attributes (a dubious
proposition), accidents and mistakes happen, especially in rarely-used parts of the system
that only ever get used when demonstrating to important clients.

Moreover, deliberate decisions to circumvent the rules (usually taken in the heat of
hacking, out of laziness, or for efficiency) are often inadequately documented, leading to
problems later in the development cycle. For example, consider a (notionally) "private"
attribute of an object, which for efficiency reasons is accessed directly in an obscure part of a
system. If the implementation of the object's class changes, that attribute may cease to exist.

In a more static language, this would generate an error message to be generated when
next the external code attempts to access the now non-existent attribute. However, Perl's
autovivification of hash entries may well "resurrect" the former attribute whenever it is
accessed, so the now-incorrect access proceeds silently. Bugs such as this can be painfully
difficult to diagnose and track down, especially if the original programmer has moved on by
the time the problem is discovered.

Fortunately Perl's very flexibility can be turned against itself, to provide several different ways of
building objects that do respect the encapsulation imposed by their classes. Here's one approach that
also demonstrates an interesting application of scalar-based objects...

Encapsulation via scalars
An interesting, but less well-known approach to encapsulation uses scalar-based objects to
implement a technique called the flyweight pattern. In the flyweight pattern, objects don't
carry around their own information, so that information can't be accessed directly via the
object. Instead, flyweight objects merely serve as an index into a shared table of values,
stored within the class itself. For example, an object might be an integer that indexes into
some table of values stored as a class attribute.

Flyweight objects are most frequently used in object-oriented languages that pass objects
around by value, because flyweight objects remain extremely small (no matter how much
data they "contain"), and hence are cheap to pass around. Because Perl objects are invariably
accessed via references, this advantage is not significant.

However, the flyweight pattern still has something to offer in Perl, because it provides a
simple mechanism for preventing direct access to object attributes, thereby enforcing
encapsulation. As a bonus, it also provides a means of easily keeping track of every object in
a class.

Name, rank, and serial number
Figure 9 shows a flyweight implementation of the Soldier class. The entire class is contained
in a pair of curly braces, to ensure that any lexical variables declared within their scope are

Page 40

not directly accessible outside that scope. Not surprisingly then, the first thing the class does
is declare some lexical variables.

package Soldier;
$VERSION = 2.00;
use strict;

{
Table storing references to hashes containing object data

my @_soldiers;

Allowable attributes and their default values

my %_fields = (name=>'???', rank=>'???', serial_num=>-1);

Constructor adds object data to table and blessed a scalar
storing the index of that data

sub new
{

my ($class, %args) = @_;
my $dataref = {%_fields};
foreach my $field (keys %_fields)
{

$dataref->{$field} = $args{$field}
if defined $args{$field};

}
push @_soldiers, $dataref;
my $object = $#_soldiers;
bless \$object, $class;

}

These methods provide the only means of accessing object attributes

(note that only rank can be changed)

sub get_name { return $_soldiers[${$_[0]}]->{name} }
sub get_rank { return $_soldiers[${$_[0]}]->{rank} }
sub get_serial_num { return $_soldiers[${$_[0]}]->{serial_num} }

sub set_rank
{

my ($indexref, $newrank) = @_;
$_soldiers[$$indexref]->{rank} = $newrank

}

This class method provides an iterator over every object

my $_cursor = -1;
sub each
{

my $nextindex = ++$_cursor;
if ($nextindex < @_soldiers)
{

return bless \$nextindex, ref($_[0])||$_[0];
}
else
{

$_cursor = -1;
return undef;

}
}

}

Figure 9: The Soldier class implemented via scalars

Page 41

The lexical array @_soldiers is used to store the data for each object. That data is
directly accessible to the methods declared within the curly braces, but nowhere else. This
restriction will eventually provide the desired encapsulation of object data.

The lexical hash %_fields performs the dual function of recording (in its keys) the
names of valid attributes of a Soldier object, and storing (in its values) the default values for
those attributes.

The constructor begins like most others we've seen so far, by creating a new anonymous
hash and initializing it with the default attribute values for the class. It then loops over the
valid fields of the class, overwriting those default values with any corresponding argument
that was passed to the constructor.

At this point a typical constructor would bless and return the reference in $objref,
thereby making the anonymous hash into the new object. Instead, Soldier::new pushes
the hash onto the end of the encapsulated @_soldiers array, and blesses a scalar storing
the index of that newly added array element instead.

Thus a constructor call such as:

my $grunt = Soldier->new(name => "Smith, J.",
rank => "private",
serial_num => 149162536);

leaves $grunt with a reference to a scalar (i.e. to the index of the data), rather than a
reference to a hash (i.e. to the data itself). Figure 10 illustrates the process.

Theoretically, the effect is the same, since we have the index and know which array it
refers to, so we can still find the actual data. In practice, however, there's an important
difference. Outside the curly braces surrounding the class, the @_soldiers array is
inaccessible, so even though we have the index for the object's data, we can't access that data
directly.

Controlled access
Instead, it's up to the accessor methods of the class to provide the required access. Since they
are all defined within the encapsulating curly braces, they do have access to @_soldiers,
and so they can dereference the blessed index (i.e. ${$_[0]}), index into the array to get a
reference to the appropriate hash data ($_soldiers[${$_[0]}]), and then access the
correct field of that data using the arrow notation ($_soldiers[${$_[0]}]->{name}).

Note that the implementation shown in Figure 9 doesn't provide "write" accessors for a
Soldier's name or serial number. This provides real data security, since without the accessors
there is no way of modifying these attributes, once they are set.

We could try to impose a new method on the class:

package main;
use Soldiers;

my $general = Soldier->new(name => "Caesar, G.J.",
rank => "Prodictator",
serial_num => "MMXLVIII");

Oops, that serial number was out by one.
Strange, there's no method to change it.
Oh well, let's just add one ourselves…
Figure sub Soldiers::set_serial_num { $_soldiers[${$_[0]}]->{serial_num} = $_[1] }

…and use it…

$general->set_serial_num("MMXLIX");

Page 42

 Figure 10: Construction of a Soldier object

i. After my $dataref = {%_fields};
and foreach my $field...

$grunt

$dataref

@_soldiers
[0] [1] [2] [3]

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

ii. After push @_soldiers, $dataref;
and my $object = $#_soldiers;

$object

0

$grunt

$dataref

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

@_soldiers
[0] [1] [2] [3]

iii. After bless \$object, $class;
and constructor returns

$grunt

“name” “Smith, J”

“rank” “private”

“serial_num” 14914253

@_soldiers
[0] [1] [2] [3]

0
Soldier

$object

Page 43

but that wouldn't circumvent encapsulation. Although the new method will be in the class's
namespace (and hence, callable through its objects), it won't be in the lexical scope of the
original encapsulating curly braces, so it won't have access to the lexical @_soldiers array.

It's worth noting that Perl will visit a satisfying form of Instant Justice on the author of
this code. Since the code doesn't use strict, Perl will conclude that the @_soldiers
array being modified in Soldier::set_serial_num is the package variable
@main::_soldiers. Thus, the code will execute without complaint, yet mysteriously fail
to update any soldier's serial number, leading to happy hours of fruitless debugging.

Roll call
The other advantage of a scalar-based object representation like this is that the class itself has
direct and continuing access to the data of every object blessed into it. That makes it very
easy to provide class methods to iterate that data.

The Soldier class demonstrates this by providing an iterator method (Soldier::each),
which steps through the indices of the @_soldiers array, returning a blessed version of
each index (i.e. a Soldier object). The method can be used like this:

while (my $soldier = Soldier->each)
{

printf "name: %s\nrank: %s\n s/n: %d\n\n",
$soldier->get_name(),
$soldier->get_rank(),
$soldier->get_serial_num();

}

By the way, as elegant as it might look, don’t be tempted to write:

while (my $soldier = each Soldier) {…}

hoping that this is one of the few places where the "indirect object" syntax will work. It isn’t.
Instead, Perl will assume you wanted to use the built-in each function to iterate the package
hash %Soldier, and just forgot the "%" prefix. Once again, use strict will prevent Perl
from helping you cut your own throat like this.

Generic programming is an important tool in the object-oriented armory. But Perl's support for
closures, dynamic typing of variables, and run-time code evaluation makes explicit generic
mechanisms largely irrelevant...

Why Perl doesn't need special generic mechanisms
The ability to specify generic code structures, independent of the details of class type, is an
important component of most object-oriented languages. Anyone who has ever had to
rewrite the List class to cater for various different types of elements (List_of_CDs,
List_of_Soldiers, List_of_Bugs, List_of_List_of_BigInts, etc.) knows that generic types and
subroutines are a powerful means of reducing code duplication, and simplifying
maintenance. In fact, some would contend that genericity is more important than
hierarchical abstraction in this respect.

Page 44

Surprisingly, then, Perl offers no explicit built-in mechanism for creating generic classes
or generic subroutines27. There are no "templates", no "metaclasses", no "parametric types",
no "class generators". The reason is simple: they aren't needed.

Explicit mechanisms for specifying generic structures are usually found in languages
with static typing (i.e. where the type of each object is determined—and fixed—during
compilation). Such languages need a way of separating the generic form of a data structure
from the type-specific implementation of that data structure, for a given set of classes
(usually called its type parameters).

In other words, such languages need a way of indicating a place-holder for a type, so
that it's possible to specify something general like:

"Let L be a list of objects of type <whatever>. To insert a new element E (also of type

<whatever>), for each object O already in the L, use a subroutine S to compare O and

E. The first time the comparison is false, insert E before O in the list, and set the

current element pointer to the newly inserted element."

Then the compiler can fill in the place-holders with actual types, usually with the
assistance of some additional syntax to bind specified types to the place-holder <whatever>.

Perl's type system is completely different from this. Perl objects don't have statically-
associated class types; objects can be reblessed at any time. Perl variables don't have static
types either; they can store objects blessed into any class (or into no class at all). So in Perl,
we can get away with specifying a generic list insertion as follows:

"Let L be a list of objects (of any type, as usual). To insert a new element E (of any

type), for each object O already in the L, use a subroutine S to compare O and E. The

first time the comparison is false, insert E before O in the list, and set the current

element pointer to the newly inserted element."

Or, in actual Perl code:

sub List::insert
{

my ($L, $E, $S) = @_;
my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}->[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;
$L->{current} = $index;

}

The dynamic typing of Perl variables means that there is no need for place-holders, since
any scalar variable will happily hold a reference to an object of any class, and arguments of
any type(s) may be passed to any subroutine.

Of course, there's a price to pay. The earlier statically-typed version has access to more
information (namely the type of object the list is supposed to store). With this information, it

27 …except, perhaps, the AUTOLOAD mechanism, which could be viewed as a run-time generic
method that reproduces the functionality, and to some extent the internal structure, of the
specific methods it replaces.

Page 45

can pick up errors at compile-time (e.g. attempting to insert an object E of the wrong type, or
using the wrong comparison subroutine). In the Perl version, these problems would not
surface until the code is actually executed (and perhaps not even then).

Another reason why Perl has no need for explicit genericity is Perl's excellent range of
built-in datatypes. As the above code example illustrates, Perl's powerful arrays, hashes,
references to data and subroutines, etc., are already generic, in that they are capable of
storing (or referring to) any Perl data-type. Thus, when implementing the insertion
subroutine for our generic list class, we can just use a regular Perl array as the basis of the
class, confident that it will be able to store whatever kind of objects we choose to store.

Of course, there's always more than one way to do things in Perl, so it's not hard to whip up a proper
generic class when you need it...

Using specific mechanisms anyway
Yet another reason why Perl doesn't need explicit genericity is that it provides other
powerful mechanisms that can achieve the same effects. Closures, for example, are a general
means of binding specific data (and hence data-types) into a generic subroutine. The eval
function provides an even more powerful code-generation mechanism, allowing us to build
an entire class, using interpolated variables in a string as place-holders. This section explains
both of these techniques.

Closures as generic methods
One problem with the generic List::insert code shown above is that the user has to pass
a reference to some comparison subroutine (which is accessed via $S) each time they wish to
do an insertion. That's tedious and unnecessary.

A better solution would be to provide a method that generates variants of the
List::insert method, with the appropriate comparison subroutine "hard-wired" in. For
example, we could write:

sub List::generate_insert
{

my ($class, $S) = @_;
return sub
{

my ($L, $E) = @_;
my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;

}
}

List::generate_insert takes a single argument, which is a reference to a
subroutine. It then creates and returns a new anonymous subroutine that is functionally

Page 46

identical to List::insert, except that it no longer requires a third ($S) argument. Instead,
the lexical variable $S, which was created in the first line of List::generate_insert, is
used. It is still in scope when the anonymous subroutine is created, so it's okay to use it
within that subroutine. And because the subroutine uses it, it survives the end of the call to
List::generate_insert.

Of course, to make it usable, we still have to associate the newly created anonymous
subroutine with the insert method of a specific class. If, for example, we wanted
List_of_Employee::insert to use the anonymous subroutine we could simply assign
the result of the call to List::generate_insert to the appropriate typeglob:

*List_of_Employee::insert = List->generate_insert(\&List_of_Employee::_compare);

We passed List::generate_insert a reference to the subroutine
List_of_Employee::_compare, so that the new class's insert method used its own
_compare. This approach gives us some flexibility in deciding which comparison
subroutine is used by which insert. For instance we might want to ensure the same sorting
order for both general employees and management level staff:

*List_of_Manager::insert = List->generate_insert(\&List_of_Employee::_compare);

On the other hand, this might be a coding error (and a difficult one to detect, at that). If
each specific list class's insert should always use the same class's _compare, we could
rewrite the List::generate_insert method to produce a safer generator method:

sub List::generate_insert_for
{

my ($class, $newclass) = @_;
no strict "refs";
my $S = \&{"${newclass}::_compare"};
*{"${newclass}::insert"} = sub
{

my ($L, $E) = @_;
my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;

}
}

Instead of a reference to the comparison function, this version takes the name of the new
class as its argument. It then uses that class name to build the name of the appropriate
comparison subroutine (i.e. "${newclass}::_compare"). That name is used as a
symbolic reference to the subroutine itself (&{"${newclass}::_compare"}), which is
converted via a leading backslash (\&{"${newclass}::_compare"}) to a normal
reference. The anonymous subroutine is then constructed exactly as before, but now it is
automatically assigned it to the correct typeglob, which is also accessed via a symbolic
reference (*{"${newclass}::insert"}).

So now, to create a suitable List_of_Manager::insert method, we write:

List->generate_insert_for("List_of_Employee");

This same approach could easily be extended to generate the other necessary methods for a
list class:

Page 47

List->generate_first_for("List_of_Employee");
List->generate_next_for("List_of_Employee");
List->generate_insert_for("List_of_Employee");
List->generate_delete_for("List_of_Employee");

and, better still, aggregated into a single subroutine:

sub List::generate_methods_for
{

my ($class, $newclass) = @_;
List->generate_first_for($newclass);
List->generate_next_for($newclass);
List->generate_insert_for($newclass);
List->generate_delete_for($newclass);

}

Even better, that subroutine could be called List::import instead of
List::generate_methods_for. Remember that import is automatically called
whenever a module is use'd, so we could put the various generic method generators of class
List into a List.pm module, and then create list classes whenever they are needed like so:

use List "List_of_Employee";
use List "List_of_Tasks";
use List "ClientList";
etc.

Of course, we'd need to declare the various _compare subroutines in BEGIN blocks to
makes sure each is available when each new list type is use'd into existence during
compilation:

BEGIN
{

sub List_of_Employee::_compare
{

return $_[0]->{ID} < $_[1]->{ID}
}

}

use List "List_of_Employee";

Otherwise, there would be no way to create the necessary reference to it within
List::generate_insert_for.

Alternatively, we could go back to passing the comparison subroutine explicitly (as a
second argument to List::generate_insert_for):

sub List::generate_insert_for
{

my ($class, $newclass, $S) = @_;
no strict "refs";
*{"${newclass}::insert"} = sub
{

my ($L, $E) = @_;
my $index;
for ($index=0; $index < @{$L->{elements}}; $index++)
{

my $O = $L->{elements}[$index];
last unless $S->($O, $E);

}
splice @{$L->{elements}}, $index, 0, $E;

}
}

modify List::import accordingly:

Page 48

sub List::import
{

my ($class, $newclass, $comparison_sub) = @_;
List->generate_first_for($newclass);
List->generate_next_for($newclass);
List->generate_insert_for($newclass,$comparison_sub);
List->generate_delete_for($newclass);

}

and then create entire classes in a single line:

use List "List_Employee", sub {$_[0]->{ID} < $_[1]->{ID}};
use List "Manager::List", sub {$_[0]->{revenue} > $_[1]->{revenue}};

and later…

my $minions = List_Employee->new();
my $masters = Manager::List->new();

Figure 11 shows the complete generic List class, as it would be specified in the List.pm
module.

The same approach could be adapted to any generic class that required specific
subroutine references, or class name strings, or other class-specific data to be interpolated
into some place-holder within the generic code. The values to be interpolated would be
passed as arguments to use, and would be distributed to the appropriate generator
subroutines by the generic class's import method.

eval'ing generic classes
There are two main drawbacks to the approach described in the previous section. Firstly,
invoking the comparison subroutine through a reference (i.e. $S) is relatively slow, which is
unfortunate in a fundamental data structure like a list. Secondly, the use of the various
generate_… methods, each with an embedded anonymous subroutine representing a
single generic method, fragments the generic class and makes it more difficult to understand
and maintain.

Both problems can be overcome at once by changing the way the individual subroutines
are generated. Instead of creating an anonymous subroutine and assigning it into a typeglob,
we could use an eval to convert a block of text (containing the specification of the generic
class) into actual Perl code. Figure 12 shows the generic List class from Figure 11 modified in
this way.

The _replace subroutine takes a reference to an anonymous hash as its first argument
and a string as its second. The hash specifies a series of substitutions to perform on the
string. Each key of the hash is a literal pattern, each value is the corresponding replacement
text.

The List::import subroutine does effectively the same job as the previous version,
but in a very different way. It first extracts the name of the new class and the code for that
class's _compare subroutine from the argument list.

Then, if necessary, it reads in the "template" for the List class that is specified after the
__DATA__ token, and stores it in the package lexical variable $code. This read will only be
performed the very first time a use List is issued in a program, after which the text is
cached in $code.

Page 49

package List;
$VERSION = 1.00;

sub List::import {
my ($class, $newclass, $comparison_sub) = @_;
List->generate_new_for($newclass);
List->generate_first_for($newclass);
List->generate_next_for($newclass);
List->generate_insert_for($newclass,$comparison_sub);
List->generate_delete_for($newclass);

}

sub List::generate_new_for {
my ($class, $newclass) = @_;
*{"${newclass}::new"} = sub {

my ($class, @data) = @_;
bless { current => 0, data => [@data], }, ref($class)||$class;

}
}

sub List::generate_first_for {
my ($class, $newclass) = @_;
*{"${newclass}::first"} = sub {

my ($self) = @_;
return \$self->{data}[$self->{current}]

if ($self->{current}=0) < @{$self->{data}};
}

}

sub List::generate_next_for {
my ($class, $newclass) = @_;
*{"${newclass}::next"} = sub {

my ($self) = @_;
return \$self->{data}[$self->{current}]

if (++$self->{current}) < @{$self->{data}};
}

}

sub List::generate_insert_for {
my ($class, $newclass, $compare) = @_;
*{"${newclass}::insert"} = sub {

my ($self, $newelem) = @_;
my $index;
for ($index=0; $index < @{$self->{data}}; $index++) {

my $nextelem = $self->{data}[$index];
last unless $compare->($nextelem, $newelem);

}
splice @{$self->{data}}, $index, 0, $newelem;
$self->{current} = $index;

}
}

sub List::generate_delete_for {
my ($class, $newclass) = @_;
*{"${newclass}::delete"} = sub {

my ($self) = @_;
splice @{$self->{data}}, $self->{current}, 1;

}
}

1; # to ensure the "use" succeeds

Figure 11: The List module

Page 50

package List;
$VERSION = 2.00;
use strict;

sub _replace {
my ($substitute, $text) = @_;
$text =~ s/\Q$_/$substitute->{$_}/g foreach (keys %$substitute);
return $text;

}

my $code;
sub import {

my ($class, $newclass, $compare) = @_;
unless (defined $code) { local $/; $code = <DATA> }
eval _replace {'<<CLASS>>'=>$newclass, '<<COMPARE>>'=>$compare} => $code;

}

1; # to ensure the "use" succeeds

__DATA__
package <<CLASS>>;

sub new {
my ($class, @data) = @_;
bless { current => 0, data => [@data] }, ref($class)||$class;

}

sub compare { <<COMPARE>> }

sub first {
my ($self) = @_;
return \($self->{data}[$self->{current}])

if ($self->{current}=0) < @{$self->{data}};
}

sub next {
my ($self) = @_;
return \($self->{data}[$self->{current}])

if (++$self->{current}) < @{$self->{data}};
}

sub insert {
my ($self, $newelem) = @_;
my $index;
for ($index=0; $index < @{$self->{data}}; $index++) {

my $nextelem = $self->{data}[$index];
last unless compare($nextelem, $newelem);

}
splice @{$self->{data}}, $index, 0, $newelem;
$self->{current} = $index;

}

sub delete {
my ($self) = @_;
splice @{$self->{data}}, $self->{current}, 1;

}

Figure 12: The List module using eval

Page 51

To generate the specific code needed we could also have used a "here document", or an
interpolation module such as Interpolation or Text::Template28, or even the standard
sprintf function. However reading from <DATA> allows us to cleanly distinguish between
the actual code implementing the List.pm module (everything before __DATA__), and the
code template it uses (everything after __DATA__).

The template code is passed through _replace to put the new class's name and the
comparison code into the appropriate place-holders. Once these slots have been filled in, the
(now-specific) code is eval'ed into the current program.

The remainder of the file consists of the code template for the generic list class. Note that
the entire class is laid out together—with the place-holders <<CLASS>> and <<COMPARE>>
for the generic bits—making the structure, function, and level of genericity of the class much
clearer.

This version of the List class is used in much the same "one-line" manner as the previous
one—the only difference is that the comparison code is now specified as a string (in single
quotes to avoid the embarrassment of premature interpolation):

use List "List_Employee", '$_[0]->{ID} < $_[1]->{ID}';
use List "Manager::List", '$_[0]->{revenue} > $_[1]->{revenue}';

and later…

my $minions = List_Employee->new();
my $masters = Manager::List->new();

Once again, the technique can be easily adapted to generate generic classes for any
purpose and with any number of place-holders.

Many people come to Perl on the rebound from a bad experience with some other object-oriented
language. With a little guidance, the transition can be surprisingly painless. Here, for example, is
object-oriented Perl from a C++ perspective...

Perl and C++
For better or worse, to much of the programming world C++ is object-oriented
programming. Devised by Bjarne Stroustrup at the Bell Research Laboratories in the early
80's as an object-oriented successor to the C programming language, C++ has undergone
perhaps the most public and collaborative evolution of any programming language,
culminating in the recent ANSI C++ standard.

Like Perl, C++ is a hybrid language with object-oriented features layered over an
original imperative language. Syntactically and semantically, its non-object-oriented
components are almost completely backwards compatible with the C programming
language, whilst its object-oriented features draw most heavily on Simula.

28 …both by Mark-Jason Dominus, and available from the CPAN…

Page 52

Objects
C++ objects are structured regions of memory that store one or more typed data members. In
other words, every object is a record of various fields. In Perl, objects may also be record-like
structures (i.e. hashes), but they may also be arrays, scalar variables, subroutine references,
or a any other Perl datatype.

C++ objects may be stored directly in statically-typed variables, or dynamically created
and accessed via typed pointers or references. Perl objects may similarly be variables or
unnamed values, and are always accessed via references29 stored in dynamically-typed
variables. Unlike C++, in Perl there is no need for a manual deallocation mechanism like
delete, since all objects in Perl are automatically garbage-collected.

C++ also permits the definition of "static" data members that are (conceptually) shared
by all objects of a given class. Perl has no equivalent construct, but it is easy to set up such
shared attributes using lexical variables of appropriately restricted scope.

C++ objects are created either by static declaration or by dynamic allocation using the
new operator. Perl objects are almost always created dynamically, in a method that is often
called new.

Classes
A class in C++ is a specification of the data and function members (i.e. methods) possessed
by a particular kind of object. Classes in Perl also define the methods of a type of object, but
do not normally directly specify the attributes possessed by such objects30. Attribute
specification is typically arranged by the constructor method (e.g. new).

In C++, a class specifies a local namespace in which data and function members exist,
but C++ also has a separate higher-level namespace mechanism with which two or more
classes can be grouped. Perl's package construct does double-duty as both a namespace
and a class specification mechanism, so there is no such ability to construct hierarchical
namespaces.

Perl provides better resources for run-time type information than does C++. Whereas a
C++ program is restricted to the data provided by the standard typeid function, and
limited to using dynamic casts to verify class compatibility, Perl allows almost every aspect
of a class's structure and capabilities to be interrogated at run-time: class name via the ref
function, hierarchical relationships via the UNIVERSAL::isa subroutine, and method
compatibility via the UNIVERSAL::can subroutine.

Perl does not directly support generic classes such as those provided by C++ templates.
In practice this presents very few problems because the combination of Perl's closure
mechanism, interface polymorphism, and dynamic-typing makes generic types largely
unnecessary.

29 A Perl reference is semantically closer to a C++ pointer than to a C++ reference. In Perl,
references are not automatically dereferenced as they are in C++, nor must they be permanently
bound to a given variable.

30 Although there are various modules that make it possible to declaratively specify a class's
attributes.

Page 53

Methods
C++ and Perl are both hybrid languages that allow code to be executed in "stand-alone"
subroutines as well as methods.

In C++, a class's function members are declared as part of the class specification and
may be defined at the same point or anywhere else, provided the appropriate class qualifier
is used (i.e. ClassName::functionName). Perl is even more liberal in this respect: a class
method may be declared and defined anywhere, provided it is suitably qualified (using the
same qualification syntax as C++).

Every C++ member function has a specific signature determined by its name and the
number and types of arguments it takes. C++ methods may be overloaded, may have default
argument values, and may also pass arbitrary arguments (using the "…" specifier). Perl
methods have no static checking of parameter types, and Perl unifies the many "variable
argument list" mechanisms of C++ by simply passing arguments as an actual variable-length
list. There is no signature-based method selection (like C++ overloading), but the effect can
be achieved using multimethod techniques.

C++ member functions are called on an object or object reference using the "dot"
operator (varOrRef.method(args)). Methods may also be invoked through a pointer
using the "arrow" operator (ptr->method(args)). In Perl, methods are always invoked
through a reference to an object, using the arrow operator ($ref->method(args)). Unlike
C++, in Perl if the method takes no arguments, the trailing parentheses indicating a
subroutine call may be omitted.

C++ allows pointers or references to member functions to be used to call those functions
on specific objects using the ptr->*funcptr() syntax. Perl allows references to methods
to be used in the same way, using the $ref->$methodRef() notation. Unlike C++, Perl
also allows methods to be called "by name", by storing a suitable character string—rather
than a reference—in the $methodRef variable.

In both languages a method may act like a procedure or a function, depending on
whether it chooses to return a value. Both languages provide a return statement to specify
such return values. However, unlike C++, where a member function that does not return a
value must have a return type of void, Perl methods do not require (nor allow) any form of
return-type specification.

C++ provides the special constant this within each member function, which is a
pointer to the object on which the method was called. In Perl, a reference to the invoking
object is instead passed as the first argument to the call. It is typically extracted from the
argument list and stored in a variable called $self.

Both C++ and Perl allow class methods to be defined within a class. In C++, such
member functions are defined with the static qualifier and are called using the syntax
ClassName::method(args). In Perl, such methods are defined like all other methods,
and differ only in that they expect the class name—rather than an object reference—as their
first argument. They are called using the syntax ClassName->method(args).

Both languages also support the definition of class-specific versions of the standard set
of operators (i.e. operator overloading), and as in C++, overloaded operators in Perl may
either be regular subroutines or specific object methods.

Page 54

Constructors and destructors
C++ classes typically provide a special member function (with the same name as the class
itself) that may be used to initialize objects when they are created. Perl has no comparable in-
built initialization mechanism. Instead, a regular class method (typically called new) is used
to both create and initialize objects.

C++ also provides for destructor functions, which are automatically called on an object
just before it goes out of scope or is otherwise deallocated. Perl also allows for destructor
methods to be defined using the special method name DESTROY.

Encapsulation
Every data and function member of a C++ class has some associated "accessibility" –
public, protected, or private – which determines the scopes from which it can be
directly accessed. Perl has no equivalent concept, and does not enforce any form of
encapsulation on attributes or methods of objects. There are, however, several programming
techniques that permit both attributes and methods to be appropriately restricted in
accessibility.

Inheritance
Both C++ and Perl support optional multiple inheritance of superclasses, but in quite
different ways. In C++, the classes from which a given class inherits are determined at
compile-time by the class definition. The classes that a given Perl package inherits are
determined at run-time by the contents of that package's @ISA array.

A subclass in C++ does not have access to the private data and function members of its
superclasses31. Because the attributes and methods of a Perl class are entirely
unencapsulated, there is no equivalent restriction in Perl. Likewise Perl does not support
access variations along the lines of C++'s protected or private inheritance.

Perl does not have a mechanism corresponding to virtual inheritance in C++, nor does it
need one, since object attributes are determined dynamically by constructors, rather than
statically by class definitions. In practice, the commonest forms of class implementation all
provide implicit virtual inheritance of attributes32.

Unlike C++, Perl classes all implicitly inherit from a single common class called
UNIVERSAL.

Polymorphism
In C++, methods are implicitly non-polymorphic unless they are specifically marked as
being virtual. All Perl methods are implicitly polymorphic and there is no way to mark
them as non-polymorphic. Unlike C++, in Perl any method may be redefined in any derived
class.

31 …except in the highly unusual case where the derived class is also a friend of the base class.

32 …mainly as a consequence of the uniqueness of keys in the hashes on which most classes are
based.

Page 55

C++ polymorphism is controlled by class hierarchies, because virtual functions are
called through typed pointers or references. In Perl, all variables are dynamically typed, and
so may store a reference to any class of object at any time. Thus, Perl provides the more
general form of polymorphism—interface polymorphism—in which any object (regardless
of its class hierarchy membership) may respond to any method call for which it has a
suitably named method.

C++ allows base class member functions to be accessed from derived class member
functions, even if the derived class redefines the function in question. This access is achieved
by fully qualifying the nested function call with the name of the desired ancestral class. Perl
has the same mechanism. However, Perl also provides a special "pseudo-class" called SUPER
that may be used to delegate a method dispatch to an unspecified ancestral class (i.e.
whichever one actually provides the inherited method).

Perl has no method abstraction construct corresponding to C++'s pure virtual member
function declaration. Instead, in keeping with Perl's dynamically-typed nature and run-time
checking philosophy, if an abstract method is required, a normal method is specified and
made to immediately throw an exception.

Comparative syntax
Table 2 shows a translation into Perl of the fundamental object-oriented features of C++.

Construct C++ Perl
Comment // Comment to EOL

/* Delimited comment */
comment from '#' to eol

Assignment variable = value; $variable = value;

Temporary variable className variable = init; my $variable = init;

Class definition class className
{ specification };

package className;
specification

Class derivation class subclassName
: superclassName(s)

{ specification };

package subclassName;
@ISA = qw(superclassName(s));
specification

Attribute
specification

class className
{

type memberName;
};

bless
{ memberName=>type->new() },
className;

Class attribute
specification

class className
{

static type memberName;
};
type className::memberName

=init;

package className;
{

my $var = type->new(init);
sub fieldName
{ $var = $_[1] if @_>1; $var}

}

Object instantiation ptr = new className (args); $ref = className->new(args);

Table 2: Selected comparative syntax for C++ and object-oriented Perl

Page 56

Construct C++ Perl
Method definition class className

{
returnType methodName(args)
{

statements
return returnValue;

}
}

package className;

sub methodName
{

my @args = @_;
statements;

return returnValue;
}

Polymorphic method
definition

virtual returnType

methodName(args)
{

statements

return returnValue;
}

sub methodName
{

my @args = @_;
statements;

return returnValue;
}

Abstract method
definition

virtual returnType methodName()
= 0;

sub methodName
{ die "Abstract method" }

Constructor definition className(args)
{

statements

}

sub new
{

my ($classname,@args) = @_;
my $self =

bless {}, $classname;
statements;
return $self;

}

Destructor definition ~className()
{

statements
}

sub DESTROY
{

statements
}

Method invocation objref.methodName(args);
objptr->methodName(args);

$objref->methodName(args);

Indirect method
invocation

retType (class::*methptr)(args)
= class::methodName;

objref.*methptr(args);
objptr->*methptr(args);

$methref = \&class::methodName;
$methsymref = "methodName";

$ref->$methref(args);
$ref->$methsymref(args);

Class method
invocation

className::methodName(); className->methodName();

Access to message
target

this my ($self) = @_

Access to superclass
method

this->superclass::methodName(); $self->SUPER::methodName();

Class type
identification

classDescriptor =
typeid(object);

$className
= ref($object);

Exception handlers try { statements }
catch { handler }

unless (eval { statements; 1 })
{ handler }

Raising an exception throw exceptionType(args); die "exceptionText";

Table 2: Selected comparative syntax for C++ and object-oriented Perl (continued)

