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Intrinsic classification, or unsupervised learning of a classification, was the earliest application
of what is now termed minimum message length (MML) or minimum description length (MDL)
inference. The MML algorithm ‘Snob’ and its relatives have been used successfully in many
domains. These algorithms treat the ‘things’ to be classified as independent random selections
from an unknown population whose class structure, if any, is to be estimated. This work extends
MML classification to domains where the ‘things’ have a known spatial arrangement and it may
be expected that the classes of neighbouring things are correlated. Two cases are considered. In
the first, the things are arranged in a sequence and the correlation between the classes of successive
things modelled by a first-order Markov process. An algorithm for this case is constructed by
combining the Snob algorithm with a simple dynamic programming algorithm. The method has
been applied to the classification of protein secondary structure. In the second case, the things
are arranged on a two-dimensional (2D) square grid, like the pixels of an image. Correlation is
modelled by a prior over patterns of class assignments whose log probability depends on the number
of adjacent mismatched pixel pairs. The algorithm uses Gibbs sampling from the pattern posterior

and a thermodynamic relation to calculate message length.

1. INTRODUCTION

A basic learning problem is discovering the class structure
of a population by observation of some of its members.
This process underlies the invention of language and of all
scientific theory, since it is possible to talk about a group of
similar things only after the group has been recognized as
important and a word or concept agreed to identify it.

In many cases, the things observed, from which a
classification is to be induced, are observed in no particular
order and have no important spatial relationships. However,
in some domains, the things to be classified have a known
spatial arrangement and there may be prior grounds to expect
that the classes of neighbouring things are likely to be
correlated. Traditional methods for intrinsic classification
are not designed to detect or use such correlation.

In this paper, we describe two rather different methods
for modelling class correlation. Both derive from the
minimum message length method first described by [1], but
use different means to incorporate a correlation model into a
classification model. In both cases, significant extensions to
the information measure calculations of the original method
are needed.

2. MML CLASSIFICATION

The minimum message length (MML) approach to intrinsic
(or unsupervised) classification introduced by [1, 2] views
the problem of deciding whether a sample of things may
usefully be regarded as a mixture of several different
‘classes’ of thing as a data-compression problem. Given
data comprising attribute values for each thing, it considers

a coding of this data based on the hypothesis that there
are K different classes represented in the sample. The
coded message first states K , then for each of the K classes
specifies its relative abundance and the parameters of a
simple model for the probability distribution of attribute
values within the class. This first part of the message
represents a hypothesized mixture model for the attribute
values distribution for the whole population.

The second part of the message has a section for each
thing in the sample. The section first states the hypothesized
class of the thing, then gives its attribute values using a
Huffman or similar code chosen to be optimal (in the sense
of least expected length) given the parameters of the attribute
distribution for the named class, as stated in the first part of
the message.

The MML classification algorithm searches for that
number K and those within-class distribution parameters
and assignment of things to classes which jointly minimize
the message length. In so doing, it is not necessary actually
to construct the message, one need only calculate its length.
The length of the second part is essentially the negative log
of the probability of the class assignments and data given the
population model. The coding, and hence length, of the first
part requires adoption of a prior density over the parameters
of the model and determination of the best precision to
which these parameters should be stated. Its length may
be taken as the negative log of the prior probability of the
population model. Thus the total length is the negative log
of the joint probability of population model, assignment of
things to classes and data. Its minimization is equivalent
to choosing the model and assignment of highest posterior
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probability, where the choice is made among a set of
possibilities discretized so that no two possible choices are
so similar that the data could not be expected to distinguish
them.

Since its introduction, the algorithm has been refined
and extended in various ways. A hierarchic specification
of classes was introduced by [3], unfortunately in a way
which made it impossible to remove a weak inconsistency
in the estimates. An economy in the coding of assignments
of things to classes introduced by [4] removed this weak
inconsistency in the class parameter estimation for non-
hierarchic classifications. Besides the real-valued and
unordered discrete attribute types catered for originally,
Poisson and von Mises distributions for within-class
attribute distribution models were added by [5]. The
very similar Autoclass algorithm developed by [6] has
likewise been refined and extended to provide for within-
class correlation among attributes and a limited form of class
hierarchy. Both the MML algorithm (called ‘Snob’) and
Autoclass have been used successfully in a wide range of
domains.

Some theoretical grounds for using an MML approach
to classification (and other model-selection and estimation
problems) have been given by [7, 8], and other researchers.
Autoclass is justified by Bayes-evidence arguments, but a
numerical approximation used in the algorithm in fact makes
it closer to MML in operation.

2.1. The core algorithm

The algorithms used by Snob and Autoclass have a two-
phase core iterative procedure. Given some class model of
the population, i.e. given K and the relative abundances and
attribute distribution parameters for each class, the algorithm
looks at each thing in turn and computes its probability of
being found as a member of each class. That is, it computes
the posterior distribution of the thing’s class. The thing is
then assigned to a class and its attribute values contribute to
statistics gathered for the class. When all things have been
looked at, the algorithm re-estimates the relative abundances
and attribute distribution parameters for each class from the
statistics gathered from the things assigned to it and begins
another iteration.

The earliest version of Snob assigned each thing to the
class of highest posterior probability for that thing. Later, it
was realized that the message could actually be made shorter
by employing any uncertainty in the classification of the
thing to convey advance information about the next thing.
This trick has the effect that a thing is partially assigned to
all classes, in proportion to their posterior probability, and so
contributes with partial weight to the accumulated statistics
for every class. Autoclass uses the same partial-assignment,
if with different motivation. If, however, each thing is
assigned wholly to a single class chosen at random from the
posterior distribution over classes for that thing, the expected
contribution of the thing to the statistics of each class is the
same as for partial assignment. In fact, the more economical
coding of classes now used in Snob has this behaviour: a

thing is assigned to a class by pseudo-random choice from
the posterior, the bits encoding the next thing being used
as a source of pseudo-random digits. Partial assignment is
used to reflect the expected consequences of this behaviour
without having to construct the coded message in full detail.

If random assignment is used in the iteration, the iteration
will not converge, but will eventually generate in its
successive steps a sample of classifications drawn randomly
from the posterior over classifications given the entire data
set. Such a random algorithm is a form of Gibbs sampling
of plausible classifications.

2.2. Determining the number of classes

The core iteration, whether using partial, pseudo-random or
random assignment, may effectively reduce K by reducing
the estimated abundance of some class to zero, but cannot
increase K . Snob uses a heuristic to detect when a class
may be split in two with a profitable reduction in message
length, and also to detect profitable class mergers. Autoclass
relied on starting the iteration with an excessive number
of classes and allowing some of them to be eliminated
by the core iteration. Neither algorithm is guaranteed
to find the globally optimum model. Davidson (private
communication) and [9] have demonstrated extensions of
the Gibbs-sampling random-assignment version of the core
algorithm which can randomly sample K in proportion to
its posterior distribution, despite the change in population
model dimensionality with changing K . In principle, given
sufficient time, these methods are sure eventually to find the
optimal model and to sample from its neighbourhood, but as
yet neither has been demonstrated on problems of realistic
size.

3. SPATIAL CORRELATION

In the classification algorithms described earlier, the ‘things’
to be classified are viewed as having been drawn randomly
from some underlying population. Although the data are
presented (and in MML encoded) thing by thing as an
ordered sequence, the order is assumed to be an irrelevant
by-product of the sampling process.

This work concerns cases when the ‘things’ have a spatial
ordering which may be expected to be relevant to their
classification and how the classification algorithms may be
modified to accommodate this expectation. Two problems
will be discussed, one with a one-dimensional ordering of
things, the other with two-dimensional ordering. In both
cases, the work described is intended merely to demonstrate
that the message length criterion can be applied to the
intrinsic classification of spatially ordered data. The two-
dimensional work is in a very early stage and would require
much more development to realize the full potential of the
MML approach.

Note that spatial correlation is here introduced by
expecting and exploiting short-range spatial correlation
among the classes of neighbouring ‘things’. An alternative is
to introduce spatial correlation through the statistical model
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used for the within-class distribution of attribute values by
making the model distribution for the attributes of a pixel
conditional on the attributes of its neighbours. This is not
the kind of model considered here.

4. THE SECONDARY STRUCTURE OF PROTEINS

The work on this problem was done by Edgoose et al. [10],
and is only briefly discussed here.

In this problem, the ‘things’ are sugar units on the
backbone of a protein molecule (or sequence of molecules)
and are naturally ordered in their linear sequence along
the molecule. The attributes of a unit are two ‘dihedral’
angles between chemical bonds of the unit and the type of
amino acid attached to the unit. It is hoped that an intrinsic
classification of the units will yield classes corresponding
roughly to the type of secondary structure in the vicinity of
the unit, for example, helical, beta sheet, turn, etc.

The number of classes and their relative abundances are
to be discovered from the data. However, there are good
grounds for expecting the classification of one unit to be
correlated with the classes of its neighbours. For instance,
if the classes inferred indeed corresponded to secondary
structure classes, we would not expect to find a ‘helical’ unit
in the middle of a string of ‘beta sheet’ units: a single turn of
a protein alpha helix takes several units. Similarly, isolated
‘sheet’ units would be unexpected, as would long strings of
‘hairpin bends’.

The exact nature of the correlations however is not
assumed a priori, as we do not wish to guide or bias
the class discovery towards the usual secondary-structure
nomenclature. The aim was to include in the model a
fairly general model of neighbour dependence, leaving the
message-length minimization to determine just what sort of
dependence was found in the data. The model class assumed
was a Markov model of order zero or one. That is, the prior
probability that the next unit would be in class C could be
taken as simply the relative abundance of class C (order zero)
or from a conditional distribution over classes conditioned
on the class of the previous unit (order one).

There is an obvious asymmetry in this model: taking
the units in reverse order gives a different class of models.
However, proteins are asymmetric: there is a front end and a
back end and in living organisms they are usually assembled
by adding units from the front to the back. The asymmetry
in the Markov model is thus not unreasonable.

4.1. The protein sequence algorithm

The Edgoose algorithm for this problem is an extension to
the current Snob partial-assignment algorithm. It deals with
one order of class correlation at a time, and separate runs are
done for orders zero and one, the order giving the shortest
message length being preferred. The order-zero run just
uses the normal Snob iteration, since no correlation model
is assumed.

For non-zero Markov order, the class relative-abundance
distribution of the uncorrelated model is replaced by a

set of distributions, being the distributions conditioned on
the class of the previous unit. During the first phase
of the core iteration, the cost of encoding a site as a
member of each class and hence the posterior distribution
over classes for this unit, used the appropriate conditional
abundance distribution as the prior distribution over the
classes. However, the unbiased assignment of a particular
thing to a class requires the influence of this choice on the
coding of subsequent things to also be considered. A simple
dynamic programming algorithm (DPA) can calculate the
message length of stating the entire sequence conditional
upon the assignment of any one thing to a particular class.
Abundance statistics are accumulated conditioned on this
unbiased assignment. In the second phase of the iteration,
the conditional distributions are re-estimated from their
corresponding conditional abundance statistics.

Note that, unlike ordinary Snob, the order in which things
are treated in the first phase is important and the cost of
encoding each observation conditional upon each class must
be stored in memory for later traversal by the DPA.

This description conceals a complication. Having
calculated the posterior probability of a unit belonging to
each class, the core iteration makes a partial assignment
of the unit to each class with weight proportional to class
posterior probability, as in Snob. This involves nothing
new in the accumulation of the statistics from which class
distribution parameters will be estimated. However, in
adding these weights to the conditional abundance statistics,
the conditioning class, i.e. the class of the previous unit,
is not known exactly, as this unit has also been partially
assigned. Thus, the ‘weights’ for the current unit contribute
partially to the conditional abundance statistics for all
conditions, i.e. all possible classes of the previous unit.

The upshot is that the program needs to keep track of
K Markov chains simultaneously, involving some rather
complicated bookkeeping.

Further bookkeeping complications are required to
implement the Snob class-splitting and class-merging
heuristics, but these raise no new problems of principle.

4.2. Summary of results

A dataset containing over 41,000 such sugar units was
modelled using the first order Markov classification model
with the best class structure describing 19 types of thing.
This model achieved compression of 6.40 bits/thing on this
noisy data which represents a saving of 0.66 bits/thing over
the zero-order model and 2.56 bits/thing over the one-class
model.

As expected the class structure correlated well with the
common helix, beta-sheet and turn classification with three
sub-classes of helix and two sub-classes of beta-sheet.
The remaining classes described various varieties of turn
structure. This 19 class classification found is considerably
simpler than competing unsupervised classification models
[11, 12] and hence more amenable to further analysis and
model building in this area.

Of particular interest was the second-most abundant class
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(12% of the data) which described a turn structure with
large variance and an expected segment length of about five
things. It seems that the specific conformation of residues in
this class is most likely completely determined by non-local
structural effects. This surprising result is a good example
of unexpected structure emerging from the data.

5. INTRINSIC CLASSIFICATION OF IMAGE
PIXELS

The second case to be discussed is the classification of
things arranged in a regular square grid in two dimensions.
An example is the pixels of a multi-spectral image, where
each pixel has as attributes several intensities at different
wavelengths. We will henceforth use this example.

Consider a multi-spectral image of part of the earth. A
priori, we expect to find spatial clusters or regions of similar
pixels: a patch of water, a patch of forest, patches of
cultivated fields, etc. That is, we expect the class of a pixel
to be positively correlated with the class of its neighbours.
We will consider the problem as purely intrinsic, that is, we
address it without prior expectations of how many classes
exist, or what these classes might be, but we do expect to
find some degree of positive correlation.

The kind of population model we seek and which we will
encode in the first part of the MML message, will, as in
Snob, state the (hypothesized) number of classes K and for
each class, its relative abundance and the parameters of its
intensity distribution in each spectral band. In this study,
we have assumed the pixels of a class to have independent
normal distributions in each band, so for each band we have
mean and standard deviation parameters. However, besides
these standard Snob components of the population model,
we state a parameter which specifies the (estimated) strength
of neighbour class correlation.

Once the class abundances and correlation strength have
been stated, they together define a ‘prior’ probability
distribution over all possible assignments of pixels to
classes, that is, a prior joint distribution over the classes
of all pixels. We will call a class assignment of all pixels
a ‘pattern’, so the joint distribution over pixel classes is a
distribution over patterns.

Given some specified ordering of the pixels, for example,
a raster scan, the prior probability of a pattern may, of
course, be decomposed as the probability of the class of the
first pixel, times the probability of the second pixel class
conditioned on the first, times the probability of the third
pixel class conditioned on the first and second and so on.
So, in principle, we could proceed as in the one-dimensional
case, encoding classes and data one pixel at a time and
collecting statistics for re-estimation of the population model
using partial assignment. However, whereas in the protein
model, each class prior was conditioned on just the one
previous class, the prior for the class of a pixel might be
conditional on the classes of all previous pixels. In fact, this
seems to be the case for all plausible pattern distributions
which have N–S and E–W symmetry on the pixel grid. As
these symmetries are clearly desirable in an unbiased prior,

we reject the one pixel at a time or raster-scan approach as
infeasible, as it replaces the simple fixed-order Markov chain
of the one-dimensional problem with a process whose order
increases as the scan progresses.

5.1. Gibbs sampling of the class pattern

Suppose for the moment that the number, abundances and
attribute distribution parameters of the classes and the
parameter(s) of the correlation model (pattern ‘prior’) are
known or have been estimated. If the form of the pattern
prior is such that the prior distribution over the possible
classes of pixel X depends only on the classes of its four
immediate neighbours, one may use Gibbs sampling to
generate samples from the posterior pattern distribution
given the data. Starting from some initial pattern, one re-
samples the class of each pixel in turn. If N, E, S and
W denote the classes of a pixel’s immediate neighbours
and D denotes the attribute values of the pixel, then the
probability that the pixel is class c is proportional to
Prior(c|N, E, S, W ) × Prob(D|c). A new value for the
pixel class is sampled from this distribution and the process
repeated on all pixels of the image.

Subject to mild restrictions on the regularity of the
probability distributions involved, continued re-sampling of
the pixel classes in this way leads in time to each possible
pattern being generated with a frequency proportional to its
posterior probability given the image data. Sampling from
the pattern prior is also possible, by omitting the Prob(D|c)
factor.

The sampling process may also be viewed as a Monte
Carlo Markov chain (MCMC) process [13] where the pattern
distribution sampled is the stationary distribution of the pixel
reclassification process. However, in our case the parameters
of the Markov process are themselves altered as sampling
proceeds.

During this sampling from the pattern posterior, statistics
are accumulated from the pixels assigned to each class
from which the class attribute distribution parameters are
periodically re-estimated. Statistics are also accumulated
for the re-estimation of the class abundances and the
parameter(s) of the pattern prior. These new estimates define
a new posterior, and hence a new Markov process. We
re-estimate these global parameters only after several pixel
reclassification passes over the image, so the statistics on
which the new estimates are based represent the average of
several plausible patterns and hence are relatively stable.
(Full Gibbs sampling over the joint posterior of patterns
and global parameters would be achieved if, following
each reclassification pass, the global parameters were
replaced by values sampled randomly from their respective
posterior distributions given the current pattern. However,
we have found in other (non-spatial) classification work
that full Gibbs sampling leads to rather slow and erratic
convergence.)

After a sufficient time, the re-estimated global parameters
will approximate the MML estimates of the population
model. As for the MML estimate of the pattern, it has been
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shown in [14] that the MML estimate of a high-dimensioned
vector of parameters, such as the pattern, is very close to
a pseudo-random choice from the posterior distribution of
the vector. Thus, the pattern finally reached after some
large, arbitrary number of sampling steps may be taken as
an indication of the MML estimate.

5.2. A pattern prior

To enable simple Gibbs sampling, we have chosen a pattern
prior such that the prior class distribution for a pixel is
conditioned only by the classes of its four immediate grid
neighbours, and has E–W and N–S symmetry. A simple
pattern prior having this property gives a pattern s a prior
probability

ps = (1/Z) exp(−qs)

where

qs = Gm × Nm +
∑

c

(Bc × Nc),

Nm is the number of inter-pixel boundaries between pixels
of different classes (termed ‘strains’), Nc is the number
of pixels of class c and Gm , {Bc : c = 1 . . . K } are
parameters of the pattern prior. Z is a normalization constant
depending on these parameters. Note that Bc parameters are
determinable only up to an additive constant. Adding the
same constant to all Bc parameters does not affect their prior
probabilities. To remove the indeterminacy, we require

∑

c

(exp(−Bc)) = 1.

With this constraint, if Gm = 0, then for each class Bc is the
negative logarithm of the class relative abundance, but this
relation does not hold for non-zero Gm .

With this pattern prior, the prior for the class of one pixel
conditional on the classes of all others depends on the classes
of its immediate neighbours only and gives class c a prior
proportional to

exp(−Bc − Gm × (4 − nc))

where nc is the number of neighbours of class c, or

exp(−Bc + Gm × nc).

We do not suggest this prior is very realistic or appropriate
for the intrinsic classification of pixel images, as it captures
only a primitive form of local class correlation. It was
chosen purely to provide an experimental situation within
which we could test the ability of the MML measure to
estimate the number of classes.

We will have occasion to use the analogy between pattern
distributions of the form

ps = (1/Z) exp(−qs)

and the thermodynamic equilibrium, or Boltzmann distribu-
tion

ps(T ) = (1/Z(T )) exp(−qs/T )

which gives the probability that a physical system in thermal
equilibrium at temperature T will be found in a state s of
energy qs . Here, Z(T ) is a function of T , known as the
partition function, satisfying

∑

s

(ps(T )) = 1

and we use units such that the Boltzmann constant = 1. At
temperature T = 1 the Boltzmann distribution becomes the
pattern prior.

5.3. The core algorithm for 2D

Using the previously discussed prior, the core iteration to
find the best model with K classes is straightforward. Some
initial estimates of class distribution parameters, Gm and
abundances are assumed. Also, some initial pattern of pixel
classes is set up. In an inner loop of the iteration, several
passes are made over all pixels of the image. For each
pixel, the probability of its data D as a member of class c
is computed and thence the unnormalized posterior

exp(−Bc + Gm × nc) × Prob(D|c).

The posterior is normalized and a new class c′ drawn from
it for the pixel. The attribute values of the pixel are added to
statistics for class c′.

The order in which the pixels are processed is not vital.
We have chosen to do first all the pixels which would be
white squares were the grid a chequerboard, then all the
black squares. As the class prior for a white square depends
only on black squares and vice versa, the ordering of white
squares is immaterial, as is the ordering of black squares.
We believe this ordering of a pass promotes rapid diffusion
of information throughout the grid.

After several such passes, the attribute distribution
parameters for each class are re-estimated from the
accumulated statistics. The pattern prior parameters Gm

and {Bc : c = 1 . . . K } are re-estimated by a maximum-
likelihood method using counts of class assignments and
neighbour strains accumulated during the passes.

The outer loop repeats the above process until the
population model and pattern energy appear to be stable.

The techniques (Gibbs or MCMC sampling of class
pattern, with periodic re-estimation of global parameters)
used in the core algorithm are well known in the image
analysis literature, for example [15, 16], as are the kinds of
class model and pattern prior used here. The contribution
of the present work is to introduce to this type of analysis a
well-founded criterion (MML) for estimating the number K
of classes from the data.

5.4. Calculation of message length

This core iteration yields a classification model with K
classes (or perhaps fewer if one or more classes have been
eliminated). To estimate K we need to calculate the message
length for this model and compare it with the lengths given
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by models of different K , preferring the number of classes
yielding the shortest message.

The calculation of message length needed to state the
number of classes and their attribute distribution parameters
presents no problem and follows the calculations used in the
uncorrelated case, i.e. follows Snob. The message length
to encode the pattern prior parameters is small and we
have neglected it pro tempore. The final component of the
message, encoding the pixel values given the population
model and pixel classes, also follows Snob calculations
exactly and for each pixel just has length the negative log
of the probability of the pixel values given the attribute
distribution of the pixel class.

It remains to consider the encoding of the class pattern.
The total energy Q of the final pattern gives its prior
probability as (1/Z) exp(−Q), and hence the message
length needed to encode the pattern as log(Z)+Q. However,
the calculation of the normalization constant Z from the
pattern prior parameters and K is difficult and we have
resorted to a Monte Carlo estimation.

5.5. A useful thermodynamic relation

We will use a standard result of thermodynamics, which is
outlined here for those unfamiliar with it. Define H (T ), the
‘entropy’ of the system at temperature T , as

H (T ) = H = −
∑

s

(ps × log(ps)).

Define the expected total energy of the system as

Q(T ) = Q =
∑

s

(ps × qs)

and define U = − log(Z), so

ps = exp(U − qs/T ),

p′
s = d ps/dT, H ′ = dH/dT,

Q′ = dQ/dT, U ′ = dU/dT .

Then, since ps = exp(U − qs/T ):

p′
s = ps(U

′ + qs/T 2)
∑

s

(p′
s) = 0 = U ′ + Q/T 2.

(Because
∑

s(ps) = 1 = constant.) Hence:

U ′ = −Q/T 2. (1)

Also:

H = −
∑

s

(ps × log(ps))

= −
∑

s

(ps × (U − qs/T ))

= −U + Q/T

hence

H ′ = −U ′ + Q′/T − Q/T 2.

Using (1):

H ′ = Q′/T, dH =
dQ

T
.

That is, the change in the entropy of the system due to a
change in energy is the change in energy divided by the
temperature at which the change occurs.

5.6. The prior entropy

The usefulness of this relation in our context is thus:
the entropy of a distribution is the average negative log
probability of a state, or class pattern in our case. We
may argue that the final pattern is a ‘typical’ realization
of the pattern prior, as we have adjusted the pattern prior
parameters to fit the sampled patterns. Hence, the entropy
of the pattern prior at T = 1 is a reasonable estimate of
the negative log prior probability of the final pattern. This
relation enables us to estimate this entropy. To do so, we
set up the final class pattern, and commence Gibbs sampling
from the pattern prior. This is done simply by dropping the
Prob(D|c) factor from the distribution over the class of a
pixel. During this sampling, the pattern prior parameters are
left unchanged. As the sampling proceeds, the temperature
T is gradually lowered from one. That is, the relative
probability of two states s, r of energies qs, qr is taken as

ps/pr = exp((qr − qs)/T ).

As T drops, the total energy Q of the pattern tends
to decrease, and we accumulate the entropy decrements
−dQ/T . At a sufficiently low temperature, the pattern will
‘freeze’, typically with all pixels having the most abundant
class. As this pattern is completely ordered, it has no
entropy, so the accumulated decrement estimates the initial
entropy and hence the message length needed to encode the
estimated class pattern.

This method of estimating the entropy of the pattern prior
was programmed and tested for various values of the prior
parameters. It worked, but on repeated runs with fixed
parameters, showed a rather large variation in estimated
entropy unless the cooling was very slow. We devised an
alternative scheme which, for the same computational effort,
gives a standard deviation of estimates typically a factor of
about 10 less than the original.

In the alternative, we again sample from the pattern
distribution, beginning with the final pattern found in the
core iteration and again keeping the prior parameters fixed.
Instead of cooling the system from T = 1, it is gradually
heated from T = 1. As the temperature increases, the
pattern becomes less ordered and increases in energy and
its increase in entropy is accumulated. The temperature is
gradually increased to infinity. At this point, each pixel is
equally likely to be assigned to any class, independently of
its neighbours, so the entropy of the pattern distribution at
infinite temperature is simply

H (∞) = (number of pixels) × log(number of Classes).
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Subtracting the entropy accumulated during the heating from
H (∞) gives the entropy at T = 1, which is the desired prior
entropy.

The final pattern found at the end of the core algorithm
is a random sample from the posterior over patterns, given
the population model and data, but may not be typical of
the prior over patterns given Gm and Bc, so it may appear
that either of these methods of estimating the entropy of
the pattern prior is inappropriate for what we actually want,
which is the log prior probability of the final pattern. In
fact, by starting the entropy estimation process from the final
pattern, we do get what we want. The Gibbs sampling at the
initial temperature T = 1 will rapidly result in the average
energy of the pattern approaching its average value under
the prior. If the final pattern had an energy greater than this
average, the energy loss as the average approached would
be accumulated in our estimate of entropy change and if
the average is achieved while the temperature is still close
to one, it accumulated and divided by T = 1. The final
estimate of prior entropy, or average log prior probability of
patterns, is therefore corrupted by the difference in energy
between the final pattern and average patterns. However, this
difference is just the difference between the log probability
of the final pattern and the average log probability. Thus,
our estimate of the prior entropy is automatically modified
to give an estimate of the negative log prior probability of
the final pattern, rather than the average.

5.7. Pattern precision

We now have estimates for the lengths of all components of
the message: population model, class pattern and pixel data
values and so can compute a total message length. However,
this length is not the shortest which can be achieved by a
K -class model, because the encoding of the class pattern is
too precise. The message as constructed previously states an
estimated pattern exactly, but if there is any overlap in the
class attribute distributions, there will be many pixels whose
class is somewhat uncertain and hence many, perhaps many
millions, of patterns any one of which would have led to an
equally short message. The freedom to choose among these
plausible patterns can be exploited to reduce the message
length [4].

The means to do so can be seen most easily by supposing
that we wished to encode and transmit not only the
image data, but some other unrelated information such as
a personal letter. We could choose among the equally
plausible patterns in such a way as to encode some of the
initial binary digits of the letter. After receiving the coded
image, the receiver can decode the original pixel data and
hence herself reconstruct the set of plausible class patterns.
By noting which of these has actually been used in the
message, she can recover the initial digits of the following
letter, so these need not be included in the image + letter
message. The economy can be credited to the encoding of
the image, thereby reducing its effective length by the log of
the number of plausible patterns.

This coding device has been re-discovered and well

described by [17], but without the development described
in the next paragraph.

It is less obvious that this economy can be realized within
the image message itself, rather than by shortening the
length of some following messages. However it is possible,
by recasting the image message so that, after stating the
population model, the message encodes each pixel in turn,
say in raster-scan order. To encode a pixel, its class is
stated using a code based on its class prior conditioned
on the classes of all previous pixels and then the pixel
data values are encoded using the attribute distributions of
the stated class. Any uncertainty in the class to which a
pixel should be assigned is exploited to encode the initial
digits of the code for the next pixel, which may therefore
be omitted. Such a construction is, in principle, possible,
although computationally infeasible because of the difficulty
of computing the conditional class prior for each pixel. The
details are given in [4].

Either approach leads to the same conclusion: the
effective or actual length of the image message can be
reduced by the log of the number of reasonably plausible
patterns, or more exactly, by the entropy of the posterior
distribution over patterns, given the population model and
image data. It is just this distribution which is sampled
in the core iteration, at least after estimates of the class
distribution parameters etc. have stabilized. The entropy of
the distribution can be estimated by the same means used for
the pattern prior. That is, sampling is continued while the
temperature is gradually lowered from one, and the dQ/T
decrements accumulated. But now, the data probability
Prob(D|c) for each pixel is also interpreted as the negative
log of an energy term. The cooling will eventually freeze
on a class pattern close to the maximum-likelihood estimate
of the pattern, which is the minimum-energy pattern. In
this case, there is no worry about the typicality of the final
pattern from which the cooling is started, as it is indeed a
random sample from the posterior over patterns, which is
the distribution whose entropy we want.

For estimating the entropy of the pattern posterior, cooling
till the pattern freezes is better than heating to a high
temperature, as is used for the pattern prior. The variance of
the estimate is small because the data prevents large changes
in the pattern. Were heating used, a temperature would have
to be reached so high that the differences in energy resulting
from different class assignments for a pixel would be small
compared with the temperature. For the pattern prior, the
maximum energy difference is of order 4 × Gm , typically
less than 20, so an ‘infinite’ temperature around 200 suffices.
For the posterior, many pixels typically have a very low
chance of being a member of some class and hence a very
large energy if assigned to that class. Heating would have to
continue to extremely high temperatures to reach a pattern
distribution showing no trace of the pixel likelihoods.

The posterior pattern entropy so estimated is then
subtracted from the total message length to give an
approximation to the MML message length for a K -class
classification. The present program makes no attempt to
split or combine classes during the core iteration, so the
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whole process of core iteration, estimation of prior and
posterior entropies, must be repeated for differing K to find
the optimum number of classes, i.e. the number giving the
shortest message length. There is no reason in principle why
the automatic K -selection technique of [9] could not be used
instead.

6. PRELIMINARY RESULTS

As yet, we are still experimenting with the algorithm to learn
the most efficient deployment of computing effort among
the phases of the algorithm: preliminary annealing of the
class model, core iteration at T = 1, cooling of posterior
and heating of the prior. Before attempting to analyse real
data, where the ‘real’ classification is unknown, we wish to
establish that the algorithm can at least recover a good model
of data which has been artificially drawn from a population
consistent with the assumptions of the algorithm. This is
of course shooting fish in a barrel, but an algorithm which
cannot pass such a test would be unfit for real use.

A typical test was done on a (32 × 32) pixel array, where
each pixel has four real-valued attributes. Four classes were
created with mean attribute vectors (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1) and in each class each attribute
has standard deviation 0.4. The pattern prior parameters
were set at

Gm = 1.0, B1 = B2 = B3 = B4 = − log(4).

To generate a data sample, first the class of each pixel was
chosen by Gibbs sampling patterns from the pattern prior
and choosing the 1000th pattern found. Then pixel attributes
were chosen randomly from the appropriate class Gaussian
densities. It is worth noting that although the population
from which the 1024 pixels are drawn has equal abundance
for all classes (all Bc equal), the data sample tends to have
notable differences in class counts, for example (301, 241,
175, 307) for the data on which the results outlined later
were found.

6.1. Reproducibility

Any algorithm based on random sampling may give varying
results on the same data when different pseudo-random
number streams are used, so one needs to examine the extent
of this variation. We conducted 10 runs on the data described
above for each of the class numbers two, three, four and
five (the ‘true’ number being four) and found the maximum,
minimum, mean and standard deviation (SD) of message
length for each class number. The maximum for four classes
was below the minimum for any other number, by a margin
of at least 17 (versus five classes). This difference may
appear too small to indicate a clear preference for four
classes, although the standard deviation of the mean lengths
was much smaller, about one. However, the difference in
message length between two models for the same data may
be interpreted as the log posterior odds ratio in favour of the
model giving the shorter message. Thus the odds in favour
of the worst four-class model over the best five-class one are

nominally over 24 million. This figure must be taken with a
pinch of salt as our class-model priors are fairly arbitrary, but
a strong and reliable preference for four classes is evident.

6.2. Accuracy of estimated population model

The means of the attribute vectors are recovered well. For
the four-class model, the means were in error by about 0.02
and the standard deviation estimates also by about 0.02 (the
true value being 0.4). The class abundances expected on the
model were, for the first run, (301, 245, 178, 297), close to
the true counts (301, 241, 175, 307).

The estimate of the correlation parameter Gm averaged
0.95 with little variation over the 10 runs. This is somewhat
below the population value 1.0, but runs on other data sets
from the same population gave estimates ranging from 0.90
to 1.05. Evidently, this parameter of the population is not
estimated very accurately and may have a slight bias to low
values.

6.3. Accuracy of class pattern

The four-class population from which the data was drawn
has four equidistant classes in four-space. Their distributions
overlap substantially, so there are many pixels whose class
cannot be determined with confidence. A run of the
algorithm provides two estimated patterns. One (‘TYP’) is
found at the end of the core sampling and is intended as
a random draw from the posterior over patterns, given the
estimated population model. The other (‘ML’) is found at the
end of the posterior-cooling process and should approximate
the most likely pattern given the same population model.
For one run with four classes, TYP misclassified 98 pixels,
showing 853 strains. ML made fewer errors (76) but showed
only 811 strains, the true value being 843.

We also ran the algorithm with Gm held at zero,
simulating the normal Snob algorithm which takes no
account of correlation. These runs still showed a preference
for four classes by a margin of 14 in message length, but
gave worse estimates of both population and pattern. The
four-class TYP pattern had 146 errors, the ML had 103. The
number of strains was badly over-estimated at 1067 (TYP)
or 988 (ML).The message length for this uncorrelated model
exceeded that for the correlated model by 295, so the MML
criterion showed an overwhelming preference for a model
with spatial correlation.

Further runs on data generated with all attribute SDs =

0.7 and Gm = 1.1 showed similar results. With the
more diffuse class distributions, the overlap among classes
increased, resulting in more misclassified pixels (295 and
214 in the TYP and ML patterns respectively). The message
lengths still show a preference for four classes, but only by
a difference of six over the best three-class run. Runs with
Gm = 0 (no correlation) gave the shortest message length
with two classes (a one-class model was not tried) so did
not detect the presence of four classes. The best four-class
model gave 486 (TYP) or 395 (ML) misclassified pixels.
Clearly, the correlated algorithm is superior in recovering
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FIGURE 1. Most likely pattern from data with all attribute SDs =

0.7 214 errors. Symbols represent the four classes.
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FIGURE 2. Most likely pattern (SDs = 0.7) found without
correlation. 396 errors.

the population model and in classifying the pixels when
correlation is indeed present. Figure 1 shows the ML 4-
class pattern found using the correlation algorithm. Figure 2
shows the corresponding result found without correlation.
Figure 3 is the ‘true’ pattern from which the data was
generated.
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FIGURE 3. True pattern for data for Figures 1 and 2.

6.4. A real image

A five-band satellite image of the Lake Eyre area has been
used as a test image. It has (256 × 256) resolution. The area
is mostly desert and salt pan, with some scattered areas of
vegetation. Runs seeking between four and 20 classes have
been done and showed a high level of neighbour correlation
(Gm ≈ 2.3). The smallest message length was found with 20
classes. This may seem a large number. It is well known that
correlation among the attributes can lead a classifier whose
class model does not admit in-class correlation to over-
estimate the number of classes. We transformed the data
to remove the most obvious inter-band correlation, a general
‘brightness’ component, but found no great change in the
results. The low entropy of the posterior pattern distribution,
about 0.08 per pixel, shows that the classification of most
pixels is not in much doubt and the different classes are quite
distinct. However, it would be desirable to provide for an
unrestricted multivariate Gaussian distribution of attributes
within each class, as is done in AUTOCLASS II [6].

The classifications with between four and 20 classes
showed good agreement with terrain type, but proper
assessment of the method on real data will require much
more testing.

The analysis time for six classes on the (256 × 256), five-
band image is about 25–30 min on a 133 MHz Pentium PC.

7. EXTENSIONS

The one-dimensional method has given useful results on
protein structure using a first-order Markov class correlation
model. Extension to second-order models raises no
difficulties, in principle, and will be attempted.

Obviously the 2D algorithm requires more extensive
testing to discover its performance in more diverse problems.

THE COMPUTER JOURNAL, Vol. 41, No. 8, 1998



INTRINSIC CLASSIFICATION OF SPATIALLY CORRELATED DATA 611

If it proves useful, it can be extended to allow more flexible
correlation models. At present, a mismatch between any
two adjacent pixels incurs the same energy penalty Gm . It
could be extended to provide a different penalty for every
pair of different classes and to estimate the values of these
penalties just as the present program estimates Gm . In some
domains this could be useful: a priori we may be more
surprised to find a ‘rainforest’ class adjacent to a ‘desert’
class than to find a ‘mangrove swamp’ class next to an
‘estuary’ class. This scheme would require inference of
K 2/2 penalty parameters, so it would work well only on
large images.

Another possible extension would be to allow mismatches
in an E–W direction to incur a different penalty from those in
a N–S direction. This could allow for the situation, common
in aerial survey data, where pixels are more closely spaced in
one dimension than in the other. Again, the algorithm could
discover the difference for itself, or prior knowledge could
be used to require Gm(E–W) to be some specified multiple
of Gm(N–S).

In principle, the main contribution of our 2D algorithm,
the use of a message-length measure to determine an
appropriate number of classes, could be incorporated in the
more sophisticated spatial-correlation methods which have
been developed by others, for example [15, 16].

ACKNOWLEDGEMENTS

The one-dimensional method was conceived by Lloyd
Allison and Tim Edgoose and was largely developed by the
latter with technical assistance on MML from the author.

This work was supported in part by Australian Research
Council grant Nos A49330656 and A49703162. We are
grateful to the anonymous referees for helpful suggestions.

REFERENCES

[1] Wallace, C. S. and Boulton, D. M. (1968) An information
measure for classification. Comp. J., 11, 185–195.

[2] Wallace, C. S. and Boulton, D. M. (1970) A program for
numerical classification. Comp. J., 13, 63–69.

[3] Boulton, D. M. and Wallace, C. S. (1973) An information

measure for hierarchic classification. Comp. J., 16, 254–261.
[4] Wallace, C. S. (1986) An improved program for classification.

Proc. ACSC-9, 8, 357–366.
[5] Dowe, D. L. and Wallace, C. S. (1997) MML mixture

modelling of multi-state, Poisson, von Mises circular and
Gaussian distributions. Comput. Sci. Stat., 28, 608–613.
Available on http://www.cs.monash.edu.au/∼dld/Snob.html.

[6] Cheeseman, P. C. (1988) AUTOCLASS II conceptual
clustering system. In Proc. Machine Learning Conf., 54–64.
Available on http://ic-www.arc.nasa.gov/ic/projects/bayes-
group/autoclass.

[7] Wallace, C. S. and Freeman, P. R. (1987) Estimation and
inference by compact coding. J. R. Stat. Soc., B, 49, 240–265.

[8] Rissanen, J. (1987) Stochastic complexity. J. R. Stat. Soc., B,
49, 223–239.

[9] Richardson, S. and Green, P. J. (1997) On Bayesian analysis
of mixtures with an unknown number of components. J. R.
Stat. Soc., B, 59, 731–792.

[10] Edgoose, T., Allison, L. and Dowe, D. L. (1998) An MML
classification of protein structure that knows about angles and
sequence. In Proc. 3rd Pacific Symp. on Biocomputing. World
Scientific, Singapore.

[11] Hunter, L. and States, D. J. (1992) Bayesian classification on
protein structure. J. IEEE Expert, 7, 67–75.

[12] Dowe, D. L., Allison, L., Dix, T. I., Hunter, L., Wallace, C. S.
and Edgoose, T. (1996) Circular clustering of protein dihedral
angles by minimum message length. In Proc. 1st Pacific
Symp. Biocomp., pp. 242–255. World Scientific, Singapore.

[13] Besag, J. and Clifford, P. (1991) Sequential Monte Carlo p-
values. Biometrika, 78, 301–304.

[14] Wallace, C. S. (1996) False oracles and strict MML
estimators. In Dowe, D. L., Korb, K. B. and Oliver, J. J. (eds),
ISIS Information Statistics and Induction in Science. World
Scientific, Singapore.

[15] Daily, M. J. (1988) Colour image segmentation using Markov
random fields. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 304–312.

[16] Geman, S. and Geman, D. (1992) Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. IEEE
PAMI, 6, 721–742.

[17] Frey, B. J. and Hinton, G. E. (1996) Free energy coding. In
Proc. Snowbird Data Compression Conf. IEEE, Morristown,
NJ.

THE COMPUTER JOURNAL, Vol. 41, No. 8, 1998


