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1 Introduction - Brief History
Minimum Message Length (MML) machine learn-

ing statistical (or inductive) inference, “data min-
ing” trade-off between simplicity of hypothesis (H)
and goodness of fit to the data (D) (Wallace &
Boulton, 1968 [45, p185 sec. 2]) [3][4, p64 col. 1][1]]6,
sec. 1 col. 1][5][7, sec. 1 col. 1] (Wallace & Boulton,
1975 [46, sec. 3]) [2][52][51][48] (Wallace 2005 book,
“Statistical and Inductive Inference by Minimum
Message Length’ [44]) (Comley & Dowe, 2003 [8])
(Comley & Dowe, M.I.T. Press, April 2005 [9, secs.
11.1 and 11.4.1]) (Dowe, Gardner & Oppy, Brit. J.
Phil. Sci. 2007 [16]) (Dowe, 2008a, “Foreword re
C. S. Wallace”, Christopher Stewart WALLACE
(1933-2004) memorial special issue, Computer Jour-
nal, Oxford Univ Press [11, sec. 0.2.4, p535 col. 1
and elsewhere]).

MML is Bayesian, advocates two-part messages
(H, then D given H), substantially before (Rissa-
nen 1978 [34]) Minimum Description Length (MDL).



Statistical invariance (z,y), polar: “same”
Most classical statistical methods statistically in-
variant

MML statistically invariant [46], but most other
Bayesian methods in use not statistically invariant,

Statistical consistency Converge to the right
answer as the amount of data increases

Neyman-Scott problem (1948 [33])

1. the heights 1, ..., un of each of the N people,
2. the accuracy (o) of the measuring instrument.

We have JN measurements from which we need to
estimate NV 4 1 parameters.
JN/(N + 1) < J, so the amount of data per pa-
rameter is bounded above (by J).

It turns out that 63, 1o tiood — %02,
and so for fixed J as N — oo

Akaike’s AIC, Schwarz’s BIC (1978), Rissanen’s
MDL (1978, [34]) all statistically inconsistent for
the Neyman-Scott problem
MML statistically consistent (Dowe & Wallace, 1997
[22]) (Wallace, 2005 [44])



General form of Neyman-Scott problem:
amount of data per parameter bounded above
E.g., aptitude tests and 1Qs;
testing petrols on many engines and octane ratings;
etc.

Statistical inconsistency in rival methods but no
known case yet of MML being statistically incon-
sistent

Conjecture(s) (Dowe, Baxter, Oliver & Wal-
lace 1998 [13]) (Wallace & Dowe, 1999a [48]) (Com-
ley & Dowe, MIT Press, 2005 [9]) (Dowe, Gardner
& Oppy, Brit J Phil Sci 2007 [16]) (Dowe 2008a,
“Foreword re C. S. Wallace” [11]) :

Only MML and closely related Bayesian meth-
ods will be both statistically invariant and statisti-
cally consistent in general for problems where the
amount of data per parameter is bounded above;

If the above conjecture is wrong and there are
any non-Bayesian methods, then they will converge
to the true answer more slowly than MML does.

Slight variant of Conjecture(s) for model mis-
specification



Elusive model paradox (Dowe 2008a [11],
Dowe 2008b [12])

Consider two processes: one generates a sequence
of numbers (or bits), the other tries to guess the
sequence.

First - or generating - sequence is like a soc-
cer player taking a penalty kick or a tennis player
serving a ball. It tries to get different to what the
guesser will guess.

Second - or guessing - sequence is like soccer
goalie or tennis receiver, and tries to guess gen-
erated sequence.

If both use methods that are statistically consis-
tent, then first can eventually anticipate guessing
sequence and change it while second can eventually
accurately home in on first sequence.

Paradox?

Only one known way out of elusive model para-
dox.



Probabilistic prediction, uniqueness of log-
loss

(Good 1952 [24]) introduces log-loss for the bino-
mial distribution

Score: — log(p) or —log(1 — p)

(Dowe & Krusel 1993 [20, p4, Table 3]) uses log-
loss for (8-state) multinomial distribution

Introduced by Dowe et al. (1996) for Normal /Gaussian
distribution, for margins on Australian Football
League (AFL) games [20, p4, Table 3|[21, 14,15,
19][13, sec. 3][32, Figs. 3-5][36, sec. 4][31, Table 2|[8,
sec. 9][37, sec. 5.1][9, sec. 11.4.2|[38, sec. 3.1][29, Ta-
bles 2-3][30][39, secs. 4.2 - 4.3] (and possibly also
40, sec. 4.3]), [10](Dowe 2008a [11, sec. 0.2.5, foot-
notes 170-176 and accompanying text|)(Dowe 2008b
[12, pp437-438])

Uniqueness (Dowe, 2008a [11] and 2008b [12])
Log-loss shown to be the unique scoring system
for probabilistic predictions which is invariant to
framing of questions



Generalised Bayesian net and other ap-
plications
Following (Dowe & Wallace 1998 [23]), (Comley &
Dowe June 2003 [8]) give first application of MML
to Bayesian networks using both discrete (multi-
valued) and continuous-valued attributes.
Repeated and refined in (Comley & Dowe MIT
Press April 2005 [9], camera-ready version submit-
ted in Oct 2003).

Many other applications of MML - including,
e.g., clustering and mixture modelling (Wallace &
Dowe 1994 [47]), (Wallace & Dowe 2000 [50]) and
spatial correlation (Wallace 1998 [43], Visser & Dowe
2007 [41]) - and, in turn, to (e.g.) climate modelling
(Visser, Dowe & Uotila 2009 [42]).

Relationship between MML and Kolmogorov com-
plexity (Wallace & Dowe 1999a, “Minimum Mes-
sage Length and Kolmogorov complexity”, Com-
puter J [48]) highlights the universality of MML in
modelling problems.

Statistical consistency keeps all in order.

But poor approximations don’t always work - sev-
eral criticisms of MML and /or Ockham’s razor (e.g.,
Kearns, Mansour, Ng & Ron 1997 [28]) are premised
on inefficient or unreliable coding schemes



Invariant “priors”

Sir H. Jeffreys (1946) [27] notes that the square
root of the expected Fisher information has the
same mathematical form as a Bayesian prior and
that it is statistically invariant

Although Jeffreys himself never actually advo-
cated its use, Rissanen (1996 [35]) uses it as what
he calls a “prior” in some of his later MDL work.

Chris Wallace and others have argued against
its use on philosophical grounds - e.g., (Wallace &
Dowe 1999b [49]). Basically, it comes from the data,
not prior to it.

That said, for the fun of it, I have used MML
and Bayesian invariance principles to create a mul-
titude of invariant “objective” priors (whose use in
practice I do not necessarily advocate).



MML and “intelligence”

In addressing an audience from a Centre for Re-
search in Intelligent Systems, ...

Inductive learning = two-part compression
(Dowe & Hajek, 1997a, 1997b, [17]) (Dowe & Ha-
jek, 1998, [18])

See also related slightly later work by J. Hernandez-
Orallo [26, 25].
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