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We would like to thank all the discussants for their contributions. Our paper attempts only a
first step towards a satisfactory linkage between complexity theory and coding-based inference
and these discussions will help to blaze the paths for future exploration. We also take this
opportunity to remind the reader that, in our opinion, MDL and MML agree on many, many
points. While we certainly disagree with Dr Rissanen and he with us on quite a few points, we
certainly acknowledge that these disagreements would understandably appear both infrequent and

minor from the perspective of someone who knew relatively little about MDL and MML.

1. RESPONSE TO PROFESSOR DAWID

It is perhaps appropriate to re-emphasize the distinctions
among inductive inference, prediction and prediction with
a loss function. Straight prediction yields a probability
distribution over future data. Add a loss function and you
get decision theory, giving the loss to be expected from
betting on a particular future event. While models of the
data-generating process may appear in this reasoning, there
is no need to commit to any one model, and in general
the predictive distribution is not a member of the family
of models considered. Inductive inference (in the classical
sense) aims to yield a general proposition about (model of)
what is going on in the data-generating process, without
explicit consideration of what future data may be generated.
The complexity approach can be used for straight prediction,
as in Solomonoff’s work, and in no way restricts the loss
function which may then be applied to determine how best to
anticipate the future. In the inductive model-selection case,
the complexity approach yields probabilities for various
potential models, finite posterior probabilities in the case
of minimum message length (MML), or something akin
to a likelihood in the case of minimum description length
(MDL). Again, there is no restriction on the application of
a loss function to these results in order to choose the model
which has least expected regret. Professor Dawid may have
been misled by the common, but by no means universal,
habit of complexity workers of emphasizing the discovery
of the model or model class which is ‘best’ in message-
length terms, but in fact the techniques yield comparisons
of alternative models expressible as probability or likelihood
ratios and any regret function may be applied to these ratios.
Thus, the ‘biggest weakness’ he sees is an illusion.

In Professor Dawid’s discussion, it is not clear whether
the encoding ofξ is using a one-part or a two-part Bayesian
message, but the asymptotic results would still appear
to hold for MML even in a pathological case such as
our awkward uniform example from Section 1.2 in our
discussion paper in this issue.

Professor Dawid’s conclusion that ‘Bayes is a good thing’
is, to us, a welcome and not overly surprising one. Indeed,

information-theoretic coding approaches such as MDL,
MML and Kolmogorov complexity admit of a Bayesian
interpretation (cf. Professor Clarke’s remark that ‘Rissanen’s
approach is not inconsistent with a Bayesian approach’).

Professor Dawid allocates some of his discussion to the
choice of Bayesian priors, such as is implicit in the choice
of his α(·) and to the choice of loss function. Where
there is prior knowledge, as in incorporating expert advice,
we advocate its use. As we point out in Section 2.3 on
the Jeffreys prior in our discussion paper in this issue,
priors chosen on the basis of the mathematical form of the
probabilistic relation between the unknown parameter and
the possible outcomes of some observational protocol are not
logically tenable, and, as Professor Dawid remarks, lead to
an unwelcome dependence on such things as stopping rules.

Professor Dawid makes the interesting observation that
such dependence on stopping rules disappears in the ‘online’
setting. However, this fact seems insufficient justification for
accepting an untenable ‘prior’ such as Jeffreys.

The ‘on-line’ setting has a natural, indeed inevitable, role
in the prediction of time-series data. However, it is not clear
that it is a satisfactory setting for inductive inference when
the data have no inherent sequence, since the results of an
‘on-line’ analysis depend on the order in which the data are
considered.

Professor Dawid is perhaps unduly pessimistic about
the future of coding-based approaches. The successes of
MML/MDL inference over alternative methods are manifold
as is attested to by many of the references in the contributed
papers in this issue. It may be true that many of the successes
could (with hindsight) have been obtained by conventional
statistics. As the coding approach is not inconsistent with
probability theory, this is not surprising. However, we may
plausibly claim that many decades of conventional statistical
theory did not produce any inductive inference method with
the generality successfully to address all the problems to
which the coding approach has been applied, despite the
long standing of some of them. A conventional solution of
these problems may well be possible, but might prove to be
no more than the re-interpretation in older language of the
insights developed in the coding methods.
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2. RESPONSE TO DR RISSANEN

Dr Rissanen appears to have mistaken some technical
aspects of MML. Some of his criticisms would appear to
lack substance. MML wishes to obtain the ‘best’ two-part
compression under the assumption that the second part of
the message, encodingD given H , encodesD given the
hypothesisH and nothing else, without paying attention
to alternative hypotheses that might have been used but
are not. Such a code is of course redundant if considered
purely as an encoding of the data. It must be, because it
also encodes something which is not deducible from the
data, namely estimates of the unknown parameters. The
reason that Dr Rissanen’s MDL ‘beats’ this with the equation
(6) of his discussion is that his optimization does not do
such a two-part encoding and is, to us, misguided—see
Section 1 on complete coding in our discussion paper, and
see also Section 1.1 in our discussion paper to see that
the amount by which MDL ‘beats’ MML is, in any event,
rather small. The ‘complete coding’ now advocated in MDL
approximately removes this redundancy, and with it removes
any well-founded estimation of parameters. This is fine
if we have no interest in these parameters, and wish only
to infer the parametric model class, but gives no grounds
for criticizing the MML form which does aim to yield a
fully-specified model. MDL seems in recent years to have
focused on the selection of a model class. We have given
reason in Section 2.1 on partitioning models into ‘model
classes’ in our discussion paper to suggest that the notion
of a model class is not always well-defined. The MML
school has advocated this principle of two-part coding since
its inception in 1968 and the MDL school has differed on
this point for some years now and may well continue to do
so. It is a difference of objective, not a contradiction.

The remark about Kolmogorov’s ‘sufficient statistic’ is
not strictly applicable to the problem of inference from
a given, finite data set, since the definition involves the
behaviour of a quantity as the length of the data string
increases indefinitely. In fact, the definition seems to make
sense as a definition of a ‘function’ from all finite data strings
generated by some source to the first-part strings which
would appear in the two-part encodings of these data strings.
If it is so interpreted, we may ask whether (for data coming
from some unknown memberθ of a known family2 of
sources) the MML estimator function satisfies the definition;
for simple families such as the exponential family, it does.
For the family of all sources with computable-probability
distributions, the results of Barron and Cover [1] strongly
suggest an affirmative answer also, although then the MML
estimator ‘function’ is not computable.

Dr Rissanen’s remark about the posterior,P(y | x),
should be contrasted with our equation forMT (S) − KT (S)

as the log of a posterior probability in Section 4.2 of our
discussion paper in this issue. MML does two-part coding.

We contest the assertion that MDL is better-founded
than MML. MML is able to select a model class, or
a fully-specified hypothesis or whatever—depending on
the problem specification and MML can do any of these

with both statistical consistency and invariance under one-
to-one re-parametrization. This can be done without
any of Dr Rissanen’s parameter-space restrictions which
Professor Dawid finds ‘unsatisfying’. Dr Rissanen appears
to misunderstand the Bayesian posterior maximization (or
maximum a posteriori, MAP) principle, which, unlike
MML, is typically concerned with probability densities.

Dr Rissanen’s way of ‘suitably’ choosing a range on
his parameters after equation (4) of his discussion paper
seems either arbitrary and unclear or subjectively Bayesian.
Although Dr Rissanen’s normalized maximum likelihood
(NML) approach will give statistical invariance, as in our
discussion paper, it seems seriously flawed even for some
relatively simple statistical distributions. Professor Dawid
suggests in his discussion some possible ways in which
NML might be salvaged.

The o(logn) term in Dr Rissanen’s discussion equation
(8) admits of anO(1) term of order one, within which,
as in our contributed paper, there is more than ample
room for the inclusion or even the concealment of many
kinds of Bayesian prior. Indeed, as we note in our
response to Professor Dawid and also in Sections 5 and 7
and the conclusion of our contributed paper, Kolmogorov
complexity (as appealed to by Dr Rissanen in Section 2 on
Model Selection of his contributed paper) has a Bayesian
interpretation—it not only permits the use of Bayesian
priors, it would also appear to insist that we use Bayesian
priors. We agree with Dr Rissanen that his discussion
equation (8), like our message length equation in Section
6.1.2 of our contributed paper, is an approximation which is
only meant to be good for the exponential family and certain
other families of functions.

We are at a loss to understand the claim that MML obtains
results generally inferior to those of MDL and we also
contest the remark that MDL ‘works in a much wider set of
problems than the MML principle’. While the similarity of
MDL and MML ensures that the methods will necessarily
give similar answers on a variety of problems, we note
that MML has statistical invariance in addition to statistical
consistency. Although MML is designed primarily for
inference, its similarity to the minimum expected Kullback–
Leibler distance estimator ensures that it will be good
for prediction. We note that two examples, where MML
demonstrably out-performs MDL and indeed where it is not
at all clear that MDL works at all, are the awkward uniform
example from Section 1.2 of our discussion paper and (when
compared to normalized maximum likelihood) the negative
binomial example from Section 2.3 of our discussion paper.
With regard to Dr Rissanen’s final claim that ‘for non-
parametric model classes the MML principle’ supposedly
‘produces inferior results’ (to MDL) ‘or fails completely’,
in the absence of an example exhibiting this ‘failure’, we
find the claim unclear and unsubstantiated.

3. RESPONSE TO PROFESSOR SHEN

We assume that in Section 4 of Professor Shen’s discussion,
the earlier restriction that|A| be finite is removed with the
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introduction of a probability distribution overA. His first
definition in that section of the complexity of the distribution
P seems in accord with the view taken in our paper. The
restriction in his second definition to finite domains would
rule out some natural distributions, such as the negative
binomial.

While appreciating the clear exposition of the relation
between two-part complexity and inference given by
Professor Shen, we remain cautious of the practical
application of inequalities with unquantifiedO(logn) terms.

Section 5 raises important questions. Computational
resources are not infinite and no unrestricted Turing machine
exists. Just what impact resource limits have on the results
of algorithmic complexity theory remains to be properly
explored.

4. RESPONSE TO PROFESSOR CLARKE

With regard to the model selection principles (MSPs)
considered, we note that the Akaike information criterion
(AIC) is statistically inconsistent for mixture modelling, as
well as for a variety of other problems discussed in the
conclusion section from our contributed paper.

We certainly agree with Professor Clarke’s remark that
‘Rissanen’s approach is not inconsistent with a Bayesian
approach’.

In Professor Clarke’s Section 3 on Looking Ahead, the
choice between potential explanatory variables is not a
problem for MML—although the search space could, of
course, be rather large. We simply choose those which
ultimately give rise to the shortest message length, the
message of course including a specification of which of the
available explanatory variables are used.

Where there are several alternative hypotheses under
consideration, for inference, MML will take the best one.
While MML can obtain posterior-probability ratios among
competing hypotheses, the practical use of a weighted
average of competing hypotheses about, say, molecular
bonds, would become so cumbersome that it would rarely
be fruitful except for the simplest deductions from the
hypotheses. For prediction, MML adherents and other
Bayesians will advocate model averaging. If there are two
very different models with almost identical message lengths,
then it will certainly be well worth averaging for prediction.
(Indeed, methods other than MML would also be well-
advised to consider averaging—especially in such cases.)
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