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Abstract. We investigate the problem of inferring, from records of chess
games, some aspects of the strategy used to play the games. Initially,
game records are generated from self-play by two simple chess programs,
one of which does a one-ply search while the other does a four-ply quies-
cent search. In each case, we are able to infer, from just the game records,
good estimates of the weights used in the evaluation function. The ap-
proach is then applied to grandmaster games. Our one-ply and quiescent
four-ply programs are now drastic simplifications of the true strategy
used. Nonetheless, using inferred weights for these hypothetical models,
we are still able to achieve some success (as measured by compression
rates for the games) in predicting moves made by the players.

1 Introduction

Most research on Computer Game Playing has concentrated on getting programs
to play games as well as possible. This is usually achieved by the use of appro-
priate search algorithms together with some explicit coding of human knowledge
about strategies for the game (Shannon, 1950), although learning methods have
also been used (Samuel, 1959, draughts/checkers; recent chess examples include
Thrun, 1995, Morales, 1996).

In this paper we go in an opposite direction. Starting from records of games
played, we wish to infer something about the strategy used. This is clearly a
machine learning problem, but different to problems of improving play by learn-
ing from experience. We approach the problem in two steps. First, we attempt
to infer a strategy from records of chess games generated by a simple chess pro-
gram. Here the actual algorithm is known, so this provides an important test of
the feasibility of our approach.

We then attempt to infer aspects of the strategy used by human chess players,
based on the success of the first step. This is the primary motivation behind this
research. There 1s much unknown about the algorithms humans use, although
there have been attempts by psychologists and others to understand how humans
play the game (for example, Newell and Simon, 1972). The works of de Groot
(1978), Frey (1977), and Levy and Newborn (1991) reveal the contrast between
current game playing strategies used in computer programs, and the techniques
that humans use.



Despite the amount of research exploring computer chess playing, little work
appears to have been done along the lines reported here. The approach of Carmel
and Markovitch (1993) tries to learn the strategy used by the opponent during
play, but does not use records of games. Muggleton (1988) takes expert descrip-
tions of how to play some specific chess endgame positions and does ‘sequence
induction’. The aim there is to infer a finite automaton which encodes a more
general strategy for that phase of that particular type of endgame. Our approach
is to begin with the result of a strategy, in the form of records of games played,
and then to infer aspects of that strategy. Work in a similar vein has been done
by Walczak (1992), in which an Inductive Adversary Modeler was developed that
can infer the perceptual chunks used by a chess player based on game records.

In the next Section we introduce a simple game player model, its implemen-
tation, and the results obtained by doing inference with it. The work done there
provides evidence of the validity of our approach. We then introduce a more ad-
vanced game player model, and discuss the results of our attempts at inference.
Finally, we discuss the conclusions and future directions.

2 Simple one-ply player model

2.1 Description of the Model

The simple player model is based on a 1-ply search. Positions at this depth are
evaluated in the following manner. The player uses an evaluation function v(.)
of the form

o(P) = 3 Aeax(P), (1)

where

— the ay(.) are atiributes (or advisors), i.e. functions which report on some
specific aspect of a position. The total number of attributes is n. Typical
attributes for chess would be

e a1(P) = the material balance of the position (where here, Queen = 9,
Rook = 5, Bishop = Knight = 3, Pawn = 1), being the difference between
the player’s and opponent’s total material;

e ay(P) = the mobility balance, i.e. the difference between the numbers of
moves available to the player and the opponent.

— the Ay are the weights attached to the attributes.

The two attributes described here are the only ones used for the simple model.
For each (and hence for the evaluation function as a whole), a positive value is
good for the player, while a negative value is good for the opponent, and reversal
of roles negates the values.

A key feature of the model is that the player chooses probabilistically from the
moves available. This random element serves several purposes. Firstly, people do
not always choose the same move from the same position, and may err. Also, the
model can never account for all possible considerations a player uses to determine



what move will be played. This will naturally result in uncertainty when choosing
a move. Probabilistic choice of moves also allows statistical inference to be used.
A consequence of probabilistic move choice is that we are not attempting to
develop a model that selects the correct move in every position. Rather, we wish
the correct move to have a high probability of being played. While it is desirable
that the correct move be the most probable, the model will still be successful if
the correct move tends to have a high probability.

The model also assumes that the player strategy is consistent — and so varia-
tion in strategy based on things like the playing style of the opponent, or whether
the game is in the opening, middle or end phase, is ignored.

We now describe how the player moves under this model.

1. Input: position P.

2. Generate all positions Py, Ps, ..., Py, to which the player can move from po-
sition P. (We can think here of the positions Py, Pa, ..., Py, as corresponding
to the possible moves, numbered 1,2,..., m respectively, which the player
can make from the position P.)

3. Compute the evaluation v(F;) of each position P;, i =1,... m.

4. Choose a move probabilistically from {1,..., m} according to

Pr(move i) = e'F) /(" (F) | 4 2 (Pm)y, (2)

This multivariate logistic function maps position values, which range over
(—00,00), to the interval [0, 1] in a natural and elegant way.
Let the chosen move be 7*.

5. Make the necessary move to the chosen position, P;«.

From our database of game records, we have a large set P of positions and
for each position we are given the move that was made. It is these choices of
move which are the data from which we seek to infer a model. We regard the
positions themselves as prior information and do not seek to explain them.

Likelihood function Consider for simplicity a single position P, from which
one can move to any of (P; : ¢ = 1,...,m). The observed data is the index #* of
the position P;» to which the player chose to move. Our modelis 8 = (Aq,...,A,).
The likelihood function for this single data item 7* is

ev(Pz*)
2oimy ettP)
The actual data we have is a whole set of moves, one for each position in P.

For each P € P, denote the move chosen by i*(P). Then our likelihood function
is

fe(i*|0) =

ev(Pl*(P))
II ey 1o =11 T, o) (3)
PecP PeP
The simple game player model described determines the probability of each
move being played based on the weights of the attributes that are being con-
sidered. To infer the weights, a Maximum Likelihood approach was used with a
simple and robust hill climbing algorithm.



2.2 Inference Results

Generated Data To test the validity of the inference technique, a simple chess
program was written which, in each position, essentially did a 1-ply search, and
pseudorandomly chose a move based on the A values that the program was given,
according to Equation 2. To keep things simple, the player model only considers
two attributes (n = 2): material balance and mobility balance. Using several sets
of A values (from Equation 1), databases of up to 1000 games were generated by
the chess program playing against itself.

A question of initial interest was how large a database needs to be to allow
successful inference to take place. Databases of various sizes were created con-
sidering the single attribute, material balance. The attribute weight was set at
Amrar = 3.0 . Inference was then conducted on the different sized databases. For
a database containing only one game, the inferred Apra7r value was 4.11; for a
10 game database, 3.28; for 100 games, 3.20; for 1000 games, 3.09 was inferred.

The inference results show that as the size of the database increases, the
inferred value of Apsar gets closer to the correct value. For the database of 1000
games the inference performs well, although it still overestimates slightly.

To test our approach further, inference was tried on other databases of gener-
ated data, each consisting of 1000 games, with two attributes (material balance
and mobility balance). In Table 1, the weights that were used to generate the
games for the databases are given (as Actual Values), as are the inferred weights.

Data Set 1 Data Set 2
Attribute Weights )\MAT| AMOB )\MAT| AMOB
Actual Values 5.0 0.5 10.0 1.0
Inferred Values 5.15 0.51 10.23 1.02

Table 1. Inference results from 1000 game databases using the simple model.

The results show that the inference method performs well on both of these
databases. Note that the inference method again slightly overfits the data, with
no parameter values being underestimated.

Grandmaster Databases Since the inference results from the generated data
indicate that accurate inference is possible, it seemed worth trying our approach
on grandmaster data. Although such players do not conform to our simple model,
it may still be interesting to see what attribute weights are inferred for them.
The same two attributes (material and mobility) are used.

The two grandmasters selected are Robert J. Fischer and Garry Kasparov.
Since inference seems to perform better with larger amounts of data, the entire
available database for each player is used. The results can be seen in Table 2,
which shows the number of games in each grandmaster database and the inferred
weights.



Player || No. Games” )\MAT| )\MOBH I-Random I—Inferred” Comp (%)|

Fischer 732 0.510] 0.021 146047 138383 94.8
Kasparov 1030 0.458| 0.025 191936 183021 95.4
Table 2. Inference results from grandmaster databases using the simple model.

These weights, however, give no indication of how well the model can pre-
dict the move made in a given position. Probabilistic prediction of information
corresponds to compression of data. This fact has been exploited in the work of
Althofer (1991), where chess databases have been compressed by using a chess
program to predict the most likely move to be played by a grandmaster in a
given position. Here we also use data compression as a measure of predictive
accuracy. The information content (in bits) of a move can be readily calculated
from the probability of that move being played, using

I(move i) = — log, Pr(move i)

The last three columns in Table 2 give details of the information content of
the two grandmaster databases. The first value, 7-Random, gives the amount
of data (in bits) when the move choice is completely random, with no strategy
assumed and each move equally likely. This is just uncompressed data. The
next value, I-Inferred, indicates the size of the data (in bits) when compressed
using the results of the Maximum Likelihood inference. The inferred weights will
mean that all moves are no longer equally likely in a given position, and thus
the information content will be different. The final column, Comp (%), indicates
the compression achieved by giving the size of the post-compression data as
a percentage of the original random information. For both grandmasters, the
inferred values compress the data to about 95% of its original size. Considering
the simplicity of the player model being used, this is an encouraging result.

The successful implementation and inference of the simple game player strat-
egy in this Section has shown that even a simple model can be applied to grand-
master games with positive results. The next Section looks at a more advanced
game player model that uses more aspects of the strategies that humans use.

3 A more advanced player model

3.1 Description of the model

In the previous Section we introduced a very simple player model which we used
primarily to confirm the validity of our approach. The success with this model
leads us to consider a more advanced model. The advanced player model takes
into account more aspects used by human chess players, such as considering
more position attributes, searching deeper than 1-ply, and searching some lines
deeper than others. There are still many aspects missing in our advanced model,
such as adjusting attribute weights depending on whether the game is in the



opening, middle or end phase. However, it is a significant improvement on the
simple player model.

The advanced player model is based on a quiescent 4-ply search, which works
as follows. All positions at depth 1-ply are generated. Further search is done only
if a capture is possible, a promotion is possible, a check can be played, or the
player is already in check. Maximum search depth is 4-ply, but of course not all
lines are explored to this depth.

As with the simple model, the player chooses the move probabilistically.
Since the number of dimensions in the search space depends on the number of
attributes, we use just four attributes (n = 4). We realize that both humans
and computer programs generally examine many more attributes, but we have
chosen this constraint in order to make the search space for our inference more
tractable. The attributes used are the balance of material, mobility, control of the
centre 16 squares and number of attacks (see, for example, Levy and Newborn,
1991). Attacks against pieces of equal or lesser value are considered to be worth
only one tenth of an attack against a more valuable piece.

Likelihood function The evaluation of a single position in this model is the
same as the evaluation used for the simple game player model. Each attribute
is given a weighting, i.e. a A value. The multiple ply search is also probabilistic,
again just as the simple 1-ply model was. The probability of each move from
the root position is calculated in the same manner as was used in Section 2.
However, the evaluation for each of the 1-ply positions is now determined by
considering positions at deeper levels in the search tree.

A probabilistic variation of the minimax algorithm is applied to determine
the probabilities of each move available from the root position. This is similar to
the way that the minimax algorithm is applied to games such as backgammon,
which involve both strategy and chance. The full likelihood function for the 4-ply
quiescent search is quite complex, and is contained in the Appendix.

For the inference, a Maximum Likelihood approach is again used along with
a simple and robust hill climbing algorithm. It should be noted that for our 4-ply
quiescent model, a typical search to determine the probabilities of the available
moves needs to evaluate over 2000 positions, with the evaluation of each position
depending on the four weights that need to be inferred. Rather than repeatedly
searching and evaluating all of the positions on each iteration of the hill climbing
algorithm, this is done only once initially with the resulting attribute values from
each position stored in a search tree database. This data requires additional
information about where in a given search tree each position arose. As a result,
the inference programs have very large memory requirments, especially when all
the moves from several games are being considered. For example, encoding all of
the information from five games requires over 150 megabytes of memory. This
memory expense is justified by the speed increase obtained as a result of only
generating the search tree data once.



3.2 Imnference Results

Generated Data As with the simple player model, we first try inferring weights
from databases created using the player model.

A chess program based on this player model was used to create databases of
games that used the four attributes defined by the model with a 4-ply quiescent
search. The game records were generated by the program playing against itself.
Again, a pseudo-random choice between possible moves was made, based on
probabilities obtained from the likelihood function. The coefficients were selected
to try and make the program play as well as possible, given that it is still much
simpler than human play. The level of play achieved by this model is quite weak,
but it 1s competitive against a human beginner.

The results using the generated data showed that the Maximum Likelihood
inference method worked very well, and are given in Table 3. The A weights
(from Equation 1) used to generate the data are also given (as Actual Values).
Each inference is from the data of a single player in a single game, with five
games being considered. The Table also gives the information content (in bits)
of the data both when the move choice is random (the data is uncompressed), I-
Random, and after the Maximum Likelihood inference, I-Inferred. The amount
of compression of the data, Comp (%), as defined previously in Section 2.2,
is also given. It can be seen that most of the games have been compressed to
less than 50% or their original size. The second last row of the table shows the
inference result when both the white and black moves from five games are used
for inference.

|Colour |N0. Moves| )\MAT| )\MOB| )\CEN| )\ATT| I—Rand0m| I—Inferred| Comp (%)|

White 126 7.11 0.25 0.49| 3.65 464.7 208.5 44.9
Black 126 7.89 0.22 0.62| 3.45 598.6 265.2 44.3
White 94 7.49 0.22 0.51| 3.56 404.1 160.3 39.7
Black 94 8.13 0.24 0.51| 3.89 458.8 169.9 37.0
White 147 7.14 0.25 0.50| 3.34 662.6 299.4 45.2
Black 147 7.74 0.25 0.53| 3.88 579.0 244.7 42.3
White 30 6.12 0.25 0.50| 2.84 160.3 92.8 57.9
Black 30 6.49 0.19 0.29| 8.36 147.0 80.5 54.8
White 99 7.75 0.17 0.47| 2.98 498.3 190.4 38.2
Black 99 8.09 0.24 0.69| 4.10 479.5 107.5 22.4
W & B 5 Games 7.53 0.21 0.52| 3.31 3879.4 1442.1 37.2
|Actual Values | 7.0| 0.2| 0.5| 3.0| | | |

Table 3. Inference results from generated data using the advanced model.

An interesting result about the inference with the advanced player model
is that very good results are obtained using the data from a single game. This
appears to be because each position in the search tree contributes to the data
available, and the inference for a single move has such a large search tree that



accurate inference is possible without needing to consider too many database
positions.

This i1s a welcome result, because the memory requirement for a single chess
game is already very large. However, the inference on five games also gave an
excellent result, and the compression achieved over five games is superior to the
average compression achieved for a single game. As a final point, unlike with the
simple game player model, not all inferred weights overfit the correct values.

Grandmaster Databases After successful inference on the generated data,
the next step was to apply the advanced player model to do inference from
grandmaster games. Again we used games by Fischer and Kasparov.

Table 4 shows the results of the inferences on two games by Fischer and
two games by Kasparov. For each player, we chose the longest game the player
won with both white (W) and black (B). The games were: Fischer—Taimanov,
Vancouver, 1971, 89 moves; Sherwin—Fischer, USA Championship, 1966, 100
moves; Kasparov-Karpov, 1990, 102 moves; Kamsky—Kasparov, New York, 1989,
107 moves. The inferred weights are given, as is the information in the data
before and after inference, and the compression achieved. The last row gives
an inference using as data the 11 games played by Fischer in the 1963 USA
Championships.

|Player ||N0. Moves| )\MAT| )\MOB| )\CEN| )\ATT| I-Random I—Inferred| Comp (%)|

Kasparov|| 102 (W) 1.20 0.09( 0.10f 3.19 481.4 370.8 77.0
Kasparov|| 107 (B) 0.82 0.18| 0.09] 1.81 443.7 328.7 74.1
Fischer 89 (W) 1.31 0.00f 0.06 0.89 385.5 307.6 79.8
Fischer 100 (B) 1.61| -0.06] 0.09] 2.82 416.7 339.1 81.4
Fischer 11 Games| 1.24 0.04| 0.09| 1.15 1995.3 1555.3 77.9
Table 4. Inference results from grandmaster games using the advanced model.

Where the simple 1-ply model was used, we managed to compress the grand-
master data to about 95% of its original size (see Table 2). The results in Table 4
show significant improvement, with compression ranging from approximately
81% to only 74% of the original data. This demonstrates that the advanced
player model certainly helps in the inference of aspects of the strategy used by
these players. It is also interesting to note that Kasparov’s games compressed
better than those of Fischer. This could indicate that the attributes considered
by the model are more in keeping with Kasparov’s evaluation of a position than
that of Fischer.

The final results examine compression using different training and test data.
Table 5 shows the results of taking A values inferred from one set of data taken
from grandmaster games, and using it to compress other grandmaster games.
The training data used was Fischer’s 11 games played in the 1963 USA Cham-
pionships. This has been used to compress the same games that were used in



Table 4, whose original Maximum Likelihood compression results are listed again
for comparison. The final two columns in Table 5 are the information content of
the games after the strategy inferred from the training data is applied to them,
I-Training, and the subsequent compression achieved.

|Player ||N0. Moves| ]-Rand0m| ]-Inferred| Comp (%)H ]-Training| Comp (%)|

Kasparov 102 (W) 481.1 370.8 77.0 380.2 79.0
Kasparov 107 (B) 443.7 328.7 74.1 345.0 77.8
Fischer 89 (W) 385.5 307.6 79.8 312.1 81.0
Fischer 100 (B) 416.7 339.1 81.4 348.1 83.5
Table 5. Inference results using the advanced model with different training data.

The results show that the compression achieved using strategies obtained
from training data that are different to the test data, is nearly as good as when
strategies inferred directly from the test data are used. This is expected, since
all grandmasters try to play the best possible move in a given chess position.
This result shows that general strategies can be inferred from large databases,
and then successfully be applied to specific instances.

4 Conclusions and Future Work

The goal of this research was to infer something about the strategies used by
chess programs and, ultimately, humans based on the records of games played.
Initially, a simple 1-ply model was developed to confirm the validity of the con-
cept. The results indicated that successful inference was possible over both data
generated using the simple 1-ply model, and grandmaster databases. The amount
by which the data was compressed was used throughout as a measure of the
modelling accuracy of the inferred strategy.

This led to the development of a more advanced player model that used a
4-ply quiescent search. The results show that excellent compression was achieved
for data generated using the advanced 4-ply quiescent model (on average, data
was compressed to less than 50% of its original size), and that grandmaster
games could also be significantly compressed. It was also possible to compress
grandmaster games using a strategy inferred from a different grandmaster.

The results indicate that it is possible to infer something about the strategies
used by chess players, and that the more advanced the model is, the better is
the predictive accuracy of the inferred strategy. Inductive inference of strategies
based solely on information contained in databases can thus allow successful
learning and prediction.

There are several directions for future work. These include developing more
advanced game player models that better mimic the way humans really play
chess and looking at different inference methods, such as Minimum Message
Length (MML). Also, the power of the inference could be investigated further



by going beyond data compression as a performance measure and determining if
specific questions about game records can be answered. For example, given that
strategies have been inferred for several grandmasters, can this information be
used to predict who the players are in a particular chess game? Finally, these
techniques can also be applied to domains other than chess and game playing.
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Appendix. Quiescent 4-ply Search Likelihood Function

Some definitions:

P; i, i, = position resulting from P after sequence of moves i1,19, ..., 4.
on = on(P) = +1, if Black is to move in a position h ply distant from P;
h = 0Oh " | —1, if White is to move in a position h ply distant from P.

So, if White is to move in position P, then o1 = +1, 09 = —1,
o3 = —|—1, N

kpn = absolute value of won position at depth A from P

= 600 — 10A
(a little arbitrarily, but so as to make early checkmates better
than late ones);

For h > 1, define

0, if Pji,. 4, 18 a Draw of some kind, e.g. Stalemate;
kn, if P;,;, 4, is a won position (i.e. checkmate) for White;
—kpn, if P, 4, 18 a won position for Black;

on(P)v(Py iy 4, ),

V(Piyiy in) = if either By,
won position, i.e. h = d;

i, 18 quiescent or it is a terminal non-

ZZ’HI “h+1(Pi1i2...z’h+1) €xp (Uh+1(P)Uh+1(PiliQ...ih_H))
insr €XP (T4 (P)0ht1 (Piyizing)
if h < d and P;

)

Lis..in 18 neither won nor quiescent.

Thus vp(_) assigns values to positions which are h-ply distant from P. Recall that
v(-) is the ordinary evaluation function. The summations are over all moves ip41
that can be made in position P;;, ;. Note that v4(_) never equals the last of
the possibilities listed above, since all non-won non-quiescent positions at d-ply
are evaluated using v(.).

The move from position P is chosen probabilistically according to

exp (01 (P)v1(Pi+))
>oisy exp (o1 (P)vi(Py))

In the implementation reported in Section 3 of this paper, we use d = 4,
and P itself is always fully searched to at least depth 1 (so is treated as non-

quiescent).
This gives our likelihood for a single position P. For a set of positions, P, we

use the likelithood
H Pr(move *(P)).
PeP

Pr(move *(P)) =



