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Abstract

The validity of the Ockham’s Razor principle
is a topic of much debate. A series of empiri-
cal investigations have sought to discredit the
principle by the application of decision trees
to learning tasks using node cardinality as the
objective function. As a response to these pa-
pers, we suggest that the message length of
a hypothesis can be used as an effective in-
terpretation of Ockham’s Razor, resulting in
positive empirical support for the principle.
The theoretical justification for this Bayesian
interpretation is also investigated.

“Plurality should not be assumed without necessity”
— William of Ockham.

1 INTRODUCTION

Ockham’s Razor has long been known as a philosoph-
ical paradigm, and in recent times, has become an
invaluable tool of the machine learning community.
It has been incorporated into many successful ma-
chine learning applications, although its validity has
remained an area of much debate. As a machine learn-
ing heuristic, Ockham’s Razor suggests that given a set
of equally likely theories about some data, the “sim-
plest” theory is most likely to capture the structure
inherent in a problem. Its underlying philosophy has
drawn much theoretical support; however, a means for
extending this theory to provide sound practical inter-
pretation has proved problematic.

Many statisticians, particularly those of the Bayesian
School, have long strived to show that Bayes’s theo-
rem represents the mechanism behind Ockham’s Ra-
zor, and that in fact, it is a consequence of the deeper
principles of probability theory. Complementary re-
search has been published supporting this belief, in
the form of investigations into the Bayesian (Jefferys
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and Berger 1991, Good 1968) and classical probabilis-
tic (Forster and Sober 1994) interpretations.

On the experimental front of machine learning, the
paradigm has been the target of empirical attack.
Murphy and Pazzani (Murphy and Pazzani 1994, Mur-
phy 1995), supported by work from Webb (Webb
1996), have presented a series of papers that attempt
to provide empirical evidence against the utility of
Ockham’s Razor. Experiments in decision tree induc-
tion were conducted in which the node cardinality of
a decision tree is used as an interpretation of the Ock-
ham’s Razor objective function. The relationship be-
tween node cardinality and the predictive error of a de-
cision tree was investigated in these papers, apparently
putting the Ockham’s Razor principle into question.

The current investigation suggests that the node car-
dinality objective function is a poor, or at least incom-
plete, interpretation of Ockham’s Razor. As an alter-
native, the inference methods of the Minimum Mes-
sage Length (MML)! principle (Wallace and Boulton
1968, Wallace and Freeman 1987, Wallace and Dowe
1999) provide a practical application of the Bayesian
ideals and provides an intuitive interpretation of the
Ockham’s Razor principle. The MML principle has
been successfully applied to a large number of machine
learning tasks (Wallace and Dowe 1999, Wallace and
Dowe 2000 and their references), which immediately
presents a strong argument in favor of Ockham’s Ra-
zor. The MML message associated with a decision tree
is a well studied concept (Wallace and Patrick 1993,
Quinlan and R.L. Rivest 1989), and provides a very
general interpretation of Ockham’s Razor. This paper
provides a summary of an extended empirical inves-
tigation of the message length interpretation of Ock-
ham’s Razor (S.L. Needham, Honours Thesis, CSSE,
Monash University, 2000).

!The similar, but independent methods of Minimum
Description Length (MDL) inference (Rissanen 1978)
would give a similar interpretation of Ockham’s Razor.



2 PREVIOUS EXPERIMENTAL
EVIDENCE

In this section, the characteristic experiment investi-
gated in the work of Murphy and Pazzani (Murphy
and Pazzani 1994) is replicated. The hypothesis space
of binary decision trees was used to learn the binary
logic concept (XY Z)|(AB) without noise and without
dummy attributes. The experiments involved 100 tri-
als being run, each creating a training set by randomly
choosing without replacement 20 of 32 (= 2°) possible
training examples. The remaining 12 examples were
used as a test set. For each trial, every consistent
decision tree (those with only pure leaves showing all
things in the same class) was created, and the average
error rate made by trees for each node cardinality was
computed. Figure 1 plots the mean and 95% confi-
dence interval of the average “right” /“wrong” errors
as a function of the node cardinality. The average
number of trees found to have each node cardinality is
also plotted.
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Figure 1: Node cardinality vs. Prediction Error

The results in Figure 1 compare closely to those found
by Murphy and Pazzani (Murphy and Pazzani 1994),
and indicate that the node cardinality objective func-
tion does not provide positive support for Ockham’s
Razor. Figure 1 suggests that on average, trees with
node cardinality 7 have a lower “right”/“wrong” er-
ror rate on unseen data than trees with lower node
cardinalities. If we accept Murphy and Pazzani’s in-
terpretation of Ockham’s Razor, this evidence suggests
a violation of Ockham’s Razor.

3 THEORETICAL
INTERPRETATION

The work of Murphy and Pazzani (Murphy and Paz-
zani 1994) suggests a practical interpretation of Ock-

ham’s Razor which, on the surface, does not seem un-
reasonable. The results described above agree with
those of Murphy and Pazzani, although it is our belief
that the node cardinality of a decision tree is a poor in-
terpretation of Ockham’s Razor. This section takes on
a theoretical investigation of the paradigm, with the
intent of finding a more appropriate Ockham’s Razor
objective function.

3.1 A BAYESIAN INTERPRETATION OF
OCKHAM'’S RAZOR

Bayesian philosophy requires that hypotheses have as-
sociated prior probabilities, which is the essence of its
approach to statistics. Good tells us that“’Ockham’s
Razor’ states that if two hypotheses H and H; ex-
plain the facts equally, meaning P(E|H) = P(E|Hy),
then the simpler of the two is to be preferred”, (Good
1968). We can see from Bayes’s theorem, P(H|D) =
Pr(D&H)/Pr(D) = Pr(H)Pr(D|H)/Pr(D), that
this preference is equivalent to the choice of the more
probable hypothesis. The Minimum Message Length
principle presents a Bayesian method, which uses sub-
jective priors to make this choice.

In the general machine learning problem, we are given
a set of data D, from which we wish to infer a hypoth-
esis, H. When looking for the most appropriate hy-
pothesis for some given data, Bayes’s theorem suggests
that we choose the hypothesis with the highest poste-
rior probability, P(H|D), or equivalently, that theory
which maximizes the product of the prior probability
of the theory, P(H), with the probability of the data
occurring in light of the theory, P(D|H). In terms
of Ockham’s Razor, a good theory for some data will
have an accordingly high prior probability and a good
likelihood “fit”.

The MML principle provides a theoretical and some-
what intuitive means for making the connection be-
tween Ockham’s Razor and a corresponding quanti-
tative metric. As above, we can regard the problem
of maximizing the posterior probability, Pr(H|D), as
one of choosing H so as to maximize Pr(H).Pr(D|H).
Since —log,(Pr(H).Pr(D|H)) = —log,(Pr(H)) —
log,(Pr(D|H)), maximizing the posterior probability,
Pr(H|D), is equivalent to minimizing

MessLen = —log,(Pr(H)) — log,(Pr(D|H)),

the length of a two-part message conveying the theory,
H, and the data, D, in light of the theory. Hence the
name “minimum message length” (principle) (Wallace
and Boulton 1968, Wallace and Freeman 1987, Wal-
lace and Dowe 1999) for choosing a theory, H, to fit
observed data, D. The part of the MML message ex-
pressing the hypothesis can be obtained by creating a
Shannon optimal code for the language describing the



set of hypotheses and then constructing the message
from this code (Wallace and Freeman 1987).

As stated at the start of this section, many regard
Ockham’s Razor to be primarily concerned with hy-
potheses that have equal likelihood given some data
(Good 1968). In these cases, the MML principle sug-
gests that the hypothesis with the shortest encoding
is most likely to be the best predictor of future data.

3.2 ACQUISITION OF PRIORS FOR
BAYESIAN INFERENCE

Referencing Bayes’s Theorem as it applies to the in-
ference of hypotheses, finding the posterior probability
of a hypothesis given some data requires the probabil-
ity of that hypothesis a priori. The prior probability
of a hypothesis is usually interpreted as the probabil-
ity that the hypothesis describes the true source of a
particular data set. It is clear that this probability
distribution over all hypotheses is very difficult to cal-
culate. Even in restricted hypothesis spaces, the task
is usually intractable and approximate prior probabil-
ity distributions are used. As discussed in Section 3.1,
the MML techniques utilize a Shannon optimal code
for a given hypothesis space, using it to construct an
encoding for each hypothesis. The message length for
each hypothesis serves as an approximation to the neg-
ative logarithm to the base 2 of the hypothesis’ true
prior probability.

A common argument against Bayesian inference meth-
ods revolves around the selection of ludicrous prior
probability distributions. For example (similar to
that given by Domingos (Domingos 1999)), suppose
we gave one particular decision tree with one million
nodes a prior of 0.5, and then allocated equal prior
probability to all remaining trees. This would result in
the MML inference techniques and most Bayesian in-
ference techniques often inferring this hypothesis given
a variety of data. It has been argued (Domingos 1999),
that by having a decision tree of such a large node car-
dinality being selected, that Ockham’s Razor has been
violated. Bayes’s theorem, in its simplest form, makes
no restriction in principle on the type of prior probabil-
ity distribution that is chosen. However, Bayesian phi-
losophy suggests that the selection of the prior prob-
ability distribution is important. The selection of a
prior probability distribution as described above would
only ever be made if we truly believed that this hypoth-
esis, with one million nodes, actually did occur with
probability of 0.5. In this case, in a message length
framework, we would describe the hypothesis with an
optimal encoding of one bit. This does not disagree
with Ockham’s Razor in any way, as the most proba-
ble hypothesis has the simplest description. Assigning
ludicrous prior probabilities to hypotheses, disregard-

ing our belief in their true prior probabilities, would
have to be very strongly questioned in practice. Such
attempted sabotage contradicts both Bayesian philos-
ophy and basic intuition. The use of misrepresen-
tative priors in no way undermines the effectiveness
of Bayesian inference, which endeavors to use plausi-
ble rather than ludicrous priors. See (Lindley 1972,
Bernardo and Smith 1994, Solomonoff 1999, Wallace
and Dowe 1999) for some of the very broad discussion
on the selection of Bayesian priors and Section 4.1 for
an analysis involving more plausible priors.

4 PRACTICAL APPLICATION OF
OCKHAM’S RAZOR

In the previous section, the groundings of Ockham’s
Razor in the theoretical field of Bayesian statistics was
discussed. The practical validation of these ideas is
now investigated on the restricted search space of de-
cision trees.

4.1 DECISION TREE ENCODING

For decision trees, there are four elements to consider
when encoding their message in an MML framework
(Wallace and Patrick 1993, Quinlan and Rivest 1989).
These are:

la : the encoding of the structure of the tree - this in-
volves encoding whether a node is a leaf or an internal
node.

1b : is the labeling of each internal split node with an
attribute.

1c : in each leaf node there is the encoding of the prob-
abilistic prediction associated with each category. This
completes the encoding of the hypothesis. 2

2 : Finally, there is the encoding of the category of each
thing, using for each a code based on the probabilistic
prediction associated with the thing’s true category.

A complete investigation of this encoding is described
in Wallace and Patrick (Wallace and Patrick 1993).

4.2 MESSAGE LENGTH AS AN
EFFECTIVE OCKHAM’S RAZOR

We now re-visit the investigation taken on by Murphy
and Pazzani (Murphy and Pazzani 1994), substituting
the node cardinality objective function with that of
the message length measure. Figure 2 displays the re-
lationship found between the complete message length
(parts 1la,1b,1c and 2) and “right” /“wrong” percent-

2The order in which these components are arranged in
the message need not necessarily be la, 1b, 1c.



age error. The distribution of trees over the message
length domain is also plotted. The message length
objective function has continuous values, and for this
reason the error is averaged over a number of intervals
of message length. Twenty equal intervals have been
used for the purpose of good visual comparison to the
node cardinality results in Figure 1, where the maxi-
mum cardinality was 20. A notable shift in the distri-
bution of trees from Figure 1 is seen when the message
length is applied in Figure 2. The correlation between
message length and percentage error does not follow a
smooth monotonic curve, although it certainly shows
a positive correlation as indicated by our least-squares
regression fit.
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Figure 2: Message Length vs. Prediction Error

The experiments conducted by Murphy and Pazzani
(Murphy and Pazzani 1994) consider only consistent
decision trees, for which we presume the following jus-
tification. Re-iterating Good’s definition of Ockham’s
Razor, given “two hypotheses H and H; explain the
facts equally, meaning P(E|H) = P(E|H;), then the
simpler of the two is to be preferred”, (Good 1968).
Taking this interpretation, the set of consistent deci-
sion trees is certainly a set for which Ockham’s Razor
applies, with P(E|H;) = P(E|H;) for all H; and H;
in the set, since P(E|H) =1 for all H in the set.

Bayes’s theorem suggests that if we have a set of hy-
potheses with constant likelihood, then the posterior
probability of a hypothesis, given some data, becomes
a simple multiple of its prior probability. In terms of
the message length of a hypothesis, this translates to
selecting the hypothesis with the shortest encoding or,
in other words, the hypothesis with the shortest “first
part” (1a,1b and 1c) of the MML message. In practice
however, this is not precisely the case. The definition
of a consistent decision tree requires that it have only
pure leaves, that is, the tree makes predictions over the
data with probabilities 1 and 0. In a simple example,
suppose we use one such consistent tree to construct

a Huffman code for the purpose of transmitting future
data. In this case, any incorrectly classified data would
require an infinite number of bits to be transmitted.
Clearly, 100% pure predictions should be made with
extreme care, if at all.

In practice, MML techniques make predictions on fu-
ture data with some probability greater than zero. If
we have n,, training data for class m then we predict
class m with probability, pm = (nm + 1) /(N + M/2),
where N and M are the number of training examples
and classes respectively (Wallace and Freeman 1987,
Wallace and Dowe 2000). It can be seen, that the only
time 100% pure predictions would be made is when an
infinite and pure training data set is available. As a
result, it is found that part 2 of the MML message, the
encoding of the data given the hypothesis, is not con-
stant across the space of consistent decision trees, but
is a function of the distribution of data in the leaves.
However, the contribution of part 2 on the complete
MML message is small and near constant.

The idea of judging a prediction based on its encod-
ing cost can be extended to the context of the current
problem. It can be strongly argued that the logarithm
of probability bit score provides a better discrimina-
tor of the performance of a hypothesis. In this case,
instead of using a percentage error, we score each hy-
potheses by giving it —log,(p) bits for each test data
item, where p is the probability with which the hy-
pothesis predicted the actual class of the data item
- see (Dowe et al. 1996) and its reference list for a
discussion. The nature of this measure suggests that
hypotheses with small bit cost are good predictors of
the data, so again strong support for Ockham’s Razor
would be indicated by a smooth monotonically increas-
ing plot. Figure 3 presents the previous results imple-
menting the logarithm of probability bit score in place
of the “right”/“wrong” predictive error. The results
found appear to be very similar to those found with the
“right” / “wrong” predictive error. When using consis-
tent trees, the leaf distributions are near Bernoulli with
p = 1, with this simple distribution the range of bit
scores is also simple usually only taking on values near
0 and 1.

The experimental results for the message length ob-
jective function in Figures 2 and 3 seem to give some
positive support for Ockham’s Razor, with a positive
correlation being seen in each case. However, there
are some characteristics of the results appearing con-
sistently, which do not allow for any conclusive claims
to be made about the validity of Ockham’s Razor. For
example, the results in Figures 2 and 3 display that at
some points along the message length axis, the average
performance (i.e. both “right” /“wrong” predictive ac-
curacy and the logarithm of probability of bit score)
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Figure 3: Message Length vs. Bit Score

drops to a value below that found for the shorter mes-
sage lengths. These results are open for the criticism
that Murphy and Pazzani discuss in their investigation
of the node cardinality objective function. This prob-
lem is most prominent for the average performance re-
sults for message lengths of greater than 80 bits, where
a continuous decrease in average performance is seen
for over five intervals of message length. It is believed
that these results many be dependent of the experi-
mental conditions, for which an indepth investigation
is made in the following section.

5 DISCUSSION OF RESULTS AND
LEARNING TASK

The message length objective function has been shown
to provide better support for Ockham’s Razor than the
previously suggested node cardinality objective func-
tion (Murphy and Pazzani 1994). However, this im-
provement has not been sufficient to provide undis-
puted evidence for the validity of our interpretation of
Ockham’s Razor. It could be argued that even though
the message length objective function was unable to
provide clear support for Ockham’s Razor in these ex-
periments, that in fact no objective function will per-
form well on the proposed learning task. As an alter-
native example to make this point clear, suppose that
we applied our objective function to the task of infer-
ring a hypothesis about some large sample of random
noise. Of course the results will provide no support for
Ockham’s Razor, but by no means could we argue that
this is evidence against Ockham’s Razor. The suspi-
cion that these poor results could be related to the
experimental conditions is investigated in this section.

In the experiments conducted involving message
length, it was found that for the trees of large mes-
sage length, the results were not in favor of Ockham’s

Razor. The relationship between message length and
the performance measures displayed a negative gra-
dient, suggesting that on average, trees of relatively
longer message length were better predictors of the
future data. This trend was seen consistently in the
results and seems to be a consequence of the small
training sets. Noting that the MML approximation of
the probability associated with a class is never zero,
the class probabilities for a binary leaf with one train-
ing data thing are 3/4 and 1/4. That is, the MML ap-
proximation of probability suggests that even though
there is no data supporting a class, there is insufficient
data to make a pure prediction. This not only reduces
the penalty for incorrectly classifying a test example,
but also reduces the encoding cost of the leaf distri-
bution. As a result it is found that large trees, with
many leaves containing one data example, are found to
make relaxed predictions and thus incur relaxed penal-
ties for incorrect classifications. This is not a problem
with the MML approximations as the choice not to
make pure predictions with one data example appears
reasonable. The problem appears to be related to the
insufficient sample sizes. Methods for creating larger
training data sets are investigated in the next section.

A second concern with the investigation was with the
choice to only investigate consistent decision trees.
This decision was made for the purpose of investigating
Good’s interpretation of Ockham’s Razor and to pro-
vide a comparative investigation with the work of Mur-
phy and Pazzani (Murphy and Pazzani 1994). How-
ever, it appears that this restriction is not necessary.
The argument made by Murphy and Pazzani for us-
ing consistent decision trees is that typically (Quinlan
1986, etc.) decision tree induction methods use con-
sistency as a stopping criterion. For many methods,
this is the case, although many induction techniques
(Wallace and Patrick 1993, Quinlan and Rivest 1989,
Uther and Veloso 2000) do not restrict their search
space to consistent trees. This leads to the extended
investigation, involving the complete space of decision
trees, taken on in the following section.

5.1 OCKHAM’S RAZOR; AN
ALTERNATIVE INTERPRETATION

Ockham’s Razor has been a debated topic for cen-
turies, with the debate extending to the disagreement
on the words that Ockham actually spoke. Clearly,
this makes constructing an interpretation of Ockham’s
Razor in the context of machine learning a difficult
task. Referring to its commonly accepted translation:
“plurality should not be assumed without necessity”,
we find that a clear mathematical interpretation is not
obvious. Ockham’s Razor seems to suggest that we
should prefer a simpler hypothesis while the benefit



of the reduced complexity is not outweighed by a de-
crease in the goodness of “fit” of the hypothesis. That
is, we prefer a simpler hypothesis while the combined
complexity of its description and the data given it, is
shorter than that of the current hypothesis. This new
interpretation of Ockham’s Razor is a generalization
of that given by Good (Good 1968), the interpreta-
tion is equivalent to Good’s in the case where the set
of hypotheses considered has constant likelihood. The
Minimum Message Length principle accesses this trade
off between the complexity of the hypothesis and the
likelihood of the hypothesis given some data. This is
achieved by comparing hypotheses using the two-part
encoding of the hypotheses and the data given the hy-
pothesis (refer Section 3). In this section, the perfor-
mance of this new interpretation will be investigated
through a series of experiments.

The major consequence of this new interpretation of
Ockham’s Razor on the experimental investigation is
that we are now concerned with the complete space of
decision trees, and not only those consistent with the
test data. Experimentation with the node cardinal-
ity objective function requires a set of decision trees
that have a constant likelihood given some data (e.g.
the set of consistent trees). This is because the node
cardinality objective function does not incorporate a
measure of the goodness of “fit” of a hypothesis. As
a result it will make no differentiation between two
trees with equal node cardinality even if one correctly
classifies all of the test data and the other does not
correctly classify a single example.

The practical investigation of this new interpretation
of Ockham’s Razor follows a similar path to that taken
in the previous section. Figure 4 displays the results
for experiments incorporating the complete space of
decision trees. The experiments are otherwise iden-
tical to those conducted in Section 4.2, with the data
having no noise or dummy variables. The results found
demonstrate a smoother relationship between the mes-
sage length and the performance measures. This is
most likely the result of the greatly increased number
of experimental points used to create the plots, as a
huge number of trees that are not consistent with the
data are now included in the averaged results. Never-
theless, these results do not provide clear support for
Ockham’s Razor. A clear drop in the predictive error
and bit score is seen for trees with message lengths of
around 65 bits, similar to that seen in the previous ex-
periments. Also, a trend of decreasing average predic-
tive error and bit score starting for trees with message
length of around 80 bits and continuing to the trees
of maximum message length is again seen. In the first
case we can offer little explanation for this evidence
against Ockham’s Razor. In the second case, as dis-
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Figure 4: Results With Complete Search Space

cussed in the previous section, we believe the trend to
be the result of the small size of the data set.

5.2 ALTERNATIVE TRAINING DATA
GENERATION ALGORITHM

As discussed in Section 5, it is felt that the size of the
training data set is not adequate for the leaf distri-
butions to make accurate predictions about the data.
In the previous section the complete space of decision
trees was introduced into the investigation. This sec-
tion extends these experiments by incorporating a new
training data generation algorithm.

It should be possible to use some arbitrary number
of training examples for the purpose of decision tree
inference. When training data is taken from a “real
world” data source, in many cases, the number of sam-
ples that can be attained is only constrained by the
time that is spend gathering the data. In contrast
to the current method for attaining training data, in
“real world” data samples it is expected that the data
examples may occur many times and with different
frequency. Also, the data is affected by the measure-
ment error found in the experimental equipment and



often the attributes relating to the data are not obvi-
ous. Using this “real world” model, a new method
for data generation is suggested where by an arbi-
trary number of training data examples can be cre-
ated. The method is given by the simple algorithm:

repeat until sufficient examples are created {

1. Randomly select a permutation of the attributes
to create a data thing.

2. Evaluate the class of the data thing and with
some probability assign a noisy class to the data thing.
3. Add the data thing to the training set.

}

When a data thing is affected by noise, the class asso-
ciated with its attribute vector is assigned randomly
without reference to the true value. This means that
as the probability of noise approaches 1 the data be-
comes completely random. A “dummy” variable is in-
corporated into the data by simply included it in the
attribute vector of each data thing and assigning it a
random value, thus it provides no information about
the true class of the data thing. In a “real world” learn-
ing task, the performance of the inferred hypotheses
is assessed by testing the hypotheses on future data
samples. When using an artificial learning task, the
hypotheses can be evaluated using the complete un-
corrupted data set. With this algorithm we do not
explicitly withhold a subset of the data set for testing,
although there is some probability proportional to the
size of the data set, that an example will be excluded.

Figure 5 displays the results found when a training
set of 200 examples is used with 0.3 probability of
noise and 1 dummy variable . In Section 2, it was
discussed that the ideal support for Ockham’s Razor
would consist of a smooth monotonically increasing
curve over the entire message length domain. This is
clearly demonstrated in Figure 5, which satisfies these
requirement to near perfection, in contrast to the pre-
vious results shown in Figure 4. Results of near this
quality are seen for data sets as small as 30 training
examples and for noise levels as high as 0.5 probability.

6 CONCLUSION

The focus of this paper has been primarily to provide a
response to the growing number of empirical investiga-
tions (Murphy and Pazzani 1994, Murphy 1995, Webb
1996,Domingos 1999) that have appeared to discredit
the Ockham’s Razor principle as a machine learning
objective function. In particular, we have focused on
the investigation taken on by Murphy and Pazzani
(Murphy and Pazzani 1994), who in their work pro-
pose node cardinality as an Ockham’s Razor objective
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Figure 5: Data With 0.3 Probability of Noise and 1
Dummy Variable

function for the induction of decision trees. We have
proposed that the node cardinality objective function
is a incomplete interpretation of Ockham’s Razor, and
that instead the MML message length is an effective
alternative in decision tree induction.

From the experiments conducted using the learn-
ing task proposed by Murphy and Pazzani (Murphy
and Pazzani 1994), it was shown that the message
length interpretation of Ockham’s Razor clearly out-
performed that of the node cardinality. The results,
however still did not provide undisputed evidence for
the Ockham’s Razor principle. We proposed a new in-
terpretation, which is closely related to the MML and
Bayesian interpretations of Ockham’s Razor: we pre-
fer a simpler hypothesis while the combined complex-
ity of its description and the data given it, is shorter
than that of the current hypothesis. With this in-
terpretation, the complete space of decision trees was
included in the investigation. Nevertheless, while the
experimental investigation of this new interpretation
yielded improved support for Ockham’s Razor, the ev-
idence was still inconclusive. A new means for creat-
ing training data is proposed that is based on a “real



world” model, which includes repeated data points,
noise and dummy variables. Experimentation with
this new data generation algorithm produced excep-
tional results with respect to the “right” /“wrong” pre-
diction error and logarithm of probability bit score.

In future work, it is hoped that the strong support
shown for Ockham’s Razor in the current investigation
can be extended to the investigation of other learning
tasks, and alternative hypothesis spaces. The inter-
pretation of Ockham’s Razor proposed by Murphy and
Pazzani appears rather similar to that of the Akaike
Information Criterion (Akaike 1973, Forster and Sober
1994) and may well lead to comparable results. At this
stage, very few empirical contradictions of Ockham’s
Razor have been proposed - however, they have been
sufficient to put the validity of Ockham’s Razor into
question. It is our belief that before any conclusions
can be reached over the validity of Ockham’s Razor
significantly more empirical experimentation will be
required. A theoretical proof of our interpretation of
Ockham’s Razor is currently unavailable, but many
well lie in the realms of complexity, information and
probability theory. While this investigation would ap-
pear to be the first explicit investigation of the message
length interpretation of Ockham’s Razor, the strength
of the MML inference techniques promise much poten-
tial for future work.
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