
Univariate Polynomial Inference by Monte Carlo
Message Length Approximation

Leigh J. Fitzgibbon leighf@csse.monash.edu.au

David L. Dowe dld@csse.monash.edu.au

Lloyd Allison lloyd@csse.monash.edu.au

School of Computer Science and Software Engineering, Monash University, Clayton, VIC 3800 Australia

Abstract

We apply the Message from Monte Carlo
(MMC) algorithm to inference of univariate
polynomials. MMC is an algorithm for point
estimation from a Bayesian posterior sam-
ple. It partitions the posterior sample into
sets of regions that contain similar models.
Each region has an associated message length
(given by Dowe’s MMLD approximation) and
a point estimate that is representative of
models in the region. The regions and point
estimates are chosen so that the Kullback-
Leibler distance between models in the region
and the associated point estimate is small
(using Wallace’s FSMML Boundary Rule).
We compare the MMC algorithm’s point esti-
mation performance with Minimum Message
Length [12] and Structural Risk Minimisa-
tion on a set of ten polynomial and non-
polynomial functions with Gaussian noise.
The orthonormal polynomial parameters are
sampled using reversible jump Markov chain
Monte Carlo methods.

1. Introduction

The Minimum Message Length (MML) principle is an
invariant Bayesian point estimation technique based
on information theory. The basic tenet of MML is that
the hypothesis (or model or distribution) which allows
for the briefest encoding of the data in a two-part mes-
sage is the best explanation of the data. This view of
inference as a coding process leads to discretisation of
the hypothesis space and a message length, which gives
an objective means to compare hypotheses. The mes-
sage length is a quantification of the trade-off between
model complexity and goodness of fit that was first
described by [10]. Since their seminal paper various
approximations and derivations have appeared under

the veil of Minimum Message Length (MML) [12, 11]
or Minimum Description Length (MDL) [6].

MML87 [12] has recently been applied to the problem
of model selection in univariate polynomial regression
with normally distributed noise by [8]. It was com-
pared against Generalised Cross-Validation (GCV),
Finite Prediction Error (FPE), Schwartz’s Criterion
(SCH), and VC Dimension and Structural Risk Min-
imisation (SRM) [7] over a set of polynomial and non-
polynomial target functions, and for a range of noise
levels. The criterion used to judge the performance
of the different methods was Squared Prediction Er-
ror (SPE). In their results, the MML method had the
smallest average SPE of all the methods for all target
functions and noise levels. SRM was close behind. The
other methods - GCV, FPE and SCH - had squared
prediction error in the order of 100 times that of MML
and SRM.

The Message from Monte Carlo (MMC) algorithm has
been recently described in [1]. It uses the posterior
as an importance sampling density to implicitly define
uncertainty regions, for which message lengths can be
approximated using Monte Carlo methods. Here, we
apply MMC to univariate polynomial regression using
discrete orthonormal polynomials and compare it with
the two best contenders from [8]: MML87 and SRM.

The MMC algorithm, Dowe’s MMLD approximation
and Wallace’s FSMML Boundary Rule are given in
Section 2. The polynomial model and Bayesian pri-
ors are given in Section 3. A reversible jump Markov
chain Monte Carlo algorithm for sampling polynomials
is described in Section 4. Experimental evaluation is
contained in Section 5 and the conclusion in Section 6.

2. Message from Monte Carlo (MMC)

In this section we describe the Message from Monte
Carlo (MMC) algorithm. Many of the mathematical

results for this algorithm are omitted due to space;
see [1] for more information. The algorithm approxi-
mates the length of an optimal two-part message that
would, in principle, allow for the transmission of some
observed data over a noiseless coding channel. The
first part of the message contains a code-word that
represents a model and the second part of the message
contains the data encoded using the stated model.

We use a Bayesian setting where the sender and re-
ceiver agree on a prior distribution h(θ) and likelihood
function f(x|θ) over the parameter space, Θ, and data
space, X. We use the same notation for a vector of
values as we do for a single value (i.e. θ and x can
be vector values). When we talk about regions, or
uncertainty regions, of the parameter space, we mean
arbitrary sets of elements from the parameter space
(i.e., R ⊆ Θ). The parameter space can be a union of
subspaces of different dimension.

The MMC algorithm uses Dowe’s MMLD message
length approximation - described in [5] - to calculate
message lengths. For some arbitrary set of models
from the parameter space, R, MMLD approximates
the length of the first part of the message as the nega-
tive log integral of the prior over R, and the length of
the second part as the expected value (with respect to
the prior), over R, of the negative log-likelihood. This
gives rise to an MMLD message length of

− log
(∫

R

h(θ) dθ
)
−
∫
R
h(θ) · log f(x|θ) dθ∫

R
h(θ) dθ

(1)

The objective of the MMC algorithm is to find the re-
gion, R, of the parameter space which minimises the
MMLD message length expression. To do so, we need
to be able to compute the necessary integrals in Equa-
tion 1 accurately and efficiently over a possibly high-
dimensional space. The MMC solution is based on
posterior sampling and Monte Carlo integration.

The optimal region of the parameter space will consist
of models with high posterior probability. We there-
fore draw a sample S = {θt : t = 1, ..., N} from the
posterior distribution of the parameters θ using the
appropriate sampler for some N . The sample can con-
tain models of variable dimension.

The uncertainty region, R, can be implicitly defined
by choosing a subset of the sample, Q ⊆ S, where
we consider Q to be a subset of the true (explicit) re-
gion, R ⊇ Q. Q is a finite set and we can therefore
approximate the terms in the MMLD message length
equation (Equation 1) using Monte Carlo integration.
These terms require a sample from the prior distribu-

tion of the parameters. For example, the expectation
in the second part uses the prior, and the integral in
the first part can be approximated by the proportion of
the sample that falls within the uncertainty region, Q.
However, we are sampling from the posterior because
we expect the optimal uncertainty region to consist
of models with high posterior probability. We use the
posterior as an importance sampling density [2] and we
weight the sample so that it is distributed as if being
generated from the prior.

Converting the MMLD message length expression into
its equivalent (unnormalised) probability (by taking
e−MessLen of Equation 1) we get

(∫
R

h(θ) dθ
)
×
∏
θ∈R

f(x|θ)
h(θ)∫

R h(θ′) dθ′ (2)

It can be seen that the region that minimises the
MMLD message length is the region that maximises
the product of the integral of the prior probability of
models in the region and the weighted geometric mean
of the likelihood (weighted by the prior). As the sam-
ple size increases, the uncertainty region will typically
become smaller and converge to the posterior mode
(MAP) estimate. So, while we wish to compute ex-
pectations over the uncertainty region weighted by the
prior, we know that the uncertainty region will contain
models with high posterior probability. For this rea-
son, importance sampling will allow us to evaluate the
sums in Equations 3 and 4, even for large amounts
of observed data and where the likelihood function is
very concentrated. Or, to put it another way, when
the importance sampling density is very concentrated,
it is concentrated in the area where we wish to do the
Monte Carlo integration.

We expect (but do not require) that the prior will in-
tegrate to unity. Therefore, the length of the first part
of the MMLD message can be approximated by the
negative logarithm of the proportion of the weighted
sample that falls within the region

MMC 1st part length = − log(

∑
θ∈Q f(x|θ)−1∑
θ∈S f(x|θ)−1

) (3)

The length of the second part of the MMLD message
is the expected value of − log f(x|θ) over the region,
R, with respect to the prior h(θ). This can be ap-
proximated using a Monte Carlo integration using the
elements of the (weighted) sample that fall within the

region, Q

MMC 2nd part length =

∑
θ∈Q

− log f(x|θ)
f(x|θ)∑

θ∈Q f(x|θ)−1
(4)

The total MMC message length is the sum of Equa-
tions 3 and 4.

Attempting to minimise the MMLD equation analyti-
cally (Equation 1) yields the following MMLD ‘Bound-
ary Rule’ (e.g., see [5])

− log f(x|θ)
∣∣∣
θ∈∂R

= 1−
∫
R
h(θ) log f(x|θ) dθ∫

R
h(θ) dθ

(5)

where the boundary, ∂R, of R, is an iso-likelihood con-
tour of f . In other words, the values of f(x|θ) and of
log f(x|θ) are constant on ∂R. The MMLD Bound-
ary Rule states that for the region which minimises
the message length, the negative log-likelihood at the
boundary of R is equal to one plus the expected neg-
ative log-likelihood over the region weighted by the
prior.

An iso-likelihood contour is defined by a single
continuous parameter representing the log-likelihood
of models on the boundary of the region, b =
− log f(x|θ)

∣∣∣
θ∈∂R

. The Monte Carlo integrations of

the message length terms are a discrete function of
the boundary. It is therefore sufficient to consider that
one or more of the models in the sample, S, lie on the
boundary.

The number of possible iso-likelihood contours in the
sample is equal to the number of distinct values of the
likelihood that appear in the sample. If we sort the
sample into descending order of likelihood - starting
at the maximum - then an iso-likelihood contour is
given by a boundary index into the sample vector. For
example, let i denote a boundary index into the sample
vector. This means that θi is on the iso-likelihood
boundary, θi ∈ ∂R, and the corresponding uncertainty
region is

Q = {θ : θ ∈ S,− log f(x|θ) ≤ − log f(x|θi)}
= {θ0, θ1, ..., θi}

since the sample has been ordered (i.e. − log f(x|θj) ≤
− log f(x|θj+1)).

The MMLD Boundary Rule (Equation 5) states that
the negative log-likelihood of models on the bound-
ary of the region is equal to the prior-weighted aver-
age negative log-likelihood of models in the region plus
one. Therefore, by Monte Carlo integration using the
elements of the (importance weighted) sample that fall
into Q, the rule becomes

θ ∈ Q iff − log f(x|θ) ≤
∑
θ∈Q

− log f(x|θ)
f(x|θ)∑

θ∈Q f(x|θ)−1
+ 1 (6)

In order to find the optimal boundary index, we start
with the maximum likelihood model and continue
to increase the boundary index while the boundary
model’s negative log-likelihood is less than one plus
the average over the region. In other words, we start
with Q = {θ0}, and end up with Q = {θ0, θ1, θ2, ..., θj}
where − log f(x|θj+1) is greater than the average neg-
ative log-likelihood over θ0, ..., θj plus one.

This will give us an implicit region that minimises the
MMLD message length. However, use of this method
will build regions that do not approximate efficient
code-book entries because the region will be (wholly)
determined by the likelihood of the observed data
(which the receiver does not know) and will (generally)
be unsuitable for encoding future data. In order to ap-
proximate a decodeable, efficient code-book we must
ensure that the region consists of models with simi-
lar distributions. To do so, we use Wallace’s FSMML
Boundary Rule [9][Chapter 4]

θ ∈ Q iff KL(θ, θ̂) ≤
∑
θ∈Q

KL(θ,θ̂)
f(x|θ)∑

θ∈Q f(x|θ)−1
+ 1 (7)

where θ̂ is the point estimate for the region, and
KL(θ, θ̂) is the Kullback-Leibler distance of θ̂ from
θ. How can the FSMML Boundary Rule’s dependence
on the point estimate, θ, be resolved and the rule used
efficiently? The approach that we take is to begin with
the maximum likelihood estimate, and as we add new
members to the region, we allow them to compete for
the right to become the point estimate of the region.
If the new member is able to encode the data that can
arise from the models in the region more efficiently, on
average, than any other member of the region, then it
wins the right to be the point estimate. The estimate
therefore converges as the uncertainty region grows.

We can now describe the MMC algorithm in full. We
draw a sample {θt : t = 1, ..., N} from the posterior
distribution of the parameters θ using the appropriate

sampler for some N . The sample can contain models
of variable dimension. First, the sample is ordered in
descending order of likelihood. We now allocate space
for a boolean array that indicates whether an element
of the sample has been allocated to a region. Each ele-
ment of the allocated array gets initialised to false. We
begin the iteration by finding the unallocated model
of maximum likelihood. Since the sample has been
sorted, this is simply the first unallocated element of
the sample. Denote this by θi. We begin to grow the
first region by starting with θi and then initialise the
estimate for the region, θ̂, to θi. We also initialise vari-
ables to calculate the necessary sums in the MMC mes-
sage length equation (Equations 3 and 4). We continue
to increment the pointer, i, until we find the boundary
b (i.e. until the MMLD Boundary Rule fails). For each
value of i we also check that the model θi fulfils the
FSMML Boundary Rule. If it does, then we flag it as
being allocated to the region. We next consider it as a
candidate for the point estimate. If the prior-weighted
expected Kullback-Leibler distance between the mod-
els in the region and this candidate is less than the
equivalent for the currently reigning estimate then the
candidate becomes the point estimate.

Each time we increment the pointer, we update the
length of the first part of the message, the average
over the region (Length of MMC 2nd Part) and the
expected Kullback-Leibler distance in constant time.
Once the MMLD Boundary Rule is violated, we re-
consider all unallocated models to the left (i.e. < i)
since the estimate may have changed and some models
that now deserve to be in the region may have previ-
ously been rejected on the first pass. After this second
pass, we store all of the results and begin growing a
new region using the first unallocated element of the
sample (the model of maximum likelihood). This is
repeated until all elements of the sample have been
assigned to a region. Pseudo-code for the algorithm is
given as Algorithm 1.

The MMC algorithm returns a set of regions with as-
sociated point estimates and message lengths. If the
objective is to select a single model, then the point
estimate from the region with the minimum message
length is chosen. If the objective is to compute the
average of some quantity of interest under the poste-
rior, then Bayesian Model Averaging can be performed
at reduced computational cost using the set of point
estimates weighted using their message lengths.

The algorithm is computationally feasible because,
when attempting to build the region associated with
θ̂, the potential candidates for the region must pass
the MMLD Boundary Rule. Therefore, the number of

Algorithm 1 Pseudo-code for the Message from Monte
Carlo (MMC) algorithm

sample from the posterior S = {θt : t = 1, ..., N}
sort the sample such that f(x|θt) ≥ f(x|θt+1)
allocate space for the boolean ‘allocated’ array
initialise all elements of allocated to false
while unallocated elements remain
ml ← 0
while (ml < N and allocated[ml]) ml ← ml + 1
allocated[ml] ← true

θ̂ ← θml
1st length ← − ln f(x|θml)−1∑

θ∈S f(x|θ)−1

2nd num ← −f(x|θml)−1 ln f(x|θml)
2nd denom ← f(x|θml)−1

2nd length ← 2nd num / 2nd denom
ekl num ← 0
ekl denom ← f(x|θml)−1

ekl ← ekl num / ekl denom
Q ← {θml}
i ← ml + 1
while (i < N and allocated[i]) i ← i+ 1
while (i < N)

if (− ln f(x|θi) > 2nd length + 1) break

if (KL(θi, θ̂) ≤ ekl + 1) then
allocated[i] ← true

1st length ← − ln
(
e−1st length + f(x|θi)−1∑

θ∈S f(x|θ)−1

)
2nd num ← 2nd num −f(x|θi)−1 ln f(x|θi)
2nd denom ← 2nd denom + f(x|θi)−1

2nd length ← 2nd num / 2nd denom
Q ← Q ∪ {θi}
if (

∑
θ∈QKL(θ,θi)f(x|θ)−1∑

θ∈Q f(x|θ)−1 < ekl) then

θ̂ ← θi
ekl num ←

∑
θ∈QKL(θ, θi)f(x|θ)−1

else
ekl num ← ekl num + KL(θi, θ̂)f(x|θi)−1

end
ekl denom ← ekl denom + f(x|θi)−1

ekl ← ekl num / ekl denom
end
i ← i+ 1
while (i < N and allocated[i]) i ← i+ 1

end
store results for region Q

end

end

candidates presented to the FSMML Boundary Rule
is considerably reduced.

When a candidate model is accepted as a member of
the region, we compute the expected Kullback-Leibler
distance between the existing members of the region
and the candidate. This would appear to be an expen-
sive step. However, this sum need only be carried out
while it (the partial sum) is less than the expected
Kullback-Leibler distance to the current point esti-

mate. The importance weighting gives the Kullback-
Leibler distance between models with small likelihoods
more weight, so the sum should be performed in as-
cending order of likelihood so that it (the partial sum)
is likely to exceed the current EKL sooner. This strat-
egy was found to yield an efficient algorithm in our
experiments.

All that the MMC algorithm requires to operate is
a sample from the posterior distribution and a func-
tion for computing the Kullback-Leibler distance. It
can therefore be viewed as a posterior sampling post-
processing algorithm. Markov Chain Monte Carlo
(MCMC) [3] methods can be used to do the sampling.

3. Polynomial Model

We now describe the polynomial model and priors that
we use in the experimental evaluation. The likelihood
function for the n observations (yi, xi) : i = 1..n is

f(y|a0, ...ad, σ, x) =
1

(2πσ2)n/2
e
−1
2σ2 SE (8)

where SE =
n∑
i=1

(
yi −

d∑
k=0

akφk(xi)

)2

(9)

The basis functions, φ’s, are orthogonal with respect to
the data: ∀j 6=k

∑n
i=1 φj(xi)φk(xi) = 0 and normalised

to unity ∀j
∑n
i=1 φj(xi)φj(xi) = 1 (i.e. generalised

Fourier series).

We use two different priors on the generalised Fourier
series coefficients (a0, ..., ad). Prior 1 is the same prior
that [8] used - an (independent) Gaussian prior on each
coefficient

h1(a0, ..., ad) =
d∏
k=0

1√
2πu

e−
a2
k

2u2 (10)

where u =

√√√√ d∑
k=0

y2
k/(d+ 2) (11)

The prior reflects the belief that we expect each of the
coefficients and noise to (roughly) contribute to the
observed variance of the yi values equally. We note
that [8] use the same prior, and that the difference be-
tween their u and our u arises because they normalise
the average inner-product of their basis functions.

The second prior that we use on the coefficients is a

uniform additive prior

h2(a0, ..., ad) =
d∏
i=0

1
4ui

(12)

where ui =

√√√√ n∑
k=1

y2
k −

∑
j<i

a2
j (13)

This reflects the belief that a coefficient could ‘explain’
the variance that lower order coefficients have not, and
that there is no preference for a specific value over the
range [−2ui, 2ui].

We use a diffuse inverted gamma prior on σ (for con-
jugacy): IGamma(0.0001, 0.0001), and a geometric
prior on the order of the model: Geometric(0.9).

4. Polynomial Sampler

To sample from the posterior we use Green’s reversible
jump MCMC methodology [4].

Let kmax denote the upper bound on the order of the
polynomials under consideration. The sampler con-
sists of three types of moves: birth to a higher di-
mension, death to a lower dimension and move in
the current dimension. We find that the sampler
mixes better when allowed to jump more than one
order when a birth or death dimension change move
is made. So when a birth move is performed on
a k-order model, the new order is generated from
a Geometric(0.5) distribution which has been nor-
malised over {k + 1, ..., kmax}. This is mirrored for
the death step over the interval {k − 1, ..., 0}.

For each sweep of the sampler we randomly choose
between the kmax + 1 move types: M = {0, ..., kmax},
where m = k denotes the move step (no dimension
change), and m 6= k denotes a jump to an m’th order
polynomial. We denote the probability of each move
conditional on k (the order of the last polynomial in
the chain) as p(m|k). The probabilities of birth, death
and move are denoted by b, d, and ν = 1.0 − b −
d respectively and are independent of k and chosen
by the practitioner1. Therefore p(m|k) satisfies2 the
following:

∑
m>k p(m|k) = b,

∑
m<k p(m|k) = d, and

p(m|k) = 1.0 − b − d for m = k. We now detail the
samplers for each of the three move types.

1In our experiments we use b = 0.2 and d = 0.2.
2Except in the extreme cases where k = 0 (d is taken

as zero) or k = kmax (b is taken as zero).

4.1 Move step

For the move step the new values for the coefficients
and σ are generated by Gibbs sampling. In describing
the full conditional for coefficients we use the notation
a−z to represent the set of all coefficients except az
(i.e. a−z = {ai : 0 ≤ i ≤ d and i 6= z}).

The full conditional distribution for coefficient az using
Prior 1 (Equation 10) is

p(az|a−z, σ, y, x) ∝ e−
σ2+u2

2σ2u2 (a2
z−

u2 ∑n
i=1 yiφz(xi)

σ2+u2)2

(14)

az is normally distributed with mean µ′ =
u2∑n

i=1 yiφz(xi)

u2+σ2 and standard deviation σ′ =
√

u2σ2

u2+σ2 .

The full conditional distribution for coefficient az over
the range [−2uz, 2uz] using Prior 2 (Equation 12) is

p(az|a−z, σ, y, x) ∝ e−
1

2σ2 (∑n
i=1 yiφz(xi)−az)2

(15)

az is normally distributed with mean µ′ =∑n
i=1 yiφz(xi) and standard deviation σ′ = σ.

The full conditional distribution for σ is

p(σ|a0, ..., ad, y, x) ∝ 1
σ2α+n+1

e
−1
σ2 (β+ 1

2SE) (16)

which is an inverted gamma distribution with param-
eters: α′ = α+ n

2 and β′ = β + 1
2SE.

4.2 Birth and Death steps

The birth and death steps require dimension matching.
If we jump from a k’th order polynomial to an m’th
order polynomial then the new coefficients are sam-
pled using Gibbs sampling. To create the necessary
bijection between the two spaces we generate m − k
variables from an N(0, 1) distribution.

(a0, ..., ad, η1, ..., ηm−k, σ) < − > (a′0, ..., a
′
m, σ

′) (17)

Using Green’s notation the acceptance probability of
the move is

min(1, (likelihood)×(prior)×(proposal)×(Jacobian))
(18)

Algorithm 2 Polynomial Sampler Algorithm

build the table of move probabilities for p(m|k)
k ← 0
while (sample size < N)

generate a move, m, from p(m|k)
if (m > k) then

perform the birth step
else if (m < k) then

perform the death step
else

perform the move step
end
draw σ using a Gibbs step
k ← m

end

end

The proposal ratio is the same for both Prior 1 and 2

proposal ratio =
p(m|k)

p(k|m)
∏m−k
j=1

1√
2π
e−

η2
j
2

(19)

The Jacobian for Prior 1 is

∣∣∣∣ ∂(a′0, ..., a
′
m, σ

′)
∂(a0, ..., ad, η1, ..., ηm−k, σ)

∣∣∣∣ =
(

u2σ2

u2 + σ2

)m−k
2

(20)

and the Jacobian for Prior 2 is

∣∣∣∣ ∂(a′0, ..., a
′
m, σ

′)
∂(a0, ..., ad, η1, ..., ηm−k, σ)

∣∣∣∣ = σm−k (21)

The acceptance probability for the death step is the
inverse of the acceptance probability for the birth step.

The sampler begins with a zero order least squares
model. The algorithm (k is the order of the last poly-
nomial in the chain) is given in Algorithm 2.

The MMC algorithm needs to be able to compute the
Kullback-Leibler (KL) distance between two models
to build the regions. Since each yi is independent,
the KL distance for a polynomial model is the sum of
Gaussian KL distances taken at each known xi. Given
the true model T = (a0, ..., ad, σ) and inferred model
I = (â0, ..., âd̂, σ̂), the (analytical) KL distance simpli-
fies to

n log
σ̂

σ
− n

2
(1− σ2

σ̂2
) +

1
2σ̂2

max(d,d̂)∑
j=0

(aj − âj)2 (22)

where ∀i>d ai = 0 and ∀i>d̂ âi = 0. The KL dis-
tance for generalised Fourier series can be computed
in O(max(d, d̂)) time.

Figure 1. MMC fit for data generated from the low-order
polynomial (quintic) with n = 10 and σ = 1

Figure 2. MMC fit for data generated from the low-order
polynomial (quintic) with n = 20 and σ = 1

Figure 3. MMC fit for data generated from the low-order
polynomial (quintic) with n = 40 and σ = 1

Some example analyses using the MMC algorithm are
shown in Figures 1 to 3. The graphs show the gen-
erated data3 as crosses and the fitted function with
the estimated noise represented at plus and minus one
standard deviation. For this simple example we in-
creased the number of data points, n, from 10 to 20 to
40. We see that MMC is able to choose a model whose
complexity is suitable for the given data.

3f = 9.72x5 +0.801x3 +0.4x2−5.72x−136.45+N(0, 1)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Constant

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Linear

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1
Quadratic

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Cubic

−1 −0.5 0 0.5 1

−135

−130

−125

Low−order Poly (Quintic)

−1 −0.5 0 0.5 1

−24

−22

−20

−18

−16
High−order Poly

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

SIN

−1 −0.5 0 0.5 1

−4

−3

−2

−1

0

LOG

−1 −0.5 0 0.5 1

0

0.5

1
FABS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
DISC

Figure 4. Target functions

5. Experimental Evaluation

We compare the MMC method with two other in-
ference methods on a set of polynomial and non-
polynomial target functions. We use the same tar-
get functions as [8] and also include some low order
polynomials. The target functions are illustrated in
Figure 4. Each method is given noisy data generated
from the known target function, and is required to in-
fer a single polynomial up to order 20. We use the
Squared Prediction Error (SPE) criterion to measure
the performance of the methods.

The following methods are included in the evaluation:
MMC using Prior 1 (MMC-1); MMC using Prior 2
(MMC-2); Minimum Message Length (MML87) [8];
and Structural Risk Minimization (SRM) [7]. For the
MMC methods we sample 3000 polynomials from the
posterior, the first 500 being discarded as burn-in.

The experiment consisted of 1000 trials for n = 10 and
n = 100, and for high and low noise values. High noise
is defined as a Signal to Noise Ratio (SNR) of 0.78125
where the SNR is defined as the second moment of the

MMC−1 MMC−2 MML87 SRM

−12

−10

−8

−6

−4

−2

LOW NOISE (SNR=100,sigma=0.045)
LO

G
(S

P
E

)

MMC−1 MMC−2 MML87 SRM

−6

−5

−4

−3

−2

−1

0

1

2

HIGH NOISE (SNR=0.78125,sigma=0.51)

LO
G

(S
P

E
)

Figure 5. Comparison of Methods on the Quadratic Func-
tion (n=10): f(x) = x2 +N(0, σ2)

function about zero divided by the noise. Low noise is
defined as an SNR of 100. Due to the number of re-
sults, they could not all be included (see [1] for more).
A subset of the results are displayed in a boxplot (Fig-
ure 5). The boxplot is of the natural logarithm of the
SPE, because the log-SPE data looked to be normally
distributed upon inspection. Each box shows the lower
quartile, median and upper quartile.

The subset of results presented was chosen because it
is representative of the majority of the omitted results.
The MMC method was found to have lower SPE medi-
ans, and better inter-quartile ranges, on average, than
MML87 and SRM. The MMC results where almost
identical for the two priors used. We note that our re-
sults may be interpreted differently to those presented
in [8] because they plot the average SPE, for which
MML87 outperforms SRM.

6. Conclusion

We have applied the Message from Monte Carlo
(MMC) inference method (using the MMLD approx-
imation and FSMML Boundary Rules) to univariate
polynomial model selection. The MMC method was
compared with Structural Risk Minimisation (SRM)
and Minimum Message Length (MML87) and was
found to have the lowest median Squared Prediction
Error (SPE) (on average) for data generated from a
range of polynomial and non-polynomial target func-
tions. The MMC algorithm is flexible, only requiring a
sample from the posterior distribution and a means of
calculating the Kullback-Leibler distance. This gener-
ality allows it to be easily applied to new and difficult

problems.

References

[1] L. J. Fitzgibbon, D. L. Dowe, and L. Allison. Mes-
sage from Monte Carlo. Technical Report 107,
School of Computer Science and Software En-
gineering, Monash University, Clayton, Victoria
3800, Australia, 2002.

[2] J. Geweke. Bayesian inference in econometric
models using Monte Carlo integration. Econo-
metrica, 57(6):1317–1339, Nov. 1989.

[3] W. R. Gilks, S. Richardson, and D. J. Spiegel-
halter. Markov chain Monte Carlo in practice.
Chapman-Hall, London, 1996.

[4] P. J. Green. Reversible jump Markov chain Monte
Carlo computation and Bayesian model determi-
nation. Biometrika, 82:711–732, 1995.

[5] E. Lam. Improved approximations in MML. Hon-
ours thesis, Monash University, School of Com-
puter Science and Software Engineering, Monash
University, Clayton, Australia, 2000.

[6] J. J. Rissanen. Hypothesis selection and test-
ing by the MDL principle. Computer Journal,
42(4):260–269, 1999.

[7] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, New York, 1995.

[8] M. Viswanathan and C. S. Wallace. A note
on the comparison of polynomial selection meth-
ods. In Proceedings of the Seventh International
Workshop on Artificial Intelligence and Statistics,
pages 169–177. Morgan Kauffman, January 1999.

[9] C. S. Wallace. PAKDD-98 Tutorial: Data Min-
ing. Monash University, Australia (Book in prepa-
ration), 1998.

[10] C. S. Wallace and D. M. Boulton. An informa-
tion measure for classification. Computer Journal,
11(2):185–194, August 1968.

[11] C. S. Wallace and D. L. Dowe. Minimum mes-
sage length and Kolmogorov complexity. Com-
puter Journal, 42(4):270–283, 1999.

[12] C. S. Wallace and P. R. Freeman. Estimation and
inference by compact encoding (with discussion).
Journal of the Royal Statistical Society. Series B
(Methodological), 49:240–265, 1987.

