MML Inference of Decision Graphs with
Multi-Way Joins

Peter J. Tan and David L. Dowe

School of Computer Science and Software Engineering, Monash University,
Clayton, Vic 3800, Australia

{ptan, dld}@bruce.csse.monash.edu.au

Abstract. A decision tree is a comprehensible representation that has
been widely used in many machine learning domains. But in the area of
supervised learning, decision trees have their limitations. Two notable
problems are those of replication and fragmentation. One way of solv-
ing these problems is to introduce decision graphs, a generalization of
the decision tree, which address the above problems by allowing for dis-
junctions, or joins. While various decision graph systems are available,
all of these systems impose some forms of restriction on the proposed
representations, often leading to either a new redundancy or the original
redundancy not being removed. In this paper, we propose an unrestricted
representation called the decision graph with multi-way joins, which has
improved representative power and is able to use training data efficiently.
An algorithm to infer these decision graphs with multi-way joins using
the Minimum Message Length (MML) principle is also introduced. On
both real-world and artificial data with only discrete attributes (includ-
ing at least five UCI data-sets), and in terms of both “right” /“wrong”
classification accuracy and I.J. Good’s logarithm of probability “bit-
costing” predictive accuracy, our novel multi-way join decision graph
program significantly out-performs both C4.5 and C5.0. Our program
also out-performs the Oliver and Wallace binary join decision graph pro-
gram on the only data-set available for comparison.

Key words:
Machine learning, decision trees, decision graphs, supervised learning, prob-
abilistic prediction, minimum message length, MML, MDL

1 Introduction

In spite of the success of decision tree systems in supervised classification learn-
ing, the search for a confirmed improvement of decision trees has remained a
continuing topic in the machine learning literature. Two well-known problems
from which the decision tree representation suffers have provided incentives for
such efforts. The first one is the replication problem which leads to the dupli-
cation of subtrees in disjunctive concepts. For example, a decision tree in which

the term (C A D) requires two subtrees to be represented gives an inefficient rep-
resentation of the proposition (A A B) V (C A D). The effect of the replication
problem is that many decision tree learning algorithms require an unnecessarily
large amount of data to learn disjunctive functions.

The second problem is the fragmentation problem, which occurs when the
data contains attributes with more than 2 values. When decision nodes in a tree
are split on high arity attributes (say arity > 10), it will quickly fragment the
data into many partitions with relatively little data.

Both of these problems increase the size of decision trees and reduce the
number of instances in the individual nodes. One way of resolving these problems,
particularly when the number of instances in nodes are crucial for inferring the
underlying concept, is to use decision graphs to provide an elegant, generalizing
solution. Decision graphs can be viewed as generalizations of decision trees and
both decision trees and decision graphs have decision nodes and leaves. The
feature that distinguishes decision graphs from decision trees is that they may
also contain joins (or disjunctions), which are represented by two nodes having a
common child. This representation specifies that two subsets have some common
properties, and hence can be considered as one subset. As shown on the right
hand side of Figure 1, by merging duplicated subtrees with a join operator, the
repeated subtrees - from the left hand side of Figure 1 - representing the term
(C A D) are united into one subtree.

Fig. 1. Decision tree and Decision graph representations for (A A B) vV (C A D)

One attempt as generalizing decision trees was proposed by Mehta et al. [9].
As a refined decision tree system, it allowed multi-way joins but restricted these
joins to nodes which have common parents. This improvement does, however,
not help with decision tree replication problems such as that of Figure 1.

More recently, Mansour and McAllester [8] introduced a decision graph rep-
resentation called the branch program. In their system, where decision trees were
viewed as a form of boosting, the use of a boosting algorithm guaranteed that the

training error declines as Z_ﬁ\/m, where |T'| is the size of the decision tree and 3
is a constant determined by the weak learning hypothesis. Compared to decision
trees, whose training error declines as |T'|~?, the branch program showed some
promising theoretical results. However, the analysis of the generalization error
of the branch program remained open, and thus no comparison with other sys-
tems could be made. Together with some earlier works [10,11,7,9], the branch
program certainly indicated that decision graphs was a reasonable approach.

The HOODG system, introduced by Kohavi [7], used an Oblivious Read-
Once Decision Graph (OODG). OODG was closely related to Order Binary De-
cision Diagrams(OBDDs). In the HOODG system, variables had to be strictly
ordered and decision graphs were generated so that the graph would only test
the variables in the specific order. But because the system insisted on a canon-
ical representation, nodes with irrelevant attributes have to be included in the
inferred graphs. Kohavi [7] reported significant improvement over decision tree
algorithms such as C4.5 and ID3 [13] on artificial data sets generated from dis-
junctive functions, but the system achieved less success on real-world data sets.
The system also did not adequately address noise in data.

Oliver and Wallace’s system [10-12] used decision graphs that allowed joins
with a pair of nodes. They also presented a MML inference coding scheme and
a graph growing algorithm for the system. Our decision graph system builds
on the Oliver and Wallace system but eliminates their limitation by allowing
for multi-way joins. In this way, our scheme not only generalizes the Oliver-
Wallace binary join decision graph but also generalizes the scheme of Mehta
et al. [9], which only allowed joins of nodes which have common parents. For
a detailed comparison between our multi-way join scheme and the Oliver and
Wallace binary join scheme, see section 3.3.

2 Decision Graphs with Multi-way Joins

In this paper, we propose a decision graph system which allows multi-way joins.
We use directed acyclic graphs in our system as in both the Oliver and Wallace
system [12,11] and the Kohavi system [7]. In addition to decision nodes and
leaf nodes, we introduce join nodes which are merged to have a common child.
Join nodes are represented by a lozenge shape in the figures. Although we may
represent a join by directly attaching arcs from decision nodes to a child, we have
explicitly included them in the figures to clarify our coding scheme. The main
idea behind our new decision graph representation is that a decision graph can
be decomposed into a sequence of several decision trees. By doing this, we are
able to re-use some well-proved decision tree inductive techniques in our system.
The details of our algorithm are discussed in section 3.2. Figure 2 illustrates an
example of how a decision graph can be decomposed into a sequence of decision
trees.

3 MML inference of Decision Graphs
3.1 Bayesianism and MML

The Minimum Message Length (MML) Principle [16, 19, 17] provides a guide for

inferring the best model given a set of data. If a set of data is to be transmitted,

it can either be transmitted directly (as it is); or alternatively a theory can be

inferred from the data, then the set of data is transmitted with the help of the

theory. Thus, the transmitted message is composed of the following two parts:
I. the description of the theory, or hypothesis, H

%QB O

Decision Tree #1 Joining pattern #1

The Original Decision Graph

!
— o~ A

Dedision Tree #3 Joining pattern #2 Decision Tree #2

Fig. 2. Decomposing a decision graph into a sequences of decision trees

II. the data, D, explained with help of the theory

From Bayes’s rule, we know that Pr(D)Pr(H|D) = Pr(H&D) = Pr(H)Pr(D|H)

So Pr(H|D) =FrHFIDID (1),

where Pr(H&D) is joint probability of D and H, Pr(H) is the prior probability
of the hypothesis H, Pr(D) is the marginal probability of the data D, Pr(D|H)
is the likelihood function of D given H and Pr(H|D) is the posterior probability
of H given observed data D. From (1), we get that

-log Pr(H|D) = - log Pr(D|H) - log Pr(H) + log Pr(D)

To maximize Pr(H|D) is equivalent to minimizing -log Pr(H|D). Because log
Pr(D) is a constant, we can ignore it and seek a minimum of - log P(D|H) -
log P(H). Thus the hypothesis with the minimum two-part message length can
be said to be the model of best fit for the given data. For details of the MML
Principle, see [16,19,17,12]. For a comparison between MML and Minimum
Description Length (MDL) [15], see, e.g., [17] and other articles in that 1999
special issue of the Computer Journal.

3.2 Coding Decision Graphs with Multi-way Joins

Much effort has been put into the development of tree-based classification tech-
niques in recent years. Quinlan and Rivest [14] proposed a method for inferring
decision trees using the Minimum Description Length (MDL) Principle [15].
Based on it, Wallace and Patrick [20] presented a refined coding scheme for de-
cision trees using the Minimum Message Length Principle, MML in which they
identified and corrected some errors in Quinlan and Rivest’s derivation of the
message. They also introduced a “Look Ahead” heuristic of arbitrarily many ply
for selecting the test attribute at a node.

Oliver et al. presented an inference scheme [12,11] to construct decision
graphs using MML [16, 19, 17]. The machine-learning technique of decision graphs

was successfully applied to the inference of a theory of protein secondary struc-
ture from a particular dataset by Dowe et al. [4] (see Section 4.4). The resulting
decision graphs provided both an explanation and a prediction method for the
problem. However, the Oliver-Wallace coding scheme [12,11] only allows binary
joins. When there are more than two nodes involving in a join, some intermediate
nodes have to be created. Immediately below in Section 3.2, we present a refined
coding scheme for decision graphs which allows multi-way joins to eliminate such
inefficiency.

In this paper, we refine the coding scheme for decision graphs so that a join
operation is no longer limited to one pair of nodes. An arbitrary number of nodes
can be involved in a join operation and form a common child node. We also refer
the reader to the earlier and similar coding scheme of Oliver et al., which only
permitted binary joins [12]. To transmit a decision graph now allowing multi-way
joins, we use following steps.

1. From the root node of the decision graph, a prefix traversal of the decision
tree is performed, treating any join nodes as leaves. Any join nodes that have
been transmitted are added to an open list.

2. When step 1 is finished, if this results in any join nodes in the open
list, then the combination pattern of the nodes in the open list is described. A
combination pattern lists those groups in the open list which combine to have a
child. Any groups of nodes in the open list that are involved in a join are deleted
from the open list. Add their children to a new node list, in which nodes will
become roots of new traversals.

3. If there is any node in the new node list, step 1 is repeated to transmit
them.

By decomposing a decision graph into a sequence of decision trees (as in
Figure 2), which are transmitted in step 1, we are able to re-use the MML
decision tree coding scheme proposed by Wallace and Patrick [20]. Since we
treat join nodes as leaves, we implement an adaptive code to describe which
leaves are actually join nodes and should be put into the open list.

In step 2 of the above process, a description of the combination pattern of
join nodes from the open list needs to be communicated. Firstly, we define the
nodes which were added to the open list in the current iterations of transmitting
to be “new” nodes, and nodes which were added to the open list in previous
iterations then become “old” nodes. We can view the open list as containing N
new nodes (from the most recent iteration) and Q old nodes. It should be noted
that both N and Q become common knowledge for both sender and receiver
before transmission of the combination pattern.

We communicate the combination pattern of join nodes from the open list in
four steps, thus four numbers (see points 1-4 below) must be transmitted in the
following order.

1. The number of nodes, M, which are children of joins in this iteration.
Because there are at least two leaf nodes being involved in any join and because

one of these leaf nodes must be a new node, so 1 < M < min(N, N;LQ). Assum-

ing these values to be equally likely, the message length cost of transmitting this
number, M, in the message would be log(min(N, N;“Q)).

2. The number of pending nodes, P, which are not involved in any join and
the numbers of nodes (Ji, Ja2,...,Ju) in each group of joining leaf nodes from
the open list in this iteration.

The task is now equivalent to finding out the number of different solutions
to the following equation.

P+h+J+...4Juy=N+Q (where P > 0;J; > 2;i=1,2,..., M)

If the number of valid answers is A and every solution is assumed a priori equally
likely, the cost of transmitting those numbers in the message length would be

log(A).
3. The number of “new” nodes , Y, among pending nodes and the number of
new nodes, (X1, Xs,..., X)) in each group of joining leaf nodes from the open

list in this iteration .

Similar to the above step and because there is at least one new node in each
joining group, the task is now equivalent to finding out the number of different
solutions to the following equation.

Y+Xi1+Xo+.. 4+ Xy =N (where0<Y <P; 1< X; < J;;i=1,2,...,M)
If the number of valid solutions is B and every solution is assumed a priori equally
likely, the cost of transmitting those numbers in the message length would be

log(B).
4. The number of permutations of nodes from the open list in this iteration:
C= & <

YIX1 X" Xar! (P=Y)I(J1—X1)1(J2—X2)L.. (Jaz— Xar)!
If every permutation is assumed a priori equally likely, the cost of transmitting
the number in the message length would be log(C).

After finishing the transmission of the combination pattern, we use an adap-
tive code to encode the types (i.e., leaf or fork) of nodes in the new node list,
followed by new rounds of graph traversal(s). Nodes resulting from join opera-
tions can not be join nodes, because if a join operation involving such a node
were to happen in a future iteration, the nodes which combined to form this
node would have been labeled as “pending” until needed for such a join.

3.3 Comparison with Oliver and Wallace’s Decision Graph Program

The difference between our coding scheme and Oliver and Wallace’s coding
scheme for decision graphs [10-12] has been illustrated in Figure 3. Whenever a
multi-way join is required, the Oliver-Wallace coding scheme[10-12] encodes it
by proceeding with a series of consecutive binary joins. The result of each such
binary join other than the last one is an intermediate node. These intermediate
join nodes are redundant (or irrelevant), even though the Oliver-Wallace scheme
insists upon encoding them and is thus inefficient. Our scheme is efficient in that
it can encode multi-way joins without having to introduce any redundant inter-
mediate nodes. As the example in Figure 3 shows, while the coding scheme with
multi-way joins is able to join the four nodes in one step, Oliver and Wallace’s
scheme has to do it in two steps and two intermediate join nodes J5 and J6 are
introduced. The message length caused by coding these intermediate nodes and

various possible ways to form these joins make the scheme less inefficient. For a
way of partly removing the inefficiency from the Oliver-Wallace coding scheme,
see Section 3.4.

3.4 Unpublished Refinement of Oliver-Wallace Coding Scheme

The Oliver-Wallace coding scheme that we have presented so far [10-12] is ineffi-
cient due to the fact that a series of consecutive binary joins is encoded including
the order in which those consecutive binary joins occurred, even though that or-
der is in fact irrelevant.

This coding scheme can be rectified and made efficient by accounting for this
combinatorial inefficiency. For example, as Figure 3 shows, where four nodes join
into one node by three consecutive binary joins, we note that this could have
been done in C3C5C3 = 6x3x1 = 18 different ways, and that log(18) can be
subtracted from the length of the corresponding (inefficient) message.

It is our understanding that, although such a rectification has not been pub-
lished, that J.J. Oliver might have since modified the Oliver and Wallace source
code to at least partly correct for the above combinatorial inefficiency. However,
his program is unavailable.

Such a(n unpublished) correction to the Oliver-Wallace coding scheme would
- if correctly implemented - give it a comparable efficiency to the multi-way
join coding scheme proposed in our current paper here. The difference between
the refined, corrected, Oliver-Wallace scheme (if, indeed, actually and correctly
implemented) and our new scheme here would essentially be a choice of Bayesian
prior.

Decision graph with binary joins Decision graph with multi-way joins

Fig. 3. Different encoding of a function by (left) decision graphs with binary joins and
(right) decision graphs with multi-way joins

3.5 Growing a Decision Graph

We begin with a graph having one node, with the root being a leaf. We grow
the graph by performing the following procedures iteratively until no further
improvement can be achieved.

1. For each leaf L, perform tentative splits on each available attribute in the
leaf, and determine the attribute A that will lead to the shortest message length
when L is split on A. Record, but do not perform, the alteration (Split L on A)
along with its communication saving.

2. For each leaf L, perform tentative joins with other leaves. Record, but do
not perform, the alterations (join L; and Lj; ...; join L;, L;,. .., Ly) along with
its communication savings.

3. Sort the alterations from step 1 and step 2 by their communication savings.
Choose the alteration (whether from step 1 or from step 2) that has greatest
saving.

With help of information which we obtain from step 1, we are able to do
heuristic search on potential joins rather than perform possible tentative joins
exhaustively. For example, only leaves with communication savings when split-
ting on an identical attribute can form a join that has a possible message length
saving. In the worst case, there will be 2NaC£L| tentative joins performed in each
iteration, where N, is the number of attributes available for splitting in leaves,
|L| is the number of leaves in the iteration, and Cng = |L|(|L| — 1)/2.

4 Experiments

Six artificially generated data sets and two real-world data sets were used in the
tests. Half of the artificial data sets were generated from disjunctive underlying
functions. Most of them were downloaded from the UCI machine learning repos-
itory [1] and had been widely tested in other decision tree or decision graph sys-
tems [12,7,13]. All the data sets we choose have only discrete attributes without
missing values. The test results were compared with the well-known classifica-
tion programs C4.5 and C5 [13], although the Oliver-Wallace binary join decision
graph program [10-12] was unavailable to us except for a past result [4] (see sec-
tion 4.4). In addition to the conventional classification accuracy, a metric called
probabilistic costing [6, 5,2, 3] was implemented for comparison. It is defined as
— > i log(p;), where n is the total number of test data and p; is the predicted
probability of the true class associated with the corresponding data item [6,
5,2, 3]. This metric can be used to approximate the Kullback-Leibler distance
between the true (test) model and the inferred model within a constant.

4.1 Testing with Artificially Generated Data

The experimental results are presented in Table 1, “accuracy” describes the
classification accuracy and “pr costing” describes Good’s probabilistic costing,
or logarithmic ‘bit costing’ [6,5,2,3]. For the data sets on which 10 10-fold
cross-validations were performed, the classification accuracy and probabilistic
costing were presented in the form of mean + standard deviation, p + o (where

0? = 3L (i — p)*/N).

4.2 Inferring probabilities for a multinomial distribution
Given an array of occurrences of events of an m-state multinomial distribution
(c1,¢2,...,cm), the probability of a certain event j can be estimated by (either)

p; = ﬁ [16, p187 (4), p194 (28), p186 (2)][19][18, p75] or

pi = ﬁ [16, p187 (3), p189 (30)],

Laplace estimate and also corresponding (with uniform prior) to both the pos-
terior mean and the minimum expected Kullback-Leibler distance estimator. In
our experiments (see Tables 1, 2 and 3), both of the formulas were used to give
the probability estimates in our decision graph program while only the latter
(4+1) was used to give the probability estimates in C5 and C4.5. The first (+0.5)
Pj estimate was used in the MML multinomial message length calculations, but
both p; estimates were used in calculating the decision graph log-prob bit cost.

the latter being known as the

Table 1. Test Results - Both ‘Right’/*Wrong’ and Log(Prob) - on Artificial Data-Sets

D-Graph with |D-Graph with
M-W joins(+1)|M-W joins(+.5)|C5 C4.5
XD6 accuracy [89.2+1.8% 89.2+1.8% 85.2+2.5% 84.9+2.7%
pr costing|25.2+2.4bits [27.5+2.7% 30.2+3.3bits |33.6+4.2bits
1st Monk|accuracy [100+0.0% 100+0.0% 75.244.3% 75.0+£3.9%
pr costing|9.840.0bits 5.010.0bits 278.4+12.1bits|285.9+11.3bits
LED-7 |accuracy |72.3+3.2% 72.3+3.2% 71.2+3.5% 71.1+3.3%
pr costing|74.5+7.4bits |72.6+6.2bits 89.7+7.9bits [89.6+7.8bits
LED-24 |accuracy |68.5+4.4% 68.5+4.4% 67.8+4.7% 67.8+4.5%
pr costing|96.4+6.2bits [95.1+6.7% 102.8+7.3bits |103.2+8.0bits
Car accuracy |91.5+1.7% 91.5+1.7% 91.6+1.9% 91.5+2.4%
pr costing|44.8+5.6bits |40.5+5.3bits 70.9+6.8bits |72.4+11.9bits
Scale accuracy |79.2+3.2% 79.24+3.2% 61.9+2.8% 61.4+3.8%
pr costing|54.6+5.9bits |55.8+6.7bits 83.4+4.7bits |83.3+6.7bits

XD6 data set: The XD6 data set [14,20,12] is an artificial set with 10 bi-
nary attributes. It was generated so that a division into two categories according
to the boolean function of attributes 1 to 9

(AT A A2 A A3) VvV (A4 A A5 A AG) V (AT A A8 A A9)
with 10% noise added to the target attribute. 10 data sets, each of them contain-
ing 500 data items, were randomly generated. We then performed 10 individual
10-fold cross-validations on these data sets. Each 10-fold cross-validation con-
sists of 10 tests. In each test, we trained on nine-tenths of the data and tested
on the remaining one-tenth. This amounted to 10x10=100 tests.

1st monk’s data set: The 1st monk’s data set is in the UCI machine
learning repository [10, 1], and constructed from the noiseless function

(Jacket_Color = Red) V (Head_Shape = body_Shape)

10 independent tests were performed, with each set of training data consisting
of 124 data randomly selected from full data set of size 432. We followed the UCI
convention on this data set [1] of using the entire data set as test data.

LED-7 data set and LED-24 data set: The LED-7 data set [1] is an
artificially generated data set in the UCI machine learning repository with 7
binary attributes and 10 output classes. Each of the attributes corresponds to
one different segment in a Light Emitting Diode that displays the numbers 0 to
9. 10% noise was added to each of the seven input attributes. The only differ-
ence between LED-7 and LED-24 is that 17 irrelevant attributes with randomly

generated values were deliberately added in the LED-24 data set. Again, 10 data
sets, each of them containing 500 data items, were randomly generated and then
an individual 10-fold cross-validation was performed on the each of the data sets
- giving a total 10x10=100 tests.

Car Evaluation data set: The car evaluation data set from the UCI
repository [1] was generated from an underlying decision tree model. There are
1728 instances with four output classes in the set. Each data item has 6 nominal
ordered attributes, which are treated as unordered discrete attributes in our
tests because data files from UCI have been set in this format. We performed 10
independent 10-fold cross-validations again on the data set.

Balance scale data set: The balance scale data set from the UCI repository
[1] was generated to model psychological experimental results. There are 625 in-
stances with 3 output classes in the set. 10 independent 10-fold cross-validations
were again performed on the data set.

4.3 Discussion of above test results on artificial data

As table 1 shows, our decision graph program achieved better or significantly
better classification prediction accuracy in most of these test sets (5 out of
6), especially the data sets with a disjunctive underlying function, such as the
XD6 and Scale data sets. On the fifth data set (Car), we performed only 0.1%
worse. The multi-way join decision graph program also has substantially lower
probabilistic bit costing than both C4.5 and C5 on all the test sets. This might
best be explained by the fact that decision graphs are more expressive than
decision trees and are often able to use the data more efficiently. This should
give a shorter Kullback-Leibler distance from the underlying model [17].

4.4 Testing with Real World Data

UCI protein secondary structure database The protein secondary struc-
ture database was one of the UCI molecular biology databases [1]. The data
contains amino acid chains with a secondary structure specified at each point.
Micro-biologists can determine the amino acid chain of a protein, but finding the
secondary structures - which are “alpha-helix”, “beta-sheet” and “random-coil”
- is quite difficult. We constructed decision graphs that predicted the secondary
structure at a point in a protein by (following [4] and) using a window of size
7 (centred at the point of interest) of the amino acid chain attributes. Each of
these 7 attributes has arity 21. We tested our multi-way join decision graph pro-
gram, C4.5 and C5 with the default training and test data set downloaded from
the UCI repository. As shown in table 2, decision graphs with multi-way joins
performed better than C4.5 and C5. In particular, the multi-way join decision
graph program achieved at least 2.0% higher classification accuracy and at least
215 bits less in probabilistic costing compared to both C4.5 and C5.

Another protein data set This protein data set was generated from a
protein database [4]. We use it because we do not have access to the Oliver-
Wallace program [12,11,10] and because it is the only data set for which we
have the results from that program. We tested C4.5, C5 and our coding scheme

by performing an 8-fold cross-validation on the data set because this was done
in the original paper [4]. We also compared our test results with results achieved
[4] by the Oliver-Wallace decision graph with binary joins. As shown in Table 3,
decision graphs with multi-way joins performed better 6 times out of 8 than each
of C4.5, C5 and the Oliver Wallace binary join decision graph program [12,11,
10]. On average, our scheme achieves 1.6%, 1.5% and 1.2% higher ‘right’/‘wrong’
prediction accuracy respectively than C4.5, C5 and the Oliver-Wallace binary
join decision graph program. Our scheme also has a lower probabilistic bit cost
score than both C4.5 and C5 on all 8 test sets [4] in Table 3.

Table 2. Test Results of UCI Protein Data Set (From Section 4.4)

D-Graph with |D-Graph with

M-W joins(+1)|M-W joins(+.5)|C5 C4.5
accuracy |57.6% 57.6% 55.4% 55.6%
pr costing|4715.2bits 4718.6bits 4935.1bits|{4935.5bits

Table 3. Prediction accuracies on another protein data set [4] (from Section 4.4)

D-G with |D-G with D-G with |D-G with
Test|Multi-Way |binary |C5 |C4.5 ||Multi-Way|Multi-Way|Cb C4.5
Set |Joins Joins Joins(+1) |Joins(+.5)

53.0% 54.2% 52.4%|52.4%||2296.6bits |2296.7bits |2380.7bits|2380.7bits
54.6% 53.3% 53.1%|53.1%||1907.7bits |1907.7bits {1975.2bits|1975.2bits
55.9% 51.7% 54.6%|54.6%||2185.4bits |2186.3bits |2241.7bits|2241.7bits
58.2% 56.4% 55.8%|55.8%||2066.2bits |2065.9bits |2252.2bits|2252.2bits
50.2% 46.8% 43.9%43.9%||2227.9bits |2228.1bits |2439.2bits|2439.2bits
50.7% 49.0% 50.8%|51.0%||2314.8bits |2316.0bits |2362.3bits|2351.3bits
53.5% 52.8% 51.4%|50.5%||2218.2bits |2220.3bits {2238.1bits|2295.0bits
52.9% 54.6% 54.6%|54.6%||2246.3bits |2247.1bits |2281.0bits|2281.0bits
vg|63.6% 52.4% 52.1%|52.0%||2182.9bits |2183.5bits |2271.3bits|2277.0bits

P> 00| | O O x| QO| NI =

5 Conclusion

We have introduced a refined coding scheme for decision graphs which allows
multi-way joins. We discussed the use of the Minimum Message Length Princi-
ple and the new coding scheme to infer (multi-way join) decision graphs. Our
experimental results demonstrated that our refined coding scheme compares
favourably with other decision tree inference schemes, namely C4.5, C5 and the
Oliver-Wallace binary join decision graph. This pronounced favourable compari-
son holds both for ‘right’/‘wrong’ prediction accuracy and I.J. Good’s logarithm
of probability bit costing, and both for artificially generated and real-world data.
We thank Trevor Dix for useful feedback on an earlier draft of this manuscript.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/~mlearn /MLRepository.html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D.L. Dowe, G.E. Farr, A.J. Hurst, and K.L. Lentin. Information-theoretic football
tipping. In N. de Mestre, editor, Third Australian Conference on Mathematics and
Computers in Sport, pages 233-241. Bond University, Qld, Australia, 1996.

D.L. Dowe and N. Krusel. A decision tree model of bushfire activity. In Proceedings
of 6th Australian joint conference on Artificial intelligence, pages 287-292, 1993.

. D.L. Dowe, J.J. Oliver, L. Allison, C.S. Wallace, and T.I. Dix. A Decision Graph

Explanation of Protein Secondary Structure Prediction. In Proceedings of the the
Hawaii International Conference on System Science(HICSS) Biotechnology Com-
puting Track, pages 669—678, 1993.

1.J. Good. Rational Decisions. Journal of the Royal Statistical Society. Series B,
14:107-114, 1952.

I.J. Good. Corroboration, Explanation, Evolving Probability, Simplicity, and a
Sharpened Razor. British Journal Philosophy of Science, 19:123-143, 1968.

Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs:
Strengths and limitations. In National Conference on Artificial Intelligence, pages
613618, 1994.

Yishay Mansour and David McAllester. Boosting using branching programs. In
Proc. 13th Annual Conference on Comput. Learning Theory, pages 220-224. Mor-
gan Kaufmann, San Francisco, 2000.

Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. MDL-based Decision Tree
Pruning. In The First International Confernce on Knowledge Discovery € Data
Mining, pages 216-221. AAAT Press, 1995.

J.J. Oliver. Decision Graphs - An Extension of Decision Trees. In Proceedings of
the Fourth International Workshop on Artificial Intelligence and Statistics, pages
343-350, 1993. Extended version available as TR 173, Dept. of Computer Science,
Monash University, Clayton, Victoria 3168, Australia.

J.J. Oliver, D.L. Dowe, and C.S. Wallace. Inferring Decision Graphs Using the
Minimum Message Length Principle. In Proceedings of the 5th Joint Conference
on Artificial Intelligence, pages 361-367. World Scientific, Singapore, 1992.

J.J. Oliver and C.S. Wallace. Inferring Decision Graphs. In Workshop 8 Interna-
tional Join Conference on Al Sydney, Australia, August 1991.

J.R. Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann,San Ma-
teo,CA, 1992. The latest version of C5 is available from http://www.rulequest.com.
J.R. Quinlan and R. Rivest. Inferring Decision Trees Using the Minimum Descrip-
tion Length Principle. Information and Computation, 80:227-248, 1989.

J.J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471,
1978.

C.S. Wallace and D.M. Boulton. An Information Measure for Classification. Com-
puter Journal, 11:185-194, 1968.

C.S. Wallace and D.L. Dowe. Minimum Message Length and Kolmogorov Com-
plexity. In Computer Journal, Special Issue - Kolmogorov Complezity, volume 42
of No 4, pages 270-283. Oxford University Press, 1999.

C.S. Wallace and D.L. Dowe. MML Clustering of multi-state, Poisson, von Mises
circular and Gaussian distributions. Statistics and Computing, 10(1):73-83, Jan
2000.

C.S. Wallace and P.R. Freeman. Estimation and Inference by Compact Coding.
Journal of the Royal Statistical Society. Series B, 49(3):240-265, 1987.

C.S Wallace and J.D. Patrick. Coding Decision Trees. Machine Learning, 11:7-22,
1993.

