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Abstract

In this paper we introduce a new class of Bayesian networks. Unlike most Bayesian
networks, it is capable of handling combinations of discrete and continuous attributes
without the need to quantize continuous data. We achieve this by using a general class
of decision tree to provide the conditional probability distributions, which has the added
advantage of compactly representing context-specific independence.

Our main contribution, however, is the identification of a new family of joint distri-
bution models that we label ‘asymmetric’ Bayesian networks. The nature of the joint
distributions able to be expressed by these networks changes with regard to the total
ordering of the nodes. We show that our proposed decision-tree-based Bayesian network
class belongs to this family, and discuss other members.

We present an efficient algorithm for determining the best ‘asymmetric’ network struc-
ture, and suggest a modification for ‘supervised’ learning of network structure, which we
argue should yield superior classification results.

Lastly, we compare our new classes of ‘asymmetric’ networks with two decision tree
tools on ‘real-world’ classification problems. This produces encouraging results, with the
‘asymmetric’ networks yielding superior average classification accuracy.



1 Introduction

Bayesian networks (also referred to as belief networks) are a popular tool in artificial intelligence
and statistical modelling. Their appeal is due largely to the intuitive graphical representation
of the interdependencies between variables, and to the savings in computation afforded by
conditional independence assumptions.

Bayesian networks provide a joint probability distribution over a set of attributes, X =
{X1,X5,...,X,}, and express this as the product of n conditional probability distributions
(CPDs). They are directed acyclic graphs (DAGs), with one node corresponding to each
attribute. Fach node provides a probability distribution over the values of the attribute it
represents, conditional upon the values of the attributes represented by its parents. It is helpful
at this point to introduce some nomenclature. We will use X; to refer to both the attribute X;
and the node representing that attribute, as these are equivalent for the purposes of this paper.
The set of parent nodes (or attributes) of X; will be denoted P; and, similarly, the set of direct
descendants (or children) of X; will be denoted C;. To refer to a particular value taken by
attribute X;, we will use z;. Likewise, p; will refer to an ‘instantiation’, or configuration, of X;’s
set of parent attributes P;. Figure 1 shows an example Bayesian network structure (without
depicting the probability distributions). For a general introduction to Bayesian network theory,

see (e.g.) [23, chapter 15, section 5].

Figure 1: An example Bayesian network structure. Here P, = {X4, X5}, Co = {X1}, Pr = {},
Cs= {XQ:XS}a P = {X2,X3} and Cq = {}

Normally, Bayesian networks are concerned only with discrete (categorical) attributes, and
express the conditional distribution pr(X;|P;) as a conditional probability table (CPT) - with
one row for each possible p;, and one column for each possible ;. The probabilities for any
row should sum to 1. CPTs are easy to implement and interpret, and certainly quick to ‘learn’
- i.e. estimate their parameters, given data - but they suffer from some drawbacks. If X;
has many parent attributes then the table can quickly become unwieldy, especially if some
of the attributes can take many values (this is because the number of configurations of P;
increases combinatorially with its cardinality). The awkwardness of such a large table is not
so much of a problem in itself, but estimating reasonable parameters from anything but very
large samples does become difficult. Large tables can be sparse, often with few (or no) data
observed for some p;s. In addition, it may be that many rows of the CPT behave similarly.
Stating different parameters for each row is often redundant, and we would like to join these
rows together. This is known as ‘context-specific independance’ and has been addressed by
(e.g.) Boutilier et al. in [4] by replacing CPTs with decision trees, mapping each p; to a leaf



node giving a distribution over X;. This paper also uses decision trees in preference to CPTs,
although our primary motivation is a little different, and our decision trees are somewhat more
general.

As mentioned above, most Bayesian network tools are restricted to discrete data. Thus any
continuous attributes in a data set are typically quantized, and treated as categorical. This
is often acceptable, but has the unfortunate side effect of losing the notion of ‘order’. For
example, consider a continuous attribute ‘height’ that is quantized into four ‘bins’: ‘< 170,
‘170 - 1807, ‘180 - 190°, and ‘> 190’. A CPT has no concept that the value ‘> 190’ is closer
to ‘180-190’ than it is to, say, ‘< 170’. In some domains, the notion of order is important and
we do not wish to be at the mercy of our quantization algorithm. Some Bayesian network
classes do not require discretization of continuous values. These networks typically only model
continuous attributes, giving X; as a linear combination of the attributes in P;, plus a Gaussian
noise term (see, e.g., [35]).

This paper presents a new class of Bayesian networks, able to handle a combination of
discrete and continuous attributes, without the need for quantization.

Section 2 describes the principle of Minimum Message Length (MML) inference, which we
use to learn both the structure of the network, and the decision trees (described in section 3)
which provide the conditional probability distributions.

In section 4 we show how the decision trees can be used to construct the new class of
Bayesian network. Unlike other Bayesian network models, the family of joint distributions
able to be represented by this network class depends on the node ordering chosen. Section 5
examines how this leads to a natural and efficient method for inferring network structure.

Section 7 explores an alternative MML coding scheme for scoring networks where we know
in advance which attribute we wish to predict. This method focuses on learning an accurate
conditional distribution of our target attribute, rather than trying to learn the best joint
distribution over all the attributes.

In section 8, we present encouraging results from several real-world classification problems,
showing our new classes of Bayesian network out-performing various decision tree tools. We
discuss our contribution in section 10.

2 Minimum Message Length

Minimum Message Length [29, 34, 32] is a Bayesian method of point estimation, based on
Shannon’s mathematical theory of communication [24]. When estimating parameters describ-
ing a body of observed data, MML constructs a two-part message. The first part encodes the
parameters using a prior distribution, and the second part encodes the observed data using the
distribution implied by the parameters. We choose the parameter estimates corresponding to
the shortest overall message, which effectively maximizes the posterior probability[32, 33].

In its most general form, it is related to Kolmogorov complexity and can be used to infer any
computable function [32]. It is invariant under 1-to-1 parameter transformations [30, 34, 28,
32], has general statistical consistency properties [1, 28][34, p241] and generally comes close
to minimizing the expected Kullback-Leibler distance [9]. For comparisons between MML,
the Minimum Description Length (MDL) works of Rissanen [20, 21, 22] and the works of
Solomonoff [25, 26], Kolmogorov [13] and Chaitin [5], see Wallace and Dowe [32] and other
articles [8, 6, 22, 26] in that special issue of the Computer Journal.



3 General Decision Trees

Decision trees are common tools in machine learning and data mining. They are easily in-
terpreted by humans, and hence often preferred over less intuitive models. A decision tree
performs tests on explanatory (input) attributes, and provides a model of a target (output)
attribute - the parameters of which depend on the outcome of the tests.

This section describes a class of general decision trees that can model either discrete (cat-
egorical) or continuous target attributes, and handle either discrete or continuous input at-
tributes. If the target attribute is discrete, each leaf will correspond to a different multi-state
distribution. For continuous attributes, Gaussian density functions are used in the leaves. A
branch node can test an n-valued discrete input attribute X; with a simple test, assigning each
possible value z; to a separate sub-tree. A continuous input attribute X; can be tested at a
branch node using a ‘hard’ cut-point c. Any data item where z; < c will be assigned to the
left-hand sub-tree, and any data item with z; > ¢ will be assigned to the right-hand sub-tree.

3.1 MML Cost of a Decision Tree

The decision tree coding scheme used in this paper is an adaptation of that proposed in [36] -
which in turn re-visited a scheme in [19].

In our MML framework we are attempting to minimize the length of encoding a decision
tree and the (target) data it models. We may assume that the input data is already known
by the decoder, as transmitting it will simply add the same constant term to the message
length of any tree considered. Our message, then, will firstly state the tree. Once the receiver
has decoded the tree she may use it, together with the input data, to derive a probability
distribution over the target data. This allows her to decode the second part of the message,
which transmits the target data using an optimal code based on this distribution.

The tree is transmitted in a depth-first, left-to-right fashion. For each node we firstly need
to state whether it is a branch or a leaf. At the root of the tree this costs log,(n + 1) —log,(n)
bits for a branch node, and log,(n + 1) bits for a leaf node, where n is the number of input
attributes. For any non-root node, the codeword for a branch requires log, s bits, and a leaf
requires —log, ((s —1)/s) bits. Here s represents the number of children of the node’s parent,
and hence is always greater than 1.

Following each ‘branch’ codeword, we need to state which of the input attributes will be
tested. This requires log, A bits, where A is the number of attributes able to be tested at that
branch!. If the input attribute to be tested is continuous, we also need to state the cut-point
to be used. To do this, we borrow a scheme developed by Wallace [36] and used in both the
seftware associated with that paper [36] and in [14, section 4.1]. We first order the observed
values of our input attribute. We do not need to state the cut-point to any great precision
- we only need to state which two values it lies between. We assign probability 1/2 (code-
length 1 bit) to the cut-point being at the median observed value. Either quartile costs 3 bits
(probability 1/8), octiles cost 5 bits (probability 1/32), and so on. (This coding scheme uses
that fact that 2 + 2+ L +...=2+ 2+ 1+ ... =1) It is thus very cheap to do a ‘rough’
split, sending half of the values either way. Each half of these values now has a new median,
etc., and may be partitioned again by subsequent branch nodes.

Following each leaf codeword, we state the parameters associated with the leaf - either
and o2 for a Gaussian distribution if the target attribute is continuous, or pr(vy),...,pr(vi_1)
for a k-state distribution if the target attribute is discrete and can take the values vy, ..., v.

L A discrete attribute cannot be tested by more than one branch node in any path. If a branch tests a discrete
attribute, A is decremented for each of the child trees.



[29] and [3] give well-behaved priors and coding schemes for both the Gaussian and multi-state
models respectively (see also [33]).

3.2 Searching for a Decision Tree

Given a set of training data, we use a simple ‘lookahead-0’ greedy search algorithm to learn a
decision tree. We begin by setting the root node to be a leaf, and optimising the parameters for
the model it contains. This forms our ‘null hypothesis’, where the values of the input attributes
have no bearing on the distribution over the target attribute.

Now we consider whether changing the leaf to a branch testing attribute X; would improve
the cost (i.e. the message length) of our tree. We assume the children of this potential branch
are leaves, and optimize their parameters according to the training data they pertain to. We
try this for each input attribute X; in turn. If none of the potential branches have a cheaper
cost than the leaf node, we terminate the search. Otherwise we change the leaf node into
the cheapest branch considered, and repeat the algorithm for each of the resulting leaves.
The lookahead-0 search suffers from several drawbacks, most notably the difficulty discovering
‘XOR’ relationships. Despite this, its simplicity and efficiency make it a popular and effective
algorithm.

4 ‘Asymmetric’ Bayesian Network Classes

In this section we construct a class of Bayesian networks using the decision trees described in
section 3. Each node X; of the network contains a decision tree modelling X; as a function
of its parent attributes, P;. Nodes with no parents use a tree which is just a leaf - as the
distribution is not conditional on any input data. If X; is discrete, a tree with multi-state leaf
distributions will be used - otherwise the leaves will contain Gaussian density functions, as
described in section 3. As usual the joint distribution pr(X) is expressed as the product of the
conditional distributions, [T, pr(X;|F;).

The interesting thing here, however, is that by changing the order of the nodes we actually
alter the family of joint distributions able to be expressed. In this paper we name such classes
of network ‘asymmetric Bayesian networks’ due to the asymmetry of the joint distribution with
respect to node order.

4.1 A Decision Tree Example

To illustrate this asymmetry, let us consider a simple example with only two attributes - a
continuous attribute X, and a binary attribute X;. There are two possible node orderings -
(Xb,XC), and (XC,XI,).
Let us first examine the node ordering (X, X.). This network models the joint distribution,
pr(X), as
pr(X) = pr(Xp).pr(Xc|Xs)
where pr(X3) is given by a simple two-state distribution, and pr(X.|X3) is a decision tree,
possibly testing X at a branch node, and modelling X, in the leaves with Gaussian density
functions.
Now let us look at the node ordering (X, X3). This network models the joint distribution,
pr(X), as
pr(X) = pr(Xe).pr(Xs| Xe)
Here pr(X.) is given by a single Gaussian density function, and pr(Xp|X,) is a tree possibly
partitioning X, with hard cut-point tests at branch nodes, and offering a different two-state
distribution over Xj in each leaf.
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Figure 2: This figure shows the difference that node order can make to the nature of the joint
distribution when dealing with asymmetric Bayesian networks. Two networks are depicted -
one on the left with the ordering (X3, X.), and one on the right with the ordering (X., X3). To
the right of each node we depict the conditional probability distributions it contains. Below
each network is a (rough) graph showing how, when X, = true, pr(X) varies with X.. NOTE:
This figure is not drawn accurately or to scale - it is intended only to give an idea of the
behaviour of our class of asymmetric networks.

These two expressions of the joint distribution are clearly quite different in nature. We can
see this by holding X} constant (say Xp = true), and plotting the joint distribution pr(X) as a
function of X.. This is illustrated in figure 2. In the first node ordering, (on the left in figure 2)
pr(X) varies smoothly with X, (according to a Gaussian density function). In the second node
ordering, (shown on the right in figure 2) pr(X) will feature discontinuities at the cut-point(s)
where X, is partitioned by the branch node(s) of the decision tree giving pr(X,|X.). In most
cases, one node-ordering (or family of joint distributions) will be better suited to a data set
than another. In this regard our class of networks contrasts strongly with the usual class of
Bayesian networks using CPTs, in which any two node orderings can be made to represent the
same joint distribution given appropriate CPT parameters.

4.2 A Univariate Polynomial Example

The decision trees used in this paper are not the only class of conditional probability distribu-
tion that gives rise to asymmetric networks. Nor is it necessary to have both continuous and
discrete attributes for asymmetric networks to exist. Another example of a CPD language that
leads to asymmetric networks is univariate polynomial functions with Gaussian noise. Here
an attribute X; with parent X; is modelled as a probabilistic polynomial function? of the form:

Xi = a0 + a1z + asz} + ... + aqz} + N(0,0%) where d is some maximum degree of poly-
nomial able to be inferred.

2restricted to non-negative integer powers.



An attribute X, with no parents could be modelled by X, = ag + N(0,0%) = N(ag,0?),
which is simply a Gaussian density function.

Imagine that a network with node ordering (X, X;) defines X; to be governed by the
Gaussian distribution N (/J/j,a"?), and X; to come from the distribution ;cf + N(u;,0?). If
we reverse the node order then there is no way, given our CPD language, to describe the
same joint distribution. The inverse expression of the joint distribution would be that X; =
(z;—pi+N(0,02))%, and that X; is governed by (u;+N (0, %))’ +pi+N(0,07), but this clearly
does not fall within our language of (non-negative) integer power polynomials. There are no
parameters we could choose for pr(X;) and pr(X;|X;) that could capture this relationship.

Indeed, if this were the true distribution from which the data were drawn, we would do
much better with the node ordering (X}, X;) than with ordering (X;, X;). It is even possible
that if we chose the latter ordering, then the dependence of X; on X; would not be detected. It
is this kind of concept that originally motivated this work, and earlier, related ideas by Dowe
in [11], which we now outline briefly for historical reasons in Section 4.3 before proceeding
to the determination of the network structure in Section 5. Section 4.3 includes additional
examples (e.g., mixture modelling[11]) to the decision tree example of Section 4.1 and the
univariate polynomial example of Section 4.2, but it is included primarily for historical reasons
and has some slightly different terminology and notation. The reader can safely proceed to the
determination of the network structure in Section 5 without loss of continuity.

4.3 The Historical Motivation for “Inverse Learning”

Dowe’s original work[11] was concerned with one or two groups of attributes. A simple example
of one group of attributes is mixture modelling[11], discussed again towards the end of this
section. Let us proceed now to two attributes - or groups of attributes - A and B. Regardless
of which of A and B was to be the target attribute(s), to be modelled in terms of the other
(explanatory) attribute(s), he advocated seeking to find the best joint distribution of A& B.
This best joint distribution of A& B was to be found by choosing the cheapest of two MML
messages - one transmitting A followed by B|A and the other transmitting B followed by A|B.
When A and B contain one attribute each, this relates closely to the simple case of Bayesian
networks where we have only two nodes.

One original motivation for this was the inference of protein secondary structure from the
protein’s primary, amino acid, sequence. Inference of the secondary structures (SS) as a func-
tion of the amino acids (AA) (see, e.g., [10]) was not accounting for the high degree of serial
correlation in the secondary structure sequence - e.g., helices are stable and potentially long
structures with run lengths of at least 3. Using a language of only decision graphs [17, 16] and
Markov models, Dowe suspected that modelling SS (using a Markov model to deal with the
serial correlation) and then modelling AA as a decision graph function of SS could lead to a
better fit to the data than modelling AA (which shows at most scant evidence of serial correla-
tion) and then (as in [10]) modelling SS as a decision graph function of AA. Dowe suspected
that this improved fit to the joint distribution of AA&SS would lead in turn to a better model
of SS given AA. Given the interchangeability of code lengths (I) and probabilities (p) via the
relation I = —log p (and, depending upon whether [ is in bits or nits, either p = 2! or p = e7!)
- see, e.g., [30] - the reasoning preceded along the following lines. Traditional supervised learn-
ing of the data using MML (e.g., [10]) encodes Hgsja4; SS|{AA, Hssja4}. Encoding the entire
data-set so that we can compare it with the inverse model entails prepending this code with a
code for the amino acids, so we now encode AA; Hggja4; SS|{AA, Hss 44}, which, by Bayes’s
theorem, is equivalent to encoding AA&Hgg44&SS or, in turn, AA&SS&Hgg 44. Using the
inverse model, we encode SS; H 4 55; AA|{SS, Haa|s5}, which, again by Bayes’s theorem, is
equivalent to encoding SS&H 4 455&AA or, in turn, AA&SS&H 44)ss- A ventured criticism



is that we already know the observed values of AA and are interested only in encoding a two-
part message for SS, so why would we bother to encode AA? One response is that the inclusion
or exclusion of AA from the message is equivalent to the addition or otherwise of the constant
quantity of —logm(AA) from the message length, where m(AA) is the marginal probability
of AA having occurred given the relevant prior probabilities and likelihood functions. Another
response is merely to appeal to the consistency[1] [34, p241][32] and invariance[30, 34, 32] of
MML - it is explicitly shown in [32] how MML relates to Turing machines and gives an opti-
mal two-part message encoding the entire data-set. Dowe at least initially contended that the
entire data-set includes AA in addition to SS. Finally, with regards to new test data once an
inverse/implicit model has been inferred, with AA fixed and a change in SS affecting the cost
both of SS and of SS|{AA, Hss 44}, Dowe suggested simulated annealing as a viable means
of search.

Before proceeding on to another use of Dowe’s motivating examples, mixture modelling[11],
we briefly describe Comley’s contributions, and (our understanding of) Chris Wallace’s mod-
ification®. Comley refined Dowe’s original ‘inverse learning’ message length format, allowing
it to fit more properly into the MML framework. This refinement was largely conceptual, but
did address a (possibly small) under-statement of the message length in Dowe’s scheme. (In-
terestingly, the most tractable approximations to Dowe’s version would probably lead directly
to Comley’s refinement.)

Comley also developed a generalization of Dowe’s original idea, allowing more than two
(groups of) attributes. This drew attention to certain parallels with Bayesian network theory,
and is the basis of the work presented in this paper. Additionally, Comley proposed several
methods of searching for optimal network structure, one of which is presented in Section 5.
The scheme presented in section 5.1, and referred to as ‘unsup-net’ in section 8, uses Comley’s
refined MML message.

In private communication, Chris Wallace suggested another modification to Dowe’s scheme.
As the authors understand, this involves focusing on a ‘target’ attribute. Whereas Dowe’s
original version had a message transmitting all the data and a hypothesis (model) for some of
the attributes, and Comley’s refinement has a message both modelling and transmitting all the
data, in (our understanding of) Chris Wallace’s modification, any message only has to transmit
the target attribute. This is done either by using an explicit conditional model of the target
attribute given the remaining attributes, or by transmitting such a distribution implicitly - in
the form of a joint distribution over the target attribute and some other attributes, from which
we may extract a ‘cross-section’. This scheme is concerned with finding the best conditional
distribution of the target attribute, given the remaining attributes, rather than the best joint
distribution over all the attributes. It is discussed further in section 7.

We now conclude this section with two further historically motivating example for “inverse
learning” (or “implicit learning”), the first of which is a case where we are primarily interested
in one of several continuous-valued attributes. Suppose the true underlying distribution of the
data is a mixture model and that our modelling languages include mixture modelling[15, 33, 31]
and decision trees with ‘hard’ cuts on continuous-valued attributes (see Section 4.1 or [36]) but
with (univariate or multivariate) Gaussian distributions rather than multinomial distributions
in the leaves, akin to the leaves in the left part of Figure 2. If our true underlying model is
of the form (X, X;), such as the logistic model, then even if X, is the target attribute, we do
best to infer the underyling model rather than a model chosen merely because it is of the form
(Xp, X.) (such as the model at the left of Figure 2).

Because the true underlying data-generating distribution is a mixture model, as the amount
of data increases, the consistency, invariance and other properties of MML (see, e.g., [1, 32]
and section 2) will correctly lead us to infer a mixture model of the joint distribution. With

3from a personal communication



our target attributes as one of these attributes, inference of this mixture model leads us in
turn to correctly give the cross-section of this mixture model as the most viable model for our
attribute of interest - rather than, instead, some approximating decision tree with hard cuts
and a univariate Gaussian distribution in each leaf.

Briefly, another historically motivating example is a further case with the two attributes -
one discrete (binary) and one continuous - as in Section 4.1, but where we consider an additional
(third) model in which X} is dependent on X, and the probability of one of the binary classes
is a logistic function of the continuous-valued attribute.

Dowe originally named this concept ‘inverse learning’, later referring to it as ‘implicit learn-
ing’. A further account of the ideas in this paper and the contributions of both Comley and
Dowe is planned to appear in [7].

Having given Dowe’s original historical ideas and motivation, including the mixture mod-
elling example[11], we now proceed to the determination of network structure.

5 Determining the Network Structure

In a traditional Bayesian Network (BN), altering the node ordering will have no impact on the
family of joint distributions able to be expressed*. Network structure is generally decided by
domain experts, or based on some notion of minimising the node connectivity (without causing
too much damage to the expressiveness of the network). The aim is usually to achieve some
trade-off between a highly connected, computationally expensive network - with large CPTs
that can capture complex interdependencies - and a simpler, sparse network that is easy to
understand and can perform computations more cheaply but that may not do a good job of
capturing all the relationships present in the data.

When using the class of networks described in section 4 different total node orderings cor-
respond to different families of joint distribution. This means that of two competing networks
with the same connectivity between attributes but with different node orderings, one is able
to give a better model of the joint distribution that the other.

We now describe the first author’s idea of how this can be used to develop an efficient and
automatic search for the best network structure, using the class of decision trees described in
section 3 as our CPD language. Consider two nodes X; and Xj, in an asymmetric network.
It may be that X; can be nicely described as a probabilistic function of X, but when Xj is
modelled as a probabilistic function of X;, no dependence can be found (see section 4.2 for
an example). We can conclude from this that there is some merit in placing X; after X; in
the total ordering, but that placing X; before X; will not help us. We use this concept in the
strategy below to help us place some constraints on the partial ordering of the attributes. The
strategy works in several steps.

1: Learn the initial decsion trees.
For each attribute X; € X, learn a tree modelling X;, with X \ {X;} as input.

2: Establish a list of useful directed links.
Begin with an empty list L of useful directed links. For each attribute X; € X, check
whether each other attribute X; (j # 4) is tested by the decision tree modelling X;. If the
tree modelling X; does test X;, then add a directed link X; — X; to L. This indicates
that placing X; before X; in the total ordering may be useful.

3: Score the total orderings.
We use a stochastic process to investigate various total orderings®. We choose an initial

4providing that no connections between attributes are removed.
5When n (the number of attributes) is small, it is feasible to exhaustively check all n! total orderings.



total ordering, and repeatedly permute it by swapping the positions of two adjacent
attributes. A fixed number of permutations is performed (that increases with the number
of attributes, n). Each total ordering considered is assigned a score, equal to the number
of useful directed links in L that it exhibits - i.e., if X; occurs before X; in a particular
total ordering, then that ordering exhibits X; — X, but not X; — X;. Note that at this
stage we have only had to learn the initial n decision trees from step 1. Examining total
orderings does not require additional CPDs to be learnt, making this step quite fast.
Throughout the pseudo-random process, we keep only those orderings with the (equal)
maximum score.

4: Remove ‘useless’ links.
We now iterate through each of the total orderings with the equal maximum score,
treating each of them as a fully-connected network (currently without CPDs in the nodes).
We remove all directed links that do not feature in L.

5: Calculate structural equivalency.
After step 4 we are left with a list of total orderings representing partially connected
network structures. Many of the structures represented will be equivalent®, and should
be treated as a single structure. We group the total orderings by structural equivalence,
and choose an arbitrary member from each group as a representative. We record the
cardinality of each group.

6: Learn all required decision trees.

We now build a list, DT, of all the decision trees required to give us CPDs for each
representative network. For each network, we examine all its directed links. A link
X; — X; means that X is one of X;’s parents, and should be included in the set of input
attributes for the tree modelling X;. For example, one network may require (amongst
other trees) a decision tree modelling X, given {X;, X3, X4} while another network may
require the decision tree modelling X, to have {X;, X5} as input attributes. Both these
trees would be learnt, and added to the list DT. A large saving can usually be made
here, as any one decision tree is often used by many networks, and only needs to be learnt
once.

7: Cost the representative networks with MML.
We now have a list of candidate networks (each representing a group of networks with
equivalent structure), with decision tree CPDs in the nodes. We cost each network using
the MML scheme outlined below in Section 5.1, and choose the network with the lowest
cost.

5.1 A Minimum Message Length Scheme for Bayesian Networks

This section briefly describes how one could derive a message length for a group of structurally
equivalent networks. This coding scheme is specifically designed to be used with the search in
Section 5, as it makes assumptions that take advantage of our candidate networks having an
equal degree of connectivity.

We will transmit the attributes in the order dictated by the representative network’s total
node ordering. Firstly, though, as we are comparing networks with different orderings, we will
need to let the receiver know what the ordering is. There are n! possible total node orderings,
where n is the number of attributes in our data set. So encoding any one of them (using a
uniform prior) requires log,(n!) bits. But remember that any two networks in the same group

8Two networks are structurally equivalent if they exhibit an identical collection of directed links.
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are actually equivalent models (and have different total node orderings). We should derive
a codeword for each distinct model - otherwise equivalent networks would be ‘stealing’ from
each other’s code-spaces, making the model they represent seem less probable. If there are k
networks in the group, then the group’s codeword will be of length log,(n!) — log, (k) bits.

Now that the receiver knows the total ordering of the network, she can establish the con-
nectivity, and determine which CPDs are to be sent. Here we assume that she already knows
the list of ‘useful’ directed links, L. This is a valid assumption, as this is common information
for all candidate networks. We begin with no connections between nodes. Then for each link
X; = X; in L, we insert it into the network if X; occurs before X; in the total ordering.

We now transmit each decision tree and the data it models (see section 3.1) according to
the total ordering. For example, in the network shown in figure 1, we would transmit:

la: The tree giving pr(Xy),
1b: The values of X4, using the tree in 1la,
2a: The tree giving pr(Xs|X4),

2b: The values of X5, using the tree in 2a. Because we have already transmitted the values
of X4, the receiver will know which leaf of the tree (in 2a) to use for each item.

3a: The tree giving pr(Xz2|X4, X5),
3b: The values of X2, using the tree in 3a. Etc. ...

Our total message length for a group of k equivalent networks is then simply log,(n!) —
log2(k), plus the cost of transmitting each decision tree and the relevant data, as given by
section 3.1.

Note that this scheme does not penalize groups of highly connected networks in the trans-
mission of the network structure. All network groups considered have the same degree of
connectivity, because they all exhibit the same (maximum possible) number of directed links
in L. Any more sparse networks would have been discarded in step 3 of the search algorithm
above. It is also worth noting that often not all links in L can be exhibited by any given
network - consider the case where L contains the links X; — X;, X; — X;, and X} — X;.
Because Bayesian networks are directed acyclic graphs, any network could only exhibit two of
these links.

5.2 Potential Problems with the Search Algorithm

Recall that when performing step 2 - i.e., establishing which directed links are useful, and
which should be removed - we assert that a link X; — X; is useful only if the decision tree
modelling X; (from step 1) tests X; at a branch. While this generally works well, there are
two problems we may face. These are outlined below.

5.2.1 Falsely Detecting Dependencies

Imagine that we have learnt a tree in step 1 where the target attribute X; depends on a Boolean
attribute X3, and, if Xy is true, also depends on X;. Because the tree tests both X3 and Xj,
we conclude that the links X, — X; and X; — X; are worthwhile. Imagine now that we go
with the ordering X, X;, X3. Now the link X; — X; may be useless - we may not be able to
detect any dependency of X; on X; without the presence of X;. It would be better to have
removed this link, but it is too late because the structure (and connectivity) is decided before
the tree giving pr(X;|X;) is inferred, and it is only when we infer this tree that we discover it
does not actually test X;.
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5.2.2 Failing to Detect a Dependency

If some attributes are highly correlated, they may ‘over-shadow’ each other. e.g. X; has a
strong dependence on X, and a weaker (but still important) dependence on Xj. The decision
tree giving pr(X;|X;, Xi) tests X; at the root node, nicely partitioning the classes. Each leaf
now decides not to bother testing Xy, due to fragmentation of data, and the minimal extra
purity gained. So we conclude that X; does not depend on X}, - but in fact this independence
is conditional on X; being present as a parent attribute. Imagine an ordering Xy, X;, X; where
we would decide to remove the link X; — X;. Now our encoding of X; will not benefit from
any correlations.

Another cause of this error is that in the presence of many input attributes, stating which
attribute is to be tested at any branch becomes expensive (see section 3.1). A ‘border-line’
branch may be rejected on this basis whereas in the actual network (where there are fewer
input attributes) it will be cheaper to state that branch and it may be accepted.

6 Using a Network for Prediction

This section briefly explains how to extract a conditional probability distribution pr(X;|X \
{X;}) from a Bayesian network representing the joint probability distribution pr(X).

If X; is the last node in the network (or has no children), then we can simply use the CPD
pr(X;|P;) because, given P;, X; is inpedendent of all other attributes. For the class of networks
presented in this paper, this means we simply feed our value p; into the decision tree modelling
X;, and read our CPD from the relevant leaf.

If the node X; has children, however, the situation is a little more complex. Here we use
Bayes’s rule (hence the term Bayesian network) to re-write pr(X;|X \ {X;}) as follows:

_ pr(X; = x;|P; = pg).pr(Ci = ¢i| X; = x4, P; = p;)

pr(Xi = $,|(X \{Xi} =2\ {Xz})) pr(Ci = ¢i|P; = pi)

(1)

where 2 \ {X;} is meant to represent a particular value taken by X \ {X;}.

If the goal is to simply predict the most probable value for X;, given values for X \ {X;},
then we can ignore the denominator pr(C; = ¢;|P; = p;) as this simply serves as a normalization
factor. If we do want actual probabilities, however, we must approximate pr(C; = ¢;|P; = p;),
as the network does not give us this conditional probability directly. We may approximate it
as follows:

pr(Ci = ;| Xi = x4, P = py)
Surex: (Pr(Xi = 2l|Pi = pi).pr(Ci = & Xi = 21, P = py))

pr(Ci =c|P;=pi) = (2)

where X is the space of all possible values for attribute Xj;.

Used like this, extracting pr(X;| X \ {X;}) from a Bayesian network can be seen analogously
to Bayesian inference, where our prior on ‘hypothesis’ z; is given by the CPD in node X;, and
our conditional probability (or likelihood) of observing ‘data’ ¢;, given ‘hypothesis’ z;, is the
product of the conditional probabilities given by each node in C;.

7 ‘Supervised’ Networks
We present in this section an alternative to the MML costing scheme given in 5.1. This is the

authors’ understanding of an idea conveyed by Chris Wallace in private communication. The
alternative scheme can be used when we know, before inferring the network, which attribute
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it is that we wish to predict. This is often the case in practical classification situations, where
there is usually a particular attribute of interest which is difficult to measure, that we want to
predict based on the rest of the (more easily) observed attributes. In this section we will refer
to such an attribute as the ‘target’ attribute, and label it as X;.

This scheme focusses on learning an accurate conditional distribution of X; given X \ {X;}
- as opposed to learning an accurate joint distribution over all of X. Wettig et al. [37] refer to
networks that result from such schemes as ‘supervised’ networks, and to networks that have
attempted instead to optimise the joint distribution as ‘unsupervised’ networks. We adopt this
terminology, as it draws attention to the role of networks and their distributions in classification
tasks.

For the asymmetric networks presented here, the structure, connectivity and parameters
required to represent the best joint distribution” may differ significantly from those required
to represent the best conditional distribution® of X;. We expect, when the task is to pre-
dict/classify X, that the supervised network will produce better results.

Our proposed MML scheme for supervised networks differs only sightly to that for unsu-
pervised networks presented in section 5.1. The major difference is that the supervised scheme
assumes that the values for X \ {X;} are common knowledge, and need not be included in the
message. We transmit the network structure and the decision tree parameters in exactly the
same manner. In the supervised scheme, though, we do not transmit the data. After she has
decoded the network the receiver may use it, together with the values for X \ {X;}, to derive
a conditional probability distribution pr(X;|X \ {X:}) using the method explained in section
6. It is using this distribution that the values of our target attribute, X, are transmitted.

This scheme favours networks that provide good compression of X; (by offering accurate
distributions over X;|X \ {X;}) - as opposed to the unsupervised scheme (presented earlier in
this paper) which places equal importance on the compression of each attribute. This scheme
is referred to as ‘sup-net’ in Section 8 - an abbreviation of ‘supervised-network’.

8 A Comparison of Classifiers

In this section we compare the performance of four classifiers on three real-world data sets.
The classifiers are:

e MML-DT: This is a decision tree tool that infers models from the class of decision
trees described in section 3. It uses an MML costing metric (see section 3.1) similar to
that in [36] and a lookahead-0 greedy search algorithm (see section 3.2). This method is
equivalent to a supervised network where P, = X \ {X;}.

e C5: C5 [18] (and its fore-runner, C4.5) are popular decision tree tools used for classifica-
tion. C5 does not use the MML principle and is widely used as a performance benchmark
in classification problems.

e unsup-net: This is the algorithm presented in this paper for learning unsupervised
asymmetric Bayesian networks.

e sup-net: This is the modified algorithm (see section 7) that learns supervised asymmetric
Bayesian Networks.

7
8

i.e. for an unsupervised network,
i.e. for a supervised network
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Data-set

Target Attribute

Other Attributes

Iris
Wine
Ecoli

3-valued discrete
3-valued discrete
8-valued discrete

4 continuous attributes
12 continuous attributes
7 continuous attributes

Table 1: A summary of the nature of the three data-sets iris, wine and ecoli.
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Figure 3: Best, worst and average performance for each of the methods described in section 8.

8.1 Experimental Setup

Tests were performed on three data-sets - iris, wine, and ecoli - which are all available from
the UCI machine learning repository [2]. All data-sets feature a discrete target attribute
(class), which allowed us to meaningfully compare our results with C5, because although our
asymmetric networks can just as easily handle continuous targets, C5 and many other classifiers
cannot. Table 1 summarizes the nature of each data-set.

Each data set was partitioned using 10-fold cross-validation, creating 10 different training-
testing pairs. For each pair, the training set comprised 90% of the original data, and the testing
set comprised the complementary 10%. The 10 testing sets were mutually exclusive. The same
pseudo-random number seed was used to partition the data for each method, ensuring all four
methods were working with exactly the same data.

Each method learnt a model from each of the 10 training sets, and used it to predict the
target attribute in the corresponding test set. Methods were scored using their percentage
classification error, averaged over the 10 data sets.

This entire procedure was repeated 10 times, using different seeds to partition the data
each time (this gave us a total of 100 different training-testing data sets for each of iris,
wine, and ecoli). For each method, we recorded its best, worst and average score over the 10
repetitions. This was done because the results from a single (10-fold) cross-validation run can
be misleading, especially if the data was partitioned unusually.

8.2 Results

Figure 3 shows - for each database - the best, worse, and average performance of each method
over the ten 10-fold cross-validation experiments. To clarify, take the performance of unsup-
net on the wine database - its best score is just under 2%. This means that in one of the
cross-validation experiments, the average classification error over the 10 training-testing pairs
was just under 2%.
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8.3 Discussion

The tests performed in this paper are quite robust and produce encouraging results. Both the
supervised and unsupervised classes of network can be seen, on average, to out-perform C5
and the MML decision tree classifier for the wine and iris data sets. This indicates that there
is some merit in tackling classification problems with asymmetric Bayesian networks, as this
allows us to model families of conditional distributions of X|X \ {X;} that are not able to be
expressed by simpler, explicit models such as decision trees.

As expected, we see slightly better performance (on the wine and iris data) from the
supervised network than from the unsupervised one.

The ecoli data set produces some unexpected results, and while the unsupervised network
performs marginally better than C5, the supervised network seems to have more difficulty -
although it still easily out-performs the MML decision tree that models X; explicitly. We
feel that this result warrants more research into the mechanisms of prediction for supervised
vs. unsupervised networks, with the aims of establishing what features of a data set cause
difficulty, and perhaps learning how to overcome this.

9 Probabilistic Scores and Issues for Further Research

The conditional probabilities provided by our network classes were, on the most part, signif-
icantly better than those offered by the decision tree classifiers. However there were several
test cases - in the wine and ecoli data sets - to which the inferred networks assigned very low
probabilities. While this did not significantly impact on the total classification error, it had
a notable effect on the network’s probabilistic score (see, e.g., [12, 27], [14, Table 2]). These
cases bring attention to some interesting issues.

The issues occur when our network contains a decision tree modelling a continuous attribute,
X., (with Gaussian distributions), and testing the (discrete) target attribute, X;, at a branch
node.

The problem is when in one of the leaves the estimate of the variance of X, is too small.
In our test case we know the value X, = z., and we wish to assign probabilities to each
possible value of X;. Different choices of x; will lead to different leaves in our tree, and hence
to different Gaussian distributions over X.. If, in any of these leaves, the estimated mean of
X, differs much from the observed z., and the estimated variance of X, is very small, then
the corresponding z; will be assigned an extremely low probability. Under the probabilistic
scoring system, where a method is penalized with the negative log-likelihood of the test data,
this can present a significant problem.

So when is the estimate of the variance of X. too small? We have identified three related
conditions where the estimation of the variance ‘breaks down’.

The first condition is when all the training data in a leaf node has exactly the same (contin-
uous) value v. When we fit a Gaussian density function to this data, we choose u = v, but the
estimation of the variance, o2, poses a problem. Blindly using traditional formulae will yield
02 = 0, which will clearly have disastrous consequences for probabilistic score. It is helpful
here to consider that any continuous measurement is only ever made to a finite accuracy (+e).
For the trials in this paper we assume that the true value of each data item is equally likely to
be anywhere in the range [v — §,v + £]. Our expectation of o2, then, works out to be €/12
(see [31, Sec. 2.1]).

While 02 = €2/12 may be a reasonable estimate given a large number of data, it begins to
seem a little bold for smaller training samples. Consider if we had only 2 data (with identical
values) from which to infer our Gaussian distribution - such a small estimate of o2 hardly
seems reasonable. Continuing this line of thought brings us to the second condition; fitting a
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Gaussian distribution to a single data point. Again, estimating y is not a problem. But here
we would intuitively like a very large o2.

The third condition seems even more bizarre; how to estimate yu and o2 from no data?
Fortunately, we are using MML which is a Bayesian method of point estimation, and as such
acknowledges that we have some prior knowledge or belief of the nature of x4 and 2. This
can help us make some reasonable decisions - for instance, if we believe that y has uniform
probability of lying in the range [a, b], then we can choose an estimate fi = “T“’

An alternative approach to this situation is to estimate the Gaussian distribution from all
the training data - i.e., in the absence of any data we could borrow the data from the other
leaves, giving us a ‘prior’ belief (of sorts), on how we expect data in our ‘empty’ leaf to behave.

The last two conditions can be seen in some sense to be special cases of the first - i.e. when
all (continuous) training data has the same value. Intuitively, we feel that as the number of
data decreases, it is less reasonable to estimate a small o2. Principles of Bayesian averaging also
suggest that increasing o2 would improve the probabilistic score. Even though these conditions
can easily be detected, and addressed using ‘ad-hoc’ techniques to increase the estimate of o2,
the authors feel that these conditions warrant further research, to find a principled MML-based
approach.

It should be pointed out that in most research these issues are avoided altogether - and it
is not surprising as at first glance they seem like rather absurd special cases, and unlikely to
be met in practice. But this is not the case. Consider a decision tree modelling a continuous
attribute, and testing a discrete attribute with (say) 3 possible values. We will have one leaf
for each of the 3 possible outcomes of this test. Now imagine that in our training set one of
these values occurs only once. While two of the leaves will have plenty of data from which to
infer a Gaussian distribution, the other leaf will have only a single data point.

10 Conclusions and Future Directions

We have presented a general class of Bayesian network that uses decision trees as conditional
probability distributions. It can efficiently express context-specific independence, and is capable
of modelling a combination of discrete and continuous attributes. We have suggested that when
we know which attribute is to be predicted, it may be better to use a ‘supervised’ network
rather than an ‘unsupervised’ one. We have proposed a modification to our algorithm to allow
for this.

Our main contribution, other than extending Bayesian networks to handle continuous and
discrete data, is the identification of ‘asymmetric’ networks, and the proposal of an efficient
scheme to search for node order and connectivity. We have shown our class of networks to
perform favourably on real-world classification tasks.

There are several interesting directions for future work. The unexpectedly poor behaviour
of the supervised network on the ecoli data set warrants a more thorough analysis of the
situations in which we can expect the supervised approach to be beneficial.

The conditional probabilities provided by our networks were notably better than those
offered by the decision tree classifiers on almost all the test data. However the wine and ecoli
data sets contained several cases to which the inferred networks assigned very low probabilities.
This phenomenon is explored in section 9, where we have identified several areas for further
research.

Finally, we feel it would be interesting to investigate other classes of asymmetric network
using different languages for the conditional probability distributions, such as the family of
univariate polynomials presented in section 4.2.
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