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Abstract

Inference of the optimal neural network architecture for a specific dataset is a long standing
and difficult problem. Although a number of researchers have proposed various model selection
procedures, the problem still remains largely unsolved. The architecture of the neural network,
(the number of hidden layers, hidden neurons, inputs, etc.) directly affects its performance. A
network that is too simple will not learn the problem sufficiently well, resulting in poor performance.
Conversely, a complex network can overfit and exhibit poor generalisation capabilities. This paper
introduces a novel selection criterion, based on Minimum Message Length (MML), for inference
of single hidden layer, fully-connected, feedforward neural networks. The criterion performance is
demonstrated on several artificial and real datasets. Furthermore, the MML criterion is compared
against an MDL-based criterion and variations of the Akaike’s Information Criterion (AIC) and
Bayesian Information Criterion (BIC). In all tests considered, the MML criterion never overfitted
and performed as well as, and often better than other model selection criteria.

1 Introduction

Artificial neural networks are an efficient tool for classification and regression problems. At the present
time the most popular neural network type in use is the Multilayer Perceptron (MLP) [11, 10]. MLPs
are characterised by the number of hidden layers, hidden neurons and connections between the layers.
The architecture of a network must be determined separately for each problem - there is no single,
universal architecture suitable for all tasks. For the purposes of this paper, we are only concerned with
single hidden layer feedforward neural networks. These networks are frequently used and can model any
continuous function [13, 18, 19].

We note that the architecture of the network directly influences the success of the training process.
If we choose a network that is too small, the network will not be able to learn the problem sufficiently
well. In contrast, a network that is too large will over-fit and will commonly exhibit low generalisation
performance. Consequently, the task of selecting the initial architecture is of significant importance to
researchers in this field. To date, much of the research in the architecture selection area has concentrated
on two approaches: constructive [25] and pruning [24]. Constructive algorithms start with a trivial
network and progressively add more hidden neurons until a satisfactory solution is found. When to
add extra neurons and when to stop the growing process are two important problems a constructive
algorithm must address. Conversely, pruning algorithms start with a complex network and prune it by
removing unnecessary components. The primary difficulty with pruning algorithms is the strategy used
to decide whether a network component is removed.

This paper introduces a novel architecture selection criterion for neural networks based on Minimum
Message Length (MML) [6, 7, 5]. The new criterion is neither a constructive nor a pruning strategy.
Rather, it is an objective function that estimates the goodness of an inferred model. As such, it can
be included with any architecture selection algorithm. We compare our criterion to several variations
of the Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) and a version of the
Minimum Description Length (MDL) criterion.

Section 2 briefly introduces some related research in neural network architecture selection. Descrip-
tions of MML and MMLS8T are given in Section 3 and Section 3.1. MMLS&7 inference of neural networks



is examined in detail in Section 4. All test results and discussion are given in Section 5. Limitations
of the current approach and a brief summary of the main findings are given in Section 6 and Section 7
respectively.

2 Related Research

Several information theory based selection criteria that are applicable to neural network architecture
selection exist. A number of researchers have proposed Bayesian inference methods that do not limit
the complexity of the network model (see e.g. [12, 23]). Instead, neural networks that are as large as
computationally feasible are chosen. It is argued that provided the priors for such models are properly
specified, the networks will not overfit. However, due to high computational times associated with large
networks, one is still interested in finding the smallest optimal network sufficient for a problem.

A criterion which is commonly used in model selection is the Akaike Information Criterion (AIC).
AIC is based on the simple idea of penalising the likelihood function to prevent overfitting. A number of
different variations of AIC exist. A list of common AIC variations [20] is shown in Table 1. The model
with the minimum AIC is said to be ‘optimal’.

| Definition
N Size of dataset
M Number of parameters (e.g. network weights and biases)

(y —t)* | Squared error

AIC, log Z(%tf +213§,M

AIC, | log (22 4 2/
AIC; | log (2 ) 4+ 21
AIC, log 72(%\,_”2 + 2%2

AICo log Z(%t)Q +N_2%_1

Table 1: Variations of the AIC

An alternative information criterion that also penalises the likelihood is Bayesian Information Crite-
rion (BIC). BIC can be used to approximate the posterior probabilities of models and is derived from
log of the Bayes factor for comparing a model to the null model. A list of BIC variations [20] is shown
in Table 2. A model with minimum BIC is said to be optimal.

| Definition
N Size of dataset
M Number of parameters (e.g. network weights and biases)

(y —t)* | Squared error
BIC, log (Z(%\,—t)z) 4 log Mlog N
BIC, log Z(Zf\z_t)z " \/Mjlvogzv

BIC, log Z(%tf +M1§,gN

BIC, | log(X40) 4 2eX

Table 2: Variations of the BIC



Additionally, a number of Minimum Description Length (MDL) criteria for architecture selection
have been developed. Brake et al [15, 22] define a MDL cost of a neural network, MDLy, as:

MDLy = log(k) + 2loglog(k) + k x I + k(k — 1) + m x [ bits (1)

where, £ is the total number of neurons in the network, m is the number of directed arcs and [ is the
precision (in bits) with which weights are coded. Interestingly, no method of calculating [ is derived.
Instead, the authors somewhat arbitrarily choose [ as 16 bits for integers and 32 bits for real numbers.
The encoding of the data given the network structure is dependent on the underlying data form. If the
data is binary, or bipolar, this is straightforward. Otherwise, for discrete data, each datum is encoded
using 16 bits. In comparison, real valued data is encoded using 32 bits for each datum. If the network
incorrectly classifies a pattern, the pattern ‘is transmitted using the input together with the correct
output’. The model with the minimum MDLy is said to be optimal.

3 Overview of MML

Minimum Message Length (MML) [6, 7, 5] inductive inference is an objective function that can estimate
the goodness of an inferred model. In the context of this paper, we are given a dataset and wish to infer
the optimal neural network architecture for that dataset. Obviously, a large number of possible neural
networks exist which solve the problem. Using MML, one can perform a direct comparison between
alternative hypotheses (that is, neural networks) and select one which is optimal; that is, the smallest
network architecture that can do the problem sufficiently well.

The main idea behind MML is often explained using the following simple scenario. Assume there
exists a sender wishing to transmit a message to a receiver via a noiseless transmission channel (see
Figure 1). MML states that the message is transmitted in two parts:

1. an encoding of the model 8, and

2. an encoding of the data given the model, z|6.

i transmission channel Recei
Transmitter > eceiver

(noiseless)

Figure 1: Sender-Receiver model

A model that minimises this two part message is deemed optimal. The first part of the message is
arranged to be the answer to an inference problem that we are interested in. For example, the optimal
neural network architecture for a particular dataset. The second part of the message reflects how well
the model fits the data. Obviously, a simple model will have a shorter first part of the message than a
complex model. However, the complex model may fit the data better and have a shorter second part of
the message. When using MML, we optimise this trade-off between the model complexity and how well
the model fits the data. This is illustrated in Figure 2.

3.1 DMDMLS8T7 Inference

The most commonly used MML approximation in practice is MML87 [7, 5]. MMLS87 is an efficient
approximation to strict MML [9, 5, 14] and states that the total message length for a model © with
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where h (5) is the prior probability, f (m|§) is the likelihood function, n is the number of parameters, x

is a dimension constant! and F (5) is the determinant of the expected Fisher information matrix, whose
entries (i,7) are:
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The Fisher information determines how sensitive the likelihood function is to the parameters . In
the context of this paper, the Fisher information states how sensitive the output of a neural network
is to the weights and biases. For example, if the output of a neural network is not very sensitive to a
particular weight (or bias), we can state that weight (or bias) less precisely. Conversely, a weight that
affects the network output significantly must be stated more accurately. A model that minimises the
total message length (2) is said to be ‘optimal’.

4 MML Inference of Neural Networks

The MMLS87 based neural network selection criterion is introduced in this section. Note that only
the most significant formulae are provided here - the appendix contains complete derivations for each
equation.

LAlso called lattice constants. The first two are: k1 = %, Ko = Tf/i'



4.1 Notation

Consider a single-layer feedforward network comprising I inputs, H hidden neurons and O outputs. We

can write a single output of the aforementioned network, yff), as:

H
v =Y (wigu) + )
h=1

where (2 and b are the output weights and biases respectively. That is, wg) denotes the weight

(2)

from hidden neuron A to output neuron o and by’ denotes the bias for output neuron o.
The output of hidden neuron h with inputs & € R? is:

I
yy) = fO (Z (wlp)s) + b§j>> (5)
i=1

where f(!) is a non-linear transfer function; w; h) denotes the weight from input ¢ to hidden neuron h
and bgl) denotes the bias for hidden neuron h.

We are given a data set D = {(z1,£1), ..., (Zp,1p),--- (Zn,tn)} and wish to minimise the following
error (performance) function:
B(E7) =35 (42 - 1) ©)
p=1o0=1

This is commonly approximated by minimising the error for each pattern p:
© 2
Ey (5, 72) = > (42 = tho) (7)
o=1

4.2 Likelihood Function

Assuming the target data from the function is generated with additive Gaussian noise and the data
samples are independent, the likelihood function is:

1@z, @, B) HH B“ 5 (o ~tee)” (8)

where @ = {@), 5?51, 5} (that is, all network weights). The standard deviation of network output
0, Bo, 18 Bo = a%, Therefore, the negative log-likelihood function is:

L{|Z, @, F) ZZ( (ypo —tpo) —log60> +

p=1o0=1

0 log 27 (9)

4.3 Fisher Information

The Fisher information matrix determines how sensitive the likelihood function is to the parameters
(see Section 3.1) - that is, network weights and biases. Since most neural networks will have a large
number of parameters, the Fisher information for the entire network is difficult to compute and prone
to numerical instabilities [21]. Subsequently, we opted for the following block-diagonal approximation.
The matrix is divided into blocks where each block corresponds to a single neuron. The approximation
assumes individual neurons are independent. A diagram of the block-diagonal approximation is given in
Figure 3.

The determinant of the full Fisher information matrix is equal to the product of the individual block
determinants. This property reduces the time taken to evaluate the full determinant as well as the
probability of numerical errors.
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Figure 3: Fisher information block-diagonal approximation

4.3.1 Fisher Information for an Qutput Neuron

Given a feedforward network with H hidden neurons, the Fisher information matrix for output neuron

o can be written as:

where:

(

(o)
yﬁ,lz) yg()l))

1) (1
Z/;f}yiﬂ)

(7)

0

(

= 3, Fo
) () () o
() () () o
M) O )
by - W

Note that the summation over all patterns has been omitted for reasons of clarity.

4.3.2 Fisher Information for a Hidden Neuron

The Fisher Information for a hidden neuron h is:

P (1)

(10)

(11)



where:

@tV (owme () (mmmn () (o0 ()
(Cﬂpﬂpl (f')2) (2pa f)’ ('TPprH (f')2) (%2 (f')2)
Fy, = : : : (13)
(zomrzot (1) (momzee (1) oo @) (e (1))
(e () (m () o () (1)’
Note that f' = f;}b)' and the sum over all patterns is omitted from each matrix entry for reasons of

clarity.

4.3.3 Fisher Information for the Neural Network

From (10) and (12), the Fisher information for the entire neural network is:

O
(H |55 F |> (H > (5owf2)’ Fh> (14)
h=1 |o=1
Hence: o - o
LogF =13 (og (2R ) + 2 3 (10 Z( w(2)) (15)
2 g - 2 peer g ot o 2 —~ g ~ ho
where:
log (|32F,|) = 2(H +2)logp, + log|F,| (16)
0 9 © 2
log ( Z (Bowfo)) F, ) = (I+1)log (Z (Bowfo)) ) + log | B | (17)

Due to numerical issues, |F,| and |F,| may be evaluated as zero or very small positive (or negative)
numbers. This can often cause (16) and (17) to become negative, which is not acceptable. In such cases,
(16) and/or (17) are set to zero.

4.4 Priors

The prior on a network weight or bias is:

hy (W) = 4—1()sech2 (%) (18)
The prior on j, is: .
hs (Bo) = 7 (19)

4.5 Message Length

Substituting (9), (15), (18) and (19) into (2) gives the total message length for a single hidden layer
neural network:

msglen = log" H — log (hw(zﬁ)hg(g)) logF+L + - (logk +1)

= log" H —log (hy(w)) — log (hg(ﬁ)) —logF+ L+ (logk +1)
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P
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where M is the total number of weights and biases in the network. A network that minimises (20) is
deemed optimal. The log™ H [16] in (20) denotes the cost of transmitting the network architecture - that
is, the number of hidden neurons. Individual connections need not be transmitted under the assumption
of fully connected networks. We define log* as:

log™ H ~ log (H) + log (log (H)) + log (2.865) (21)

4.5.1 MML Estimator for 3,

Assuming a single output network, the MML estimator for 3, is:

N-M-2
E]pvzl (3/1(0%) - tpo)2

For multiple output networks, the MML estimator for 3, is not analytically solvable. Instead, we use
(22) as an approximation to the MML estimator for 3 in all networks. Furthermore, for (22) to be
meaningful, N must be greater than (M + 2). Intuitively, inference of a model where the number of
parameters is greater than the number of data does not make sense (although it can be done). Hence,
the above constraint is minor.

Brnr (22)

5 Results and Discussion

The outlined MMLS87 based neural network criterion was tested on several artificial problems, where the
optimal neural network architecture is known. Furthermore, a number of real datasets, for which the
optimal neural network architecture is unknown, were also used. We compared our criterion against AIC
and BIC variations and a version of the MDL selection criterion. Table 3 shows all functions used during
testing. The neural network software was implemented in a data mining environment CDMS [17].

Function name | Function definition | Optimal network size
7 i@ = N (0,0) 21
f2 f2(z) = e *sin(27z) + N (0,0?) 1-5-1
f3 f3(z) =z(z —1)(z+1)+ N (0,0?) 1-3-1
Iris UCI Repository of machine learning databases|8] Unknown

Table 3: Functions used for criterion evaluation

For each artificial function, the testing procedure consisted of the following steps:



1. Train a neural network of optimal?® size using the conjugate gradient with Polak-Ribier updates
training algorithm. Since we know what the answer is for artificial problems, this is a reasonable
thing to do.

2. Add noise to the output of this trained neural network. The neural network from (1) is then the
true function we will try to infer.

3. Attempt to infer the original network (plus noise) from (1) using each of the following criteria:
MMLS87, AIC, BIC and MDLy .

The size of each data set was varied between N = 25 and N = 400. The noise standard deviation was
also varied from o = 0.01 to ¢ = 0.35. Furthermore, all function inputs were uniformly sampled in

range (—1,1). During the testing process, the effect of dataset size and noise standard deviation was
investigated for all criteria.

5.1 Function f,

This is the simplest function and was originally modelled with a two hidden neuron network. MML
inferred the optimal architecture for o < 0.15 even with 25 data points. When o > 0.15, MML underfitted
and inferred one hidden neuron as the optimal architecture (see Fig. 4). Improvements in inference results
were seen as the dataset was increased to 50 samples. Here, MML inferred the optimal architecture for all
noise levels where o < 25. When the amount of noise was too high (¢ > 0.25), MML again underfitted.
This is of course the proper thing to do. For N = 100, MML inferred the optimal architecture for all noise
levels apart from o = 0.35. When o = 0.35, the MML criterion underfitted (see Fig. 4). Given datasets
of 200 and 400 samples, our criterion inferred the optimal architecture for all noise levels considered.

f(x) = X+ N(0,s); Data points: 25 f(x) = X2+ N(0,s); Data points: 50
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Figure 4: MML Inference of Function f1, N =25 and N = 50

The MDLy criterion inferred the optimal architecture for ¢ < 0.05 when using a dataset of 25 points.
As the noise level was increased, o > 0.05, the MDLy criterion overfitted and inferred three and four
hidden neurons as optimal (see Fig. 5). For N = 50, slightly improved inference results were observed.
The MDLy criterion inferred the optimal architecture for ¢ = 0.01,0.05,0.15,0.20 and 0.30. Overfitting
was again observed for o = 0.10,0.25, where MDLy inferred three hidden neurons rather than two. For
the largest amount of noise, MDLy underfit - a network of one hidden neuron was inferred. This is

2An optimal network in this case is one that is much better than a smaller network; this optimal network therefore has
very good prediction capabilities



illustrated in Fig. 5. Moreover, overfitting was also observed even for ‘large’ amounts of data - 100, 200
and 400 data points respectively.
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Figure 5: MDLy Inference of Function f1, N =25 and N = 50

In comparison, the AIC; and AIC, criteria inferred the optimal architecture for o < 0.05 using a
dataset of 25 points. For larger noise levels, both criteria overfitted and inferred much larger networks
(from three to seven hidden neurons) as optimal (see Fig. 6). This is not desirable, especially for such a
small dataset. As the amount of data was increased, similar overfitting was observed. Conversely, AIC3
performed somewhat better. The criterion overfitted for all dataset sizes, albeit less often than AIC; and
AIC,. Interestingly, AIC4 performed better still. For N = 25, a neural network of one hidden neuron
was inferred as optimal for all noise levels considered. As the dataset size was increased, the performance
of AIC, improved (see Fig. 6). For example, when N > 200, AIC, inferred the optimal architecture
for all noise levels. The AICC criterion did not perform as well as AIC,4 - the optimal architecture was
inferred less often. Additionally, overfitting was observed for some datasets (for example, N = 25).
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Figure 6: Inference of Function f1: AIC; (left) and AIC, (right)

The different variations of the BIC performed similarly to the aforementioned AIC-based methods.
Both BIC; and BIC, did rather poorly, commonly overfitting regardless of the dataset size. BICjs
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performed much better although overfitting was still observed for N = 25 (see Fig. 7). For N > 50,
BICj; inferred the optimal architecture for all noise levels considered. Comparatively, BIC, did reasonably
well as no overfitting was observed for all dataset sizes and noise levels. However, BIC, often penalised
the likelihood too much and inferred the simplest model as optimal. For example, when N < 50, BIC,
inferred one hidden neuron as optimal for all noise levels considered (see Fig. 7).
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Figure 7: Inference of Function f1: BIC;3 (left) and BIC, (right)

5.2 Function f,

Function f> is more difficult to model than f;. Given a dataset of NV = 25 samples, the MML criterion
inferred a network with one hidden neuron as optimal for all noise levels considered. This is a reasonable
thing to do for the small dataset. For N = 50, MML inferred the optimal architecture when o = 0.01
(see Fig. 8). As the noise was increased, MML inferred three and four hidden neurons as optimal. For the
largest amount of noise, our criterion inferred the simplest model (one hidden neuron). Similar results
were observed when the dataset size was increased to N = 100 (see Fig. 8).
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Figure 8: MML Inference of Function f2, N =50 and N = 100

The MDLy criterion inferred the optimal network size when o < 0.05 and N = 25. For larger noise
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levels, MDLy criterion underfitted - commonly inferring a network of three or four hidden neurons as
optimal. For N > 50, similar results were observed (see Fig. 9). The optimal architecture was inferred
for low noise levels, while increased noise levels caused underfitting. No overfitting was observed for all
datasets and noise levels tested.
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Figure 9: MDL Inference of Function f2, N = 50 and N = 100

Conversely, the AIC; and AICs criteria performed very poorly for all datasets. Even when run on
a small dataset, N = 25, both AIC; and AIC, overfitted. For example, AIC; inferred seven hidden
neurons as optimal for o = 0.10,0.15. As the dataset size was increased, significant overfitting was still
observed for both criteria. When N > 200, AIC; commonly inferred six or more hidden neurons as
optimal rather than five. The AIC;3 criterion performed significantly better than both AIC; and AIC,.
Here, no overfitting was observed for all datasets tested. For N = 25, AIC3 inferred three hidden neurons
as optimal for most noise levels. When o = 0.10, AIC; inferred the optimal architecture. As the dataset
size was increased, N > 50, three or four hidden neurons were almost always inferred as optimal.
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Figure 10: Inference of Function f2: AIC; (left) and AIC, (right)

Additionally, the likelihood penalty of AIC, caused the criterion to often underfit. For example, when
N = 25, AIC, inferred one hidden neuron as optimal for all noise levels considered. Similarly, when
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N = 50 one hidden neuron was inferred as optimal for ¢ > 0.15. When o < 0.15, AIC, inferred three
hidden neurons. Although the inference improved for larger datasets, AIC4 never inferred the optimal
architecture. In comparison, the AICC criterion inferred three hidden neurons for N = 25 and o < 0.30.
When o = 0.35, the simplest network of one hidden neuron was inferred as optimal. For N = 50, AICC
inferred three hidden neurons as optimal for all noise levels tested. As the amount of data was increased,
similar results were obtained. No overfitting was observed in all tests.
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Figure 11: Inference of Function f2: AICy (left) and AICC (right)

Moreover, the BIC; and BIC, criteria again performed poorly. Both criteria commonly overfitted
even for small datasets (see Fig. 12). Adding more data did not stop overfitting. For example, when
N = 200 both BIC; and BIC, again overfitted and inferred six or more hidden neurons as optimal.
Conversely, BIC3 performed better on all datasets considered. For N < 200, BIC3 inferred three or four
hidden neurons as optimal for almost all noise levels considered. Furthermore, BIC, inferred one hidden
neuron as optimal for all N < 50. When N = 100 and ¢ < 0.05, a network of three hidden neurons was
inferred as optimal. No overfitting was observed for BIC, in all tests.

f(x) = exp(-x) sin(2*pi*x) + N(0,s); Data points: 25 1) = exp(x) Sin(2*pi*) + N(0,s); Data points: 50
05 : " ‘
’ Hidden 1 —+—
Hidden 4 ---x--- il S——
-1 S— B S—— Hidden 5 - _| Hidden 4
Hidden 6 = Hidden 6 &
25
15 .
2 20
T e S A 3 ENDUNN I S S SRR S - k-
g 3
8 g 15
-3
-35 % NS SRS NS — I T T ]
S -
e e -
5
-45
Qg
s 0
0 0.05 0.1 0.15 0.2 0.25 03 0.35 o 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Noise standard deviation Noise standard deviation

Figure 12: Inference of Function f2: BIC, (left) and BIC, (right)
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5.3 Function f3

In comparison to previous functions, the optimal neural network for function f3 had three hidden neurons.
Given only 25 data points, the MML criterion inferred a network of one hidden neuron as optimal for
all noise levels. This is illustrated in Fig. 13. For N = 50, MML inferred the optimal architecture when
o = 0.01. MML underfitted for ¢ = 0.05 and inferred the optimal network to have two hidden neurons.
As the noise was increased, MML inferred one hidden neuron as optimal (see Fig. 13). This is of course
a reasonable thing to do.
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Figure 13: MML Inference of Function f3, N =25 and N = 50

The MDLy criterion inferred the optimal architecture when N = 25 and o = 0.01, 0.05,0.20, 0.25, 0.35.
For all other noise levels (that is, o = 0.10,0.15,0.30), MDLy inferred two hidden neurons as optimal.
This is shown in Fig. 14. Similar results were observed for N = 50. Here, MDLy inferred the optimal
architecture for o < 0.05. However, the MDLy criterion overfitted for larger data sets. When N = 200
and o = 0.2, MDLy inferred four hidden neurons as optimal rather than three (see Fig. 14).
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70 T 65 T
Hidden 1 —+— Hidden 1 —+—
Hidden 2 ---x--- Hidden 2 —--x---
Hidden 3 ------ Hidden 3 ---3---
65 Hidden 4 & Hidden 4 @
60 K

60

55

55

50

50

45

Description length (bits)/25
Description length (bits)/200

45

© \\ -~ — ’ e 3 . . \ ’v‘v:f';/

40 [

35

S_;:r_v,ﬁ-»,-;

30 35
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Noise standard deviation Noise standard deviation

Figure 14: MDL Inference of Function f3, N =25 and N = 200

Conversely, the AIC; and AICs criteria again performed rather poorly. Significant overfitting was
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observed even for small datasets, such as NV = 25. Increasing the amount of data did not improve the
performance of either method as overfitting was still common (see Fig. 15). In comparison, given a
dataset of 25 samples, AIC3 inferred two hidden neurons as optimal for o < 0.10. When o = 0.20, AIC3
overfitted and inferred four hidden neurons as optimal, rather than three. This is shown in Fig. 15. No
overfitting was observed for larger datasets.
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Figure 15: Inference of Function f3: AIC, (left) and AIC3 (right)

The AIC, criterion inferred the simplest network as optimal for N < 50. As the amount of data was
increased, AIC, inferred one or two hidden neurons as optimal. Interestingly, AIC4 never inferred the
optimal architecture. Moreover, the AICC criterion performed rather similarly and inferred one or two
hidden neurons as the optimal architecture for all datasets. Both AIC4 and AICC did not overfit for all
datasets and noise levels tested.
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Figure 16: Inference of Function f3: AICy (left) and AICC (right)

As in f; and fo, the BIC; and BIC, criteria performed poorly. Overfitting was observed for some
noise levels in all datasets tested. In comparison, BIC3 inferred one or two hidden neurons as optimal for
all datasets and noise levels. The last BIC variant examined, namely BIC,, did not do well for function
f3. BICy inferred the simplest network as optimal for all N < 200.
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5.4 Iris Dataset

The iris dataset is a classification task and requires a network to classify between three different types
of iris plants. The dataset comprises three classes of 50 instances each. The first two input attributes,
namely sepal length and sepal width, were removed due to low class correlation. The optimal neural
networks inferred by each criterion are shown in Table 4. The consensus is that a two hidden neuron
network is optimal for this dataset [3, 2]. The following criteria inferred the optimal network size: MML,
MDLy, AIC3 and AICC. The remaining criteria either overfitted (AIC;, AIC,, BIC; and BICs) or
underfitted (AIC4, BIC3 and BIC4). These conclusions are in agreement with the results observed for
the three artificial datasets.

Criterion name | Optimal network (I-H-O)

MML 1-2-3
MDLy 1-2-3
AIC, 1-3-3
AIC, 1-3-3
AICs 1-2-3
AIC, 1-1-3
AICC 1-2-3
BIC, 1-3-3
BIC, 1-3-3
BIC; 1-1-3
BICy 1-1-3

Table 4: Inferred optimal networks for the Iris dataset

6 Limitations and Future Work

Although the MML criterion performed well on the artificial and real datasets, several limitations of the
current method exist. Firstly, our criterion is only applicable to single hidden layer neural networks. This
is not a major limitation as such networks can approximate any real, continuous function to arbitrary
accuracy. In all conducted tests, maximum likelihood estimators for the network weights (and biases)
were used. It would be of interest to obtain MML estimators and publish a comparison between the two.
Additionally, the current MML approximation is mainly suitable for regression problems and may not
perform well when applied to n-ary classification.

Future work will include an extension of the current criterion to networks with multiple hidden layers.
Evaluation of more priors for network parameters and the robustness of MML to the choice of prior is
necessary. Stochastic methods using Markov Chain Monte Carlo (MCMC) techniques [4] are also of
interest. Moreover, MML inference of neural networks for classification is being looked at.

7 Conclusion

The architecture selection problem in neural networks is a difficult research topic. This paper has intro-
duced a novel selection criterion for single hidden layer, feedforward neural networks. In particular, we
have addressed the issue of architecture selection in neural networks for regression. The new criterion
is based on MMLS87 and uses a block-diagonal Fisher Information approximation that assumes neuron
independence. Tests on real and artificial datasets were conducted to analyse the criterion performance.
Our criterion performed very well in all test cases as compared to the MDLy  criterion and several vari-
ations of the AIC and BIC criteria. For all test functions, MML did not once overfit. When the amount
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of data was too small (as compared to the parameter space), MML underfitted as is only reasonable.
Further application of the MML criterion to music genre classification [1] has shown promising results.
Conversely, the MDLy criterion performed inconsistently and has overfitted functions f; and fs. The
AIC,, AIC,, BIC; and BIC; criteria performed rather poorly in almost all test cases. These criteria
overfitted even for small dataset sizes. BIC, often underfitted given datasets comprising 100 or more
samples due to the severe likelihood function penalty. The remaining criteria, namely AIC3, AIC,, AICC
and BICj3, performed reasonably well on most functions tested. However, overfitting was still evident
especially for AIC3 and BICj3.

8 Appendix

8.1 Equation Derivations

8.1.1 Likelihood Function
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8.1.2 Fisher Information
First Partial Derivatives for the Output Neuron
First partial derivatives of (23):
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Second Partial Derivatives for the Output Neuron

Second partial derivatives of (23) are:
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First Partial Derivatives for a Hidden Neuron

First partial derivatives of (23) for hidden neuron h:
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Second Partial Derivatives for a Hidden Neuron
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