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Abstract. Although Computed Tomography (CT) is a mature disci-
pline, the development of techniques that will further reduce radiation
dose are still essential. This paper makes steps towards projection and re-
construction methods which aim to assist in the reduction of this dosage,
by studying the way noise propagates from projection space to image
space. Inference methods Maximum Likelihood Estimation (MLE), Akaike’s
Information Criterion (AIC) and Minimum Message Length (MML) are
used to obtain accurate models obtained from minimal data.

1 Introduction

The optimal reconstruction of images from traditional Computer Tomographic
(CT) projections, in the presence of noise, is a real-world problem. High-resolution
CT scans deliver a large amount of radiation to the patient. CT scans are used
frequently by physicians to diagnose different forms of cancer and many other
conditions. The number of CT scans performed has increased, from 3 million in
1980, to 62 million in 2006 [1]. CT scans now account for half the radiation dose
that an American receives per year.

We are interested in understanding how noise propagates through projec-
tions, to the reconstructed images, through a known reconstruction method, the
Finite Radon Transform. It is hoped that through this understanding, we can
take steps towards obtaining lower dose CT scans with the same resolution.

Minimum Message Length (MML), Maximum Likelihood Estimation (MLE)
and Akaike’s Information Criterion (AIC) are used in this context to model the
noise in the CT reconstruction data, as well as modelling the underlying data.
It is hoped that the use of these modelling techniques will allow a means to
reconstruct images from minimal data.

Current CT methods of reconstructing images from projection data include
Filtered Back Projection and Fourier Inversion. These methods use approxima-
tions in the methods they use for the reconstruction of projection data, the
Fourier Inversion for example interpolates between projection values to obtain
the reconstructed image. This masks how the noise propagates through the pro-
jections to the reconstructed image.

The reconstruction method used here is an exact reconstruction method,
called the Finite Radon Transform (FRT). This method does not use any ap-
proximations or any other a priori methods of data manipulation. There are



however two constraints that are imposed on this method of reconstruction;
they are that the data is assumed to be in form of a discrete matrix, and that
this matrix is mapped to a torus.

The Finite Radon Transform is used in this preliminary study because it has
been shown [2] that projections from real X-ray CT data can be mapped into the
FRT projection form via the use of the Mojette transform [3], as an intermediary
stage. This approach bypasses the need for approximation or interpolation in the
reconstruction method, as the FRT is exactly invertible. All of the required data
processing can be done on one-dimensional projection data. Also, as the CT data
that is acted upon is digital data, it can be assumed to be discretized.

Understanding the propagation of noise from FRT through Mojette to real
CT projection data and the reconstructed image is an essential prelude to the
practical application of the FRT for tomographic reconstruction.

Noise in real CT projections arises from many different sources, these include
X-ray scatter, Quantum noise of the X-rays (X-ray photon statistics), the data
acquisition system - the electronic noise produced by this system, can combine
with the photon noise.

By studying the effect that noise has on the inversion of projection data, it is
hoped that we can use this information to assist in the correction of noisy FRT
projection data. This information could then be used to assist in the reconstruc-
tion of projection data from other reconstruction methods.

The FRT has not been used in this context before, and that makes this
research new and novel. Whilst the FRT is not comparable with any of the
current methods of CT projection and reconstruction, it is possible to convert
the projection data from conventional CT projections to another projection-
reconstruction method, the Mojette method. This method is much closer to
conventional CT methods than the FRT method. Once the data is in the form
of the Mojette projection-reconstruction method, this data can be converted to
the Finite Radon Transform.

The beauty of FRT is the fact that it has a fixed pre-defined set of projections,
so there is no need for us to choose projection angles. For a noise free set of
projection data of a PxP matrix, when P is a prime number, then the inverse also
has a well defined algorithm, which makes the inverse simple for noise free data
[4]. The exactness of FRT reconstruction method is the property that we have
exploited for this research, in conjunction with the data estimation techniques
Maximum Likelihood Estimation (MLE), Akaike’s Information Criterion (AIC)
and Minimum Message Length (MML).

2 Discrete Projection Techniques

The Finite Radon Transform was used for this research because it provides a
means for exact reconstruction without the need for any approximations. The
Mojette Projection and Reconstruction methods provide the link between the
Finite Radon Transform, and conventional CT methods, since there is a known
mapping between the Finite Radon Transform and the Mojette method, and



there is also a known mapping between the Mojette method and conventional
CT data.

2.1 Finite Radon Transform (FRT) Projections

The data used for the Finite Radon Transform (FRT) is in the form of a discrete,
square matrix of size P×P , called an ‘Image Matrix’, where P is a prime number.
As stated before, the image matrix is also assumed to be mapped to a torus,
allowing projections of the image data to wrap around the sides of the image
matrix [5]. The next ‘pixel’ of the image array that is part of the same projection
to be sampled is determined by moving m pixels across and 1 pixel down. Since
the image matrix is a torus, the movements can wrap around the sides.

The definition of the Finite Radon Transform given here is quite concise. For
an in-depth discussion of the Finite Radon Transform and the projection and
reconstruction methods, see [4, 5].

t=1    m= 3
0 1 2

0

1

2

(a) 0 1 2

0

1

2

t(x)

y

0

0 1 2

1

2

t(x) t(x)

y y

(c)(b)
t=1      m=0 t=1    m= 2

Fig. 1. FRT projections for a P ×P = 3×3 image matrix (a) A projection where t = 1
and m = 0. (b) A projection where t = 1 and m = 2. (c) Projection m = P and t = 1
sums the pixel values along row 1.

2.2 Mojette Projections

The Mojette technique is an asymmetric projection technique, where the pro-
jection angles are specified by discrete rational angles tan−1(q/p) and the beam
spacing by 1/

√
p2 + q2, where p and q are integers and q > 0. Thus the projection

value becomes the sum of the pixels, whose centres lie on the line t = qx − py
[4]. This means that image matrix no longer has to be mapped to a torus. The
Mojette projections are close in form to that of the real projection data acquired
in a traditional CT scan.

For further information on the Mojette Transform see [4, 6].



3 Modelling Techniques

Recall from the above sections that the FRT and Mojette projection and re-
construction methods are efficient and effective, projection and reconstruction
methods. However they both suffer problems in the presence of noise. There
are several corner based Mojette inversion methods [6], in which noise in the
projection matrix is propagated in from the corners, and as the corners of the
projection matrix tend to have larger amounts of noise, the propagation of noise
can be substantial. In the Finite Radon Transform noise from projection data is
carried from projection space to image space. The FRT is an exact reconstruc-
tion method that spreads a uniform amount of noise from projections into the
image.

The poor performance of these methods in the presence of noise provides
the need for a method of noise estimation, outlined below are three proposed
methods for noise estimation, namely Maximum Likelihood Estimation (MLE),
Akaike’s Information Criterion (AIC) and Minimum Message Length (MML).

The research consisted of two main noise models that were added to the
image matrix, the image matrix which was a fixed binary image. In the first of
these models, Gaussian noise was added to the image matrix, with known µ = 0,
we varied the sigma values from 0 < σ < 1. The value of µ was assumed to be
known when using the modelling techniques, this model is known as the ‘No
Cut’ model. The data modelling techniques were used to infer the value of σ.

For the other noise model, Gaussian noise was added to the image in two
distinct regions, that is two different values for σ, namely σl and σr, once again
we set a known µl = µr = µ = 0. These regions were separated via a straight
line, whose centre lay in the centre pixel, the line had associated with it an angle
θ, allowing us to specify different regions of noise. This is referred to as the ‘Cut’
method, since the line ‘cuts’ the image into two noise regions. In this case, data
modelling techniques were used to infer the value of θ as well as the value of
the two σ values, from the two distinct noise regions. Figure 2 demonstrates an
example ‘cut’ of a 7 × 7 image, it also shows the assumption that was used in
our testing, this was that any pixel through which the line passes through the
centre is counted as part of the σr side.

The data modelling methods that are outlined below all use the following
method for encoding θ, A =

∑N
i=1(φ(i)), where A represents the total number

of angles that have been examined for a particular matrix size P , N = P−1
2 , and

φ is the Euler’s Totient. If we assume that the angles are ordered by size, then
to refer to a certain angle, we can simply refer to the angle via an index i, where
0 < i < A. Therefore we encode θ as log (A) + log (8), where log (8) encodes the
octant, which the line passes through. The value of A is fixed for a particular
value of P , due to the fact that we only examine rational angles in the range
0 ≤ θ < 45. The FRT and Mojette both use rational angles for constructing the
projection space.
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Fig. 2. An example cut, θ = 45◦, σl applies to unshaded pixels, σr applies to shaded
pixels, µ is set to 0 and is known.

3.1 Maximum Likelihood Estimation (MLE)

Maximum Likelihood is based on the concept of conditional probability. The
‘Likelihood’ of parameter d given an event E is P (d|E), in this case we use the
observed data to estimate the parameters.

A drawback of Maximum Likelihood is that it will always prefer a more
complex model, thus in our tests it always chooses the model with the ‘cut’, as
per (2), over the model with no ‘cut’, as per (1),

L(x|µ, σ) = 1
2 × P 2 × log (2π) + P 2 × log (σ) + 1

2σ2 ×
∑P 2−1

i=0 (xi − µ)2 (1)

where P is the size of the image matrix, and xi is a pixel in the matrix and

L(x|µ, σl, σr) = nl × log (
√

2πσl) + 1
2σ2

l

∑nl−1
i=0 (xi − µ)2 + nr × log(

√
2πσr)+

1
2σ2

r

∑P 2−1
i=nl

(xi − µ)2 + log (A) + log (8)
(2)

where nl and nr refer to the number of pixels to the left and right of the line
which separates the two noise regions, nl + nr = P 2 and nl ≤ nr.

In (1) there is assumed to be one Normal noise distribution to which all pixels
belong, and as the image matrix is square, and of size P ×P , there are P 2 pixels.
For (2), the noise is assumed to come from two separate noise distributions that
are partitioned by the ‘cut’.

3.2 Akaike’s Information Criterion (AIC)

Maximum Likelihood Estimation can be improved by using the ‘Akaike Infor-
mation Criterion’ (AIC), this was proposed by Akaike in 1970, and is a method
of performing penalised maximum likelihood. The addition of this penalty fac-
tor means that, although there may be a model with a higher [negative] log
likelihood, this may not be chosen if its model is sufficiently complex [7].



Akaike’s Information Criterion attempts to minimize the quantity

AIC = 2× L + 2K (3)

where L refers to the [negative] log-likelihood, such as either (1) or (2) above,
and K refers to the number of free parameters.

3.3 Minimum Message Length (MML) Models

MML is a technique for modelling data, originally proposed by Wallace and
Boulton [8], and based on Occam’s Razor, ‘the simplest explanation is the best’.
This means that with MML if there are two messages that model the data equally
well, the one with the shortest length will be chosen. If we consider our data as
a string S, then a message (I) is defined as being two parts, I = H : A, where
‘:’ is concatenation, H is a hypothesis about the source of the data string S, and
A is an encoding of the data using a code the would be optimally efficient if the
hypothesis H, were true [9].

For further discussion of the MML coding technique see [8–10], for a detailed
comparison between AIC and MML, see [11]. The approximation to the message
length that was explored in this research, is the Quadratic Approximation to
Message Length method, for a full discussion of this method see [12, 10].

The general form of this approximation is

MessageLength ≈ − log (θ) + L +
1
2

log F +
D

2
(1− log (12)) (4)

where θ is the prior, L is the [negative] log-likelihood, F is the determinant of
the expected Fisher Information Matrix and D is the dimensionality.

Minimum Description Length (MDL) is a method that is very similar to
MML, for more information on MDL see [13]. For a discussion of the relationship
between MML and MDL see [14, sec. 11.4] and [10, sec. 10.2].

There were two possible models for MML to use.
These message length for the ‘no cut’ model (with D = 1) is given by

MessageLengthnoCut = log (2Rσ) + 1
2 × P 2 × log (2π) + P 2 × log (σ)+

1
2σ2 ×

∑P 2−1
i=0 (xi − µ)2 × 1

2 log
(

3
σ2 × P 2

σ2

)
+ D

2 (1− log (12)) (5)

where P refers to the size of the image matrix, and R = 6.
In this message length the prior is 1

2Rσ (for e−R ≤ σ ≤ eR) , L is given by (1)

and the expected Fisher Information is
(

3
σ2 × P 2

σ2

)
.

The message length for the ‘cut’ model (with D = 2) is given by

MessageLengthcut = log (2Rσl) + log (2Rσr) + log (A) + log (8) + nl×
log (

√
2πσl) + 1

2σ2
l

∑nl−1
i=0 (xi − µ)2 + nr × log(

√
2πσr) + 1

2σ2
r

∑P 2−1
nl

(xi − µ)2+
1
2 × log

(
3

σ2
l

× 3
σ2

r
×

(
nl

σ2
l

+ nr

σ2
r

))
+ D

2 (1− log (12))
(6)



where nl and nr refer to the number of pixels to the left and right of the line
which separates the two noise regions, nl +nr = P 2 and nl ≤ nr, P refers to the
size of the matrix, and R = 6 .
In this Message Length the prior is given by 1

2Rσl
× 1

2Rσr
(for e−R ≤ σl ≤ eR

and e−R ≤ σr ≤ eR), L is given by (2) and the expected Fisher Information is
given by

(
3

σ2
l

× 3
σ2

r
×

(
nl

σ2
l

+ nr

σ2
r

))
.

4 Results

Testing involved varying values of σ for the ‘No Cut’ model, where 0 < σ < 1,
and varying σl, σr and θ, for the ‘Cut’ model, where 0 < σl < 1, 0 < σr < 1,
and 0 ≤ θ < 45. Tables 1 and 2 show sample results from our testing. All tests
were run on an AMD Athlon X2 4400, with 2Gb RAM, with run-times in the
order of 35 seconds for P = 101.

The Kullback-Leibler (KL) Distance [10, Ch. 4] [11, sec. 6.1.4] for two differ-
ent Normal distributions, from N(µ1, σ

2
1) to N(µ2, σ

2
2) is given by (7).

KL = log
σ2

σ1
+

σ2
1 − σ2

2 + (µ1 − µ2)
2

2σ2
2

(7)

Table 1. Results of an average over 100 runs per entry, with varied matrix (P ) sizes,
with one region of noise having value of σ = 0.9 and known µ = 0, the true model in
this case has no ‘cut’. In Tables 1 and 2 bold entries denote minimum at each P .

Method P Mean KL σKL

× 103 × 104

MLE 7 3.3775 9.0906
AIC 7 3.1871 8.0018
MML 7 2.8444 2.8233
MLE 13 3.0014 4.5181
AIC 13 3.4823 4.7807
MML 13 2.7876 1.3227
MLE 23 2.9298 3.0811
AIC 23 2.9376 3.5868
MML 23 2.7816 0.8471
MLE 29 2.9090 2.6427
AIC 29 2.8756 2.4625
MML 29 2.7771 0.5874
MLE 31 2.8610 2.5891
AIC 31 2.8588 2.5151
MML 31 2.7746 0.6432
MLE 101 2.8050 0.9532
AIC 101 2.7964 1.3412
MML 101 2.7767 0.1920



Table 2. Results of an average over 100 runs per entry, with varied matrix (P ) sizes,
with two distinct regions of noise having values of σl = 0.7, σr = 0.4, θ = atan(0.5) and
known µ = 0. σKL refers to the standard deviation of the distribution of KL-Distances,
averaged over 100 runs per entry, the true model in this case has a ‘cut’.

Method P Mean KL σKL

× 103 × 104

MLE 7 3.6339 4.9118
AIC 7 3.6287 4.2386
MML 7 22.9901 4.4659
MLE 13 3.4470 2.2414
AIC 13 3.5218 1.9877
MML 13 3.4436 2.1782
MLE 23 3.3648 1.2160
AIC 23 3.3754 1.0974
MML 23 3.3769 0.8456
MLE 29 3.3706 0.9451
AIC 29 3.3777 0.9969
MML 29 3.3769 0.8456
MLE 31 3.3658 0.9798
AIC 31 3.3770 0.8570
MML 31 3.3584 0.8657
MLE 101 3.3549 0.2566
AIC 101 3.3572 0.2738
MML 101 3.3525 0.6010

The results in Table 1 refer to experiments in which Gaussian noise was added
to a predefined image, in this case the noise was assumed to be Gaussian noise
spread across one region. Unlike the previous experiments, there is no ‘cut’ and
no θ and there is only one σ value. These results highlight the predisposition of
MLE and AIC to prefer the more complicated model. Given the chance of a model
that has two distinct regions of noise associated with it (therefore two separate
σ values and a θ value) and a model with only one region of noise (so only a
single σ), the results show that AIC and MLE will choose the more complicated
model more often than MML. The benefits of this choice are highlighted in the
KL Distance values for the various data modelling techniques.

It should be noted that it is not inherently clear for AIC whether the number
of free parameters refers to both discrete and continuous free parameters, or just
continuous free parameters, testing was done on both, and the results of Tables 1
and 2 present the results when only continuous free parameters were considered,
however the difference in KL values for the two separate cases were minimal.

The results in Table 2 refer to experiments in which Gaussian noise was added
to a predefined image, however in this case there was assumed to be two regions
of noise that may or may not have the same σ value. The noise was assumed
to be from two separate normal distributions, with a known µ value common
to the two normal distributions, and a separate unknown σ value for each of
the distributions. The regions were partitioned by a line, that went through the



center pixel of the image, and has associated with it an angle θ, hence the noise
model has a ‘cut’.

The noise in both the ‘cut’ and ‘no cut’ cases was added directly to the image
itself and not to the projections. This was done as a prelude to the addition of
noise to projection data. This circumvents the need to ‘untangle’ the projections
before performing the noise estimation methods, but work will be done on this
at a later stage.

Unlike MLE, both AIC and MML can be used as a means of model selection,
that is, these noise estimation methods can be used to choose between two
different noise models. In our tests, these methods were used to estimate the
values of the σ or the two σ values and the θ value. MLE will always choose the
model with two σ values and the θ value, as this will maximise the likelihood.
AIC and MML will attempt to choose between this model and the model with
only one σ value.

5 Conclusion

This research is a preliminary study into how noise propagates through projec-
tions from projection space to image space. The use of data modelling techniques
should allow for the use of our understanding of noise propagation, to help us
model noisy projection data. Minimum Message Length (MML) is well suited
to this, since it works well when there are small amounts of data from which we
are attempting to infer parameters.

At this point however the study has been limited to the study of noise esti-
mation in image space, with Maximum Likelihood Estimation (MLE), Akaike’s
Information Criterion (AIC) and Minimum Message Length (MML) as methods
for data modelling.

The Finite Radon Transform is used in this context since it provides a means
of projecting and reconstructing image data exactly, as it does not use any
approximations or interpolation, so it is clear how the noise is propagating.
MLE, AIC and MML are being used in this context as it for the data modelling
methods. For these initial tests they all have a similar performance, however
these tests are concerned with data that is much simpler than would be found
in real world CT data.

It is our hope that through continued study of this we will be able to construct
a noise tolerant method of projection and reconstruction of Tomographic data,
that will allow for CT scans to have the same anatomical detail with a reduction
in the amount of radiation that the patient receives.

The MML work would be enhanced by more properly modelling the spatial
correlation within images [15, 16].
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