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ABSTRACT

The advent of formal definitions of the simplicity of a theory has important implications
for model selection. But what is the best way to define simplicity? Forster and Sober
([1994]) advocate the use of Akaike’s Information Criterion (AIC), a non-Bayesian
formalisation of the notion of simplicity. This forms an important part of their wider
attack on Bayesianism in the philosophy of science. We defend a Bayesian alternative:
the simplicity of a theory is to be characterised in terms of Wallace’s Minimum Message
Length (MML). We show that AIC is inadequate for many statistical problems where
MML performs well. Whereas MML is always defined, AIC can be undefined. Whereas
MML is not known ever to be statistically inconsistent, AIC can be. Even when
defined and consistent, AIC performs worse than MML on small sample sizes. MML
is statistically invariant under 1-to-1 re-parametrisation, thus avoiding a common
criticism of Bayesian approaches. We also show that MML provides answers to many
of Forster’s objections to Bayesianism. Hence an important part of the attack on
Bayesianism fails.
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1 Introduction

‘Pluralitas non est ponenda sine necessitate,’ said William of Occam in the
14th century, ‘We should not posit plurality without necessity.’ In modern
times, Albert Einstein is said to have expressed much the same thought this
way: ‘Our theories should be as simple as possible, but no simpler.’
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But what is simplicity in a theory? Historically, most attempts to understand
simplicity have tried to connect it up with aesthetic concepts such as beauty
and elegance. This approach has not been entirely satisfactory because these
concepts appear to be of a familiar type that bedevils philosophers: even
though we think we know them when we see them, they seem hard, if not
impossible, to define.

Still, the aesthetic appreciation of scientific theories has remained
widespread. This has had two important effects in the philosophy of science:
first, it has made it seem as though the question of what makes one theory
simpler than another does not have an objective answer. The argument runs
roughly: simplicity is a form of beauty; beauty is a matter of taste, and there’s
no accounting for taste. Second, it has driven some philosophers of science
to search elsewhere for ways to distinguish good theories from bad. Popper
and Hempel, both of whom tried to distinguish among theories on the basis of
their logical entailments, come especially to mind in this connection.

It often happens, however, that discoveries in other fields of enquiry can
dramatically change the way we look at certain philosophical questions, and
here we encounter a rather startling example of this. For it turns out that
the relatively new discipline of information theory allows us to say, with
mathematical precision, exactly how simple a theory is. Not only that, it tells
us exactly when we should prefer more complex theories to their simpler
alternatives. To gloss the theory very briefly at the outset, here’s what it says:
the best theory to infer from the data is the one that can be stated with the
data in a two-part message of the shortest length. This is called the minimum
message length (MML) principle, and we owe it largely to the work of Chris
Wallace. One aim of this paper is to explain this result, and its implications
for the philosophy of science.

The implication we are particularly interested in is the bearing this result has
on the debate about Bayesianism in the philosophy of science. This complex
and ongoing debate is difficult to summarise, but we will try to characterise
the opposing positions briefly here.

Bayesians hold that all of the important beliefs, attitudes and intuitions that
we have about scientific theories can be expressed in terms of probabilities
that certain propositions are true; that Bayes’s Rule of Conditionalisation (for
hypothesis H and evidence E)

posterior(H) = p(H |E) = p(H)p(E|H)

p(E)

tells us how we should update our beliefs in the light of new evidence; and
that (therefore) some knowledge of, or reasonable assumptions about, our
prior knowledge of a situation (p(H) in the above) is indispensable in the
calculation of what we should believe about it in the light of evidence E.
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Anti-Bayesians deny all of this: they hold that important aspects of our
attitudes towards scientific theories cannot adequately be captured by any
statement expressed in terms of the probability that a proposition is true; it
follows that there are situations in which Bayes’s Rule is of no use to us, since
the Rule can only be applied if our prior knowledge of a situation can be stated
in terms of probabilities; but that is no matter, since we have other tools that
do not involve probabilities that tell us what we should believe about scientific
theories—the use of priors is therefore not indispensable.

The connection between these two issues—on the one hand, the existence of
formalised notions of theoretical simplicity, and on the other, the arguments
about Bayesianism—is not obvious. To understand it, it helps to go back
to a paper written in 1994 by Malcolm Forster and Elliott Sober. In that
paper, they described and defended a different formalisation of the notion of
simplicity, based on the work of Akaike, than the one we wish to defend. A
detailed explanation of the difference between Akaike’s Information Criterion
(AIC) and the MML principle will have to wait until later. The key point
to make here in the Introduction is that AIC is a non-Bayesian technique,
making no essential use of conditionalisation or of priors; by contrast, MML
is a Bayesian technique that does make essential use of conditionalisation and
of priors.

With that in mind, Forster and Sober’s argument can be summarised as
follows: a formalised notion of the simplicity of a theory would be a great
breakthrough in the philosophy of science. AIC provides the best way of
formalising the notion of the simplicity of a theory. But AIC is a non-Bayesian
technique. We should not conclude, therefore, that the best philosophy of
science is non-Bayesian.

The counter-argument presented in this paper goes like this: we agree
completely about the significance of formalised notions of simplicity for
philosophy of science. But we shall argue that AIC is a demonstrably
inadequate way of formalising that notion, and that the MML principle
provides a much superior formalisation, one that performs better than AIC in
every empirical test that we have tried. Since MML is a Bayesian technique,
we should conclude that the best philosophy of science is Bayesian.

The theoretical arguments mostly come first. In Section 2, we define the
curve-fitting problem, the method of maximum likelihood (ML), and the
problem of over-fitting. In Section 3, we describe AIC for doing model selec-
tion, and in Section 4, the broader Predictive Accuracy framework into which
Forster places AIC. Section 5 introduces the MML Principle, and describes the
construction of the Strict MML estimator, a language-invariant Bayesian esti-
mator which can be used for both model selection and parameter estimation.

In Section 6, we exhibit direct comparisons between AIC and MML on
several different kinds of statistical inference problems. The comparisons are
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all in favour of MML over AIC. We include examples of cases which MML
handles well, but for which AIC gives statistically inconsistent answers. Of
special interest is the Neyman–Scott problem (Section 6.1.3), for on this
problem it turns out that aiming for predictive accuracy leads us to give
statistically inconsistent estimates. We also give examples where it appears
that AIC gives no answer at all.

Finally, in Section 7 we show how the MML Principle meets two of
Forster’s oft-repeated objections to Bayesianism, the sub-family problem, and
the problem of approximation. Our view is that for philosophers of science,
Bayesianism remains the best—and perhaps the only—game in town.

2 The Curve Fitting Problem

The best way to engage with Forster and Sober’s 1994 argument is to follow
their exposition as far as possible, and then show where we diverge from them.
Since they begin their paper by describing what they call the ‘curve fitting
problem’, we shall do likewise.

The most general form of the curve fitting problem arises in many
experimental contexts. We have some data, which we can plot on a Cartesian
plane, with x- and y-axes. We represent a hypothesis about how the data was
produced by some function, which maps x-values onto unique y-values. For
example, the hypothesis that there is some specific linear relationship between
the x and y values is represented by the function

y = a1x + a0

where a1 and a0 are constants (or co-efficients), giving respectively the gradient
of the line, and the point where the line intersects the y-axis.

2.1 Curves and families of curves

Without specifying the value of the co-efficients, we have not picked out a
specific function, but rather a family of functions; here, the family of straight
lines.

Likewise, the hypothesis that there is a quadratic relationship between the
x and y values is represented by the function

y = a2x
2 + a1x + a0

which picks out the family of parabolas.
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2.2 Noise

In a perfect world, experiments would be free of noise. In such a world, if the
true curve were a straight line, the data would fall exactly on that straight line.
But data is usually noisy, so even if the linear hypothesis is correct, it does not
follow that our data will fall on a straight line. Rather, while the data will tend
to be close to a straight line, they will be distributed above and below it.

It is typical to assume that noise is random with a Gaussian distribution of
unknown variance, σ 2. We can therefore represent our hypotheses about the
observed relationship between the x and y values by adding another term to
our functions, e.g.:

y = a1x + a0 + N(0, σ 2) or y = a2x
2 + a1x + a0 + N(0, σ 2)

2.3 The method of Maximum Likelihood

Let us imagine just for the moment that we have some noisy data, and that
we know that the linear hypothesis is correct. We should like to know exactly
which straight line from the family of straight lines should be our best guess.
We would also like to estimate how noisy the data is. This is called parameter
estimation.

One answer is that we should choose the line to which the data is closest.
We can measure the distance of some data from a line (or curve) by using the
least squares method.

This least squares method is an instance of a more general method—the
method of Maximum Likelihood (ML). The ML method says that if you want
to know which curve is the most likely to be true, choose the curve which
would have made the observed data most likely.

Note that it is important not to get confused between P r(H |E), the
probability that a hypothesis is true given the evidence, and P r(E|H),
the probability of observing the evidence, given the hypothesis, which we
(following statistical usage) call the likelihood.

2.4 ML and over-fitting

However, there is a problem with the ML method. In the above, we assumed
that we knew that the linear hypothesis was correct. What if we do not know
that? What if we have to do model selection, as well as parameter estimation?

We can use the ML method to find the ML straight line from the family of
straight lines. But equally, we can use the ML method to find the ML parabola
from the family of parabolas, the ML cubic from the family of cubics, and so on.

Moreover, the best parabola will always have at least the likelihood, and
usually greater likelihood, than the best straight line, and the best cubic at
least the likelihood of the best parabola, and so on.



Bayes not Bust! Why Simplicity is no Problem for Bayesians 715

In fact, if we are prepared to choose a polynomial of sufficiently high degree,
we can choose a curve whose distance from the data is zero. If we have N data
points, a polynomial of degree N − 1 is sufficient for this.2

Yet we do not want to say in general that our best guess at the true curve
is a polynomial of degree N − 1. To say that is to confuse signal with noise.
This is the problem of over-fitting: by concentrating on minimising the squared
distance between the true curve and the actual data observed, the ML method
gives too much weight to the data; it is, in general, insufficiently cautious,
willing to spuriously over-fit weak or non-existent patterns.

3 Akaike’s Information Criterion (AIC)

How do we justify our preference for a curve of lower likelihood? We appeal
to simplicity. As we suggested in our introduction, before the middle of the
20th century, this seemed to be an appeal to aesthetic criteria, an appeal to
something beyond the data.

However, during the last 50 years, several different proposals have been
advanced for defining the simplicity of a theory in precise mathematical terms.

Forster and Sober describe and defend one of these proposals, Akaike’s
Information Criterion (AIC) (Akaike [1973]).

AIC is a proposal for doing model selection, that is picking the right family
of curves. If F is a family of curves, L(F) the likelihood of the best fitting
member of that family, and k the number of free parameters (co-efficients) in
the family, then according to AIC we should aim to minimise this quantity:

−2 ∗ log-likelihood [L(F)] + 2k

The proposal can be described as a penalised ML function. The first term says
that the likelihood of a family of curves goes with its ML member. The second
term then corrects this with a penalty proportional to the complexity of the
family. Akaike’s proposal is only one of many such proposals, which differ
in how they propose to penalise the ML estimate of the goodness-of-fit of a
family of curves.

4 The Predictive Accuracy Framework

Forster ([2002], p. S160) defines a framework for philosophy of science by
asking three questions:

(1) What goal, or goals, can be achieved in science?

(2) What possible means, method, or criterion, can achieve the goal?

2 We assume here that no two points are vertically aligned. If the data contains two points that
are vertically aligned, then polynomials of degree N − 1 can get arbitrarily close to the data.
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(3) What explanation is provided of how the means tends to achieve the
goal? Is there any account of the mean → goal connection?

Forster places Akaike’s work within what he calls the predictive accuracy
framework: the postulation of the goal of predictive accuracy as the goal of
science. ‘Predictive accuracy’ is the term coined by Forster and Sober ([1994])
to describe the goal of maximising the expected log-likelihood of re-sampled
data (that is, future data sampled from the same source as the data we have
already). This is equivalent to minimising the expected Kullback–Leibler
distance, a concept we explain in Section 6.1.4.

Before proceeding any further, it’s worth commenting on an interesting slip
between questions (1) and (2) in Forster’s framework. In the first question,
Forster asks what goal or goals can be achieved in science. We think this way
of putting it, which allows for the possibility of multiple goals, is right. But
in the second question, the reference is to ‘the goal’, singular, and Forster’s
subsequent arguments defend only predictive accuracy as the single goal of
science. So it is not clear whether Forster really believes that there could be
multiple legitimate goals for science. We certainly do.

Here is how the Bayesian/MML approach to statistics looks in terms of
Forster’s framework: whereas Forster postulates predictive accuracy as the
single goal of science, and AIC as the means of achieving it, we offer inference
to the most probable theory as a goal of at least comparable importance, and
the method of MML as the means of achieving it. The arguments we give
in this paper are intended to serve as an account of how MML achieves the
goal of inference to the most probable theory, a goal which Forster claims
Bayesians cannot achieve. In our view, prediction remains an important goal.
But we claim further that knowledge of the most probable theory gained from
inference using MML can be used to make excellent predictions, much better
than those made by AIC.

Two further points should be mentioned briefly here: Forster claims that
Akaike’s criterion provides a general means of achieving the goal of predictive
accuracy. But he is mistaken about this, as we show in Section 6.1.4. In an
interesting class of cases where the amount of data per parameter is bounded
above, you cannot achieve predictive accuracy by using Akaike’s criterion.3

Secondly, these cases cast doubt on the goal of predictive accuracy as the
single overarching goal of science, for they show that maximising predictive
accuracy can lead to statistical inconsistency in inference. This demonstrates an
important difference between the goals of inference and prediction in science.

3 The case discussed in 6.1.4, the Neyman–Scott problem, shows the problems for AIC in a
particularly stark way. But even in friendlier cases, where the amount of data per parameter
is not strictly bounded above (for example, the cases of univariate polynomial regression
(Section 6.2.1), or econometric time series regression (Section 6.2.2)), AIC is generally the worst
or nearly the worst estimator of those studied for predictive accuracy.
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5 The Minimum Message Length (MML) Principle

Before proceeding with our criticisms of AIC, it would be well to have before us
the alternative proposal we are defending, which is derived from the principle
of MML.4 According to the principle, we should infer the theory that allows
the data to be stated in the shortest two-part message, where the first part of
the message asserts the theory, and the second part of the message encodes the
data under the assumption that the asserted theory is true.

The fundamental idea is that compact coding theory provides the right
framework in which to think about inference and prediction (Wallace and
Boulton [1968a]; Wallace and Freeman [1987]; Wallace and Dowe [1999a];
Wallace [2005]). Begin by thinking of the data as a string of symbols in a finite
alphabet. Given an estimate of parameters, we may be able to get a briefer
encoding of our data under the assumption that the estimated parameters are
the true values. A given model is only worth considering if the shortening of
the encoded data string achieved by adopting it more than compensates for
the lengthening caused by the quotation of the estimated parameters. Within
a given model, the preferred parameter estimates are those that lead to the
shortest total encoded length. And the preferred model amongst a class of
models is the one with the shortest total two-part message length (minimised
with respect to its parameter estimates). The method is Bayesian because
it assumes known proper prior distributions for unknown quantities. The
method comes in various varieties: we shall describe Strict MML (SMML),
even though this is not computationally tractable, except in special cases.
The computationally tractable MML (Wallace and Freeman [1987]) is derived
from a quadratic Taylor series approximation of SMML, and shares many of
the desirable features of SMML.

5.1 The Strict MML estimator

A point estimation problem is a quadruple {H,X, f, p}:
H is a parameter space (assumed to be endowed with a σ -field of subsets).

4 MML has important similarities and differences to Rissanen’s Minimum Description Length
(MDL) (Rissanen [1978], [1989], [1999]). They are similar in that they share the aim of making
an inference about the source of the data (and not just making predictions about future data);
they also share the insight that inference is fundamentally connected to achieving a brief
encoding of the data. However, they differ in two important respects: firstly, Rissanen’s work is
non-Bayesian, and MDL tries to avoid any use of priors. Secondly, MDL (like AIC) typically
aims to infer only the model class from which the true (fully specified) model comes, while
MML aims to infer a single, fully specified model. For detailed discussions of the differences
between MML and MDL, see (Wallace and Dowe [1999a]) and the other articles in that special
issue of Computer Journal, as well as (Wallace [2005], Chapter. 10.2) and (Comley and Dowe
[2005], Section. 11.4.3). It is also worth mentioning that the 1978 version of MDL, although
not the later versions, is equivalent to Schwartz’s Bayes Information Criterion (BIC) (Schwartz
[1978]).
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X is a set of possible observations {xi : i ∈ N}.

f is a given prior probability density function with respect to a measure dh

on the parameter space H :
∫
H

f (h)dh = 1.

p is the known conditional probability function p : (X,H) → [0, 1] :
p(x;h) = p(x|h), where

∑
i p(xi |h) = 1, for all h ∈ H .

A solution to a point estimation problem is a function m : X → H : m(x) = h,
which given some possible observation, tells you which theory to infer from it.

A Bayesian solution to a point estimation problem makes essential use of
Bayes’s Theorem:

f (h|x) = p(x|h) · f (h)∫
H

p(x|h) · f (h)dh

Conditionalising on observations, we can obtain f ∗(h), the posterior
probability density function, from f (h), the prior probability density function.

If a cost function is known which expresses the cost of making an estimate
h′ when the true value of the parameter is h′′, then standard decision theory
allows us to calculate a minimum expected cost estimate (and so we would
have a solution to our point estimation problem).

In the absence of a cost-function, it is not clear how to proceed. Given that
the parameter space is continuous, the probability of any individual hypothesis
is 0. So we cannot use Bayes’s Theorem in order to calculate point estimates.
We might think that we can derive a point estimate from f ∗(h) by choosing
that value of h which maximises the posterior density. Alas, however, any such
‘estimate’ is dependent upon parametrisation.

Forster ([1995]) calls this the ‘problem of language variance’ and suggests
that, in the light of considerations such as those just given, the game is more
or less up: there is no satisfactory Bayesian statistics, or, at least, none that he
knows of.5

However, all is not lost! Wallace and Boulton ([1975]) describe a language
invariant Bayesian solution to the point estimation problem. Wallace, with the
cooperation of various co-workers, has since gone on to develop this Bayesian
method into an enormously powerful and well-justified approach to inference
and prediction. Here, we shall just outline a version of the argument from
(Wallace and Boulton [1975]). We give a more technical (although still brief)
exposition in Appendix A, while a thorough exposition of the argument can
be found in (Wallace [2005], Chapter. 3).

5 Forster and Sober ([1994]) also discuss the consequences of their arguments for Bayesianism.
However, since their main question is whether Bayesianism can somehow replicate Akaike’s
work, the significance of their discussion is rather diminished when the shortcomings of AIC,
demonstrated below, are fully appreciated!
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SMML gives us a way of dealing with any continuous or discrete prior and
still ending up with a Bayesian point estimator which is statistically invariant
and in some sense (see below) maximises the posterior probability.6

What we would like to be able to do is to choose the hypothesis with
the highest posterior probability. While we cannot do this in the continuous
case—for the reasons given above—we can do it in the discrete case. So,
the guiding idea is that we should consider a discrete problem that is a close
enough approximation to our initial point estimation problem.

To outline SMML, our initial objective is to construct a codebook with the
shortest expected length of a two-part message. The first part of the message
asserts a theory, while the second part of the message encodes the data under
the assumption that the theory is true. The codebook will tell us, for any
possible observation, which estimate allows the briefest encoding of theory
and data.

By virtue of the fact that all data is recorded to finite accuracy, each of
the countably many observable data has a probability (rather than a density)
of occurring. So, given the relevant likelihood functions and Bayesian prior
distributions on the parameters, we can calculate a marginal probability, r(xi),
of each possibly observable datum, xi . We note that the sum over all data of
the marginal probabilities r(xi) equals 1.

We partition the data into groups, always balancing the expected lengths
of the first and second parts of the message. The number of possible data is
countable, and clearly so is the number of groups. Every time a new datum
joins a group the prior probability of that group’s being chosen goes up and
the message length to encode the parameters of that group correspondingly
goes down. On the other hand, the new datum will almost certainly cause a
change in the group’s parameter estimates, not decreasing and almost certainly
increasing the expected length of encoding the values of the previous group
members using the parameter estimates.

SMML chooses the partition which results in the shortest expected length
over all possible two-part messages. The expectation is calculated using the
Bayesian prior probability and the marginal probability, r(xi), of each possibly
observable datum, xi . A codebook is made from this with code-lengths, li , of
events of probability, pi , given by li ≈ − log pi .7

The data is partitioned so that each possible datum appears in exactly one
group, and each group is assigned a point estimate tailor-made to best fit

6 Unlike Maximum A Posteriori (MAP), which maximises a posterior density and is generally
not statistically invariant. See footnote 15 for more details.

7 The equality is approximate rather than strict because code lengths must be integers, while
probabilities need not be. But the difference is negligible; in fact − log pi ≈ li < − log pi + 1.
Shannon ([1948]) proved that it is always possible to construct such a codebook, and
demonstrated a method for doing so. See (Wallace [2005], Chapter. 2) for a clear exposition.
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(on weighted average) its group members. More explicitly, if the codebook
partitions the data into J groups {cj : j = 1, ..., J }, then the point estimate hj

for each group cj is chosen to maximise∑
i∈cj

r(xi)f (xi |hj ). (1)

Each group can be thought of as having a prior probability equal to the sum
of the marginal probabilities of all the data in the group—and, as such, the
prior probabilities of all the groups must sum to 1. We shall refer to this prior
probability of the groups (and, in turn, their parameter estimates) as the coding
prior. The partition of the possible data into groups, and the use of the the
coding prior, together constitute an acceptable approximate discretisation of
the original continuous point estimation problem.

It is important to note that the SMML codebook described above is
constructed prior to the observation of any data, and depends only on the
likelihood functions and on Bayesian priors.

For every group and for every possible datum, xi , two-part messages exist
which encode the parameter estimates of the group in the first part of the
message, followed in the second part of the message by the xi given those
parameter estimates.8 Once we have observed a datum, choosing the estimate
is simply a matter of finding out to which group the observed datum is
assigned by the codebook, and choosing the estimate for that group. This is
equivalent to using the coding prior and taking the Maximum A Posteriori
(MAP) estimate.

5.2 An example: The binomial distribution

We will very briefly discuss an example to make clearer how the SMML
method works in practice.9 The problem is that of the Binomial distribution:
given a sequence of N independent trials each giving success or failure with
unknown probability of success, p, and a prior distribution h(p), we are
to estimate p. Let N = 100 and assume a uniform prior h(p) = 1 over the
possible values of p. Then the possible observations are just the set of the
binary strings of length 100. The partitioning of the possible data into groups
can be carried out according to an algorithm due to Farr (Farr and Wallace
[2002]), and results in the formation of ten groups, each represented by a single
estimate. One of the two possible mirror-image solutions for the groups and
estimates is shown in Table 1.

8 Unless the parameter estimates render xi impossible, such as if xi were 50 Heads followed by 50
Tails but the group parameter estimate was that the probability of Heads was 1.

9 This problem was originally treated in (Wallace and Boulton [1975]). A more detailed exposition
than we offer here can be found in (Wallace [2005], Chapter. 3.2.3).
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Table 1 Groups, success count ranges and
estimates of the Strict MML estimator for the
Binomial distribution, 100 trials, uniform prior

j cj hj

1 0 0
2 1–6 0.035
3 7–17 0.12
4 18–32 0.25
5 33–49 0.41
6 50–66 0.58
7 67–81 0.74
8 82–93 0.875
9 94–99 0.965
10 100 1.0

We can see that the initial continuous, uniform prior h(p) = 1 has been
transformed into a discrete coding prior containing just ten possible estimates.
The number of groups may seem surprisingly small and the widths of the
groups surprisingly wide. For example, any experiment which yields between
33 and 49 successes will result in the same estimate, h5 = 0.41. But in fact
h5 = 0.41 is a plausible value to infer for p if the number of successes lies in that
range. As Wallace ([2005], p. 160) notes, the probability that 100 trials with
p = 0.41 would yield exactly 41 successes is 0.0809, whereas the probabilities
of 33 and 49 successes are respectively 0.0218 and 0.0216, over a quarter of
the most probable value. The spacing of the estimates is consistent with the
expected error in their estimation, an important point to which we return in
Section 7.2.

Table 1 also shows the difference between SMML and MAP estimation. For
the Binomial distribution with N trials and s successes, and a uniform prior,
the MAP estimate in this parametrisation is equal to the ML estimate, and
is given by s/N . The SMML estimate can differ significantly from this value,
because of the way the SMML procedure maps different possible observations
to the same estimate.

5.3 Properties of the SMML estimator

5.3.1 Bayesianism
That the method described above is Bayesian is perhaps apparent enough from
the essential use it makes of prior probabilities. The length of the first part of
the message, asserting the theory, is determined by our prior probabilities.

However, there is a more fundamental connection between Bayesianism and
the principle of MML. Recall from the Introduction our summary of Bayesian
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commitments: (1) the indispensability of probabilities for characterising the
degree of belief in a theory; (2) use of the Rule of Conditionalisation to update
our beliefs about a theory in the light of new evidence; (3) the indispensability
of priors. It is possible to view the principle of MML as providing independent
support for these Bayesian principles.

The connection is made via Shannon’s theory of information, in which
information is equated with the negative log of a probability. At first it might
seem that this objective measure of the information content of a theory has
little to do with our subjective degree of belief in the theory. However, as
Wallace ([2005], p. 79) points out, the information content of a message (or
theory) is a subjective notion: a message that tells us something we already
knew conveys no information, while a message that tells us something we
thought improbable tells us a great deal. This provides strong support for
the idea that what we believe about theories is best characterised in terms of
(subjective) probabilities. This is the first Bayesian principle.

Next, let’s look at Bayes’s Rule. Suppose that you accept that the best
theory is the one that can be stated in the shortest two-part message, where
the first part of the message asserts the theory, and the second part of the
message encodes the data under the assumption that the theory is true. For
given data x, let h = m(x) be the hypothesis chosen by the SMML estimator
as best explaining that data, and q(h) be the coding prior probability assigned
to this hypothesis. Then the length of the message asserting the theory and
encoding the data is given by − log(q(h)f (x|h)), the negative log of the joint
probability of the estimate and the data.

On the other hand, the length of a message optimally encoding the data, but
without making any attempt to explain it, would be given by − log r(x), the
negative log of the marginal probability of observing the data. The difference
between these two quantities

− log
q(h)f (x|h)

r(x)
, (2)

is formally identical to Bayes’s Rule of Conditionalisation.10 In other words,
choosing the SMML estimate leads to a degree of belief in the estimate chosen
which is exactly described by Bayes’s Rule.

10 Wallace ([2005], p. 160) notes, ‘If the set of possible models were discrete. . .the correspondence
would be exact. [But see (Wallace [2005], Chapter. 3.2.1) and (Comley and Dowe [2005],
Section. 11.3.1) for caveats.] However, when h is a continuum [. . .] q(h) is not the prior
probability that ‘‘h is true’’: indeed no non-zero probability could be attached to such a
statement. Nonetheless, the difference can play the role of a negative log posterior probability,
and its expectation is a good measure of the ‘‘believability’’ of the estimates.’ An example of
the need for some caution in the interpretation of Equation (2) can be seen in (Wallace and
Boulton [1975], Table 3, p. 29), where the ratio exceeds unity for some possible data, typically
those having relatively high likelihood given their associated parameter estimate.
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Finally, the indispensability of priors is manifested in the choice of encoding
of the first part of the message asserting the theory. So far, we have emphasised
that the choice of prior determines the optimal encoding of the assertion. But
in Shannon information theory, message lengths and negative log probabilities
are interchangeable. So one can equally say that a choice of encoding (i.e.
the choice of message length for the first part of the message) implicitly
asserts a prior probability distribution over the theories being considered, with
Pr(asserted theory) = 2−(length of encoded assertion).

Imagine that you want to send a two-part message to a receiver. The
question naturally arises as to how to encode the first part of the message,
asserting the theory. You and the receiver of the message must agree to use
some language which you both regard as reasonably efficient for the encoding
of the theory, in the sense that theories which are more likely to be asserted
will be given shorter encodings in the language. In adopting such a language,
you and the receiver implicitly assert a prior probability distribution over the
space of possible theories.

It is true, and worth noting, that the prior probability implicitly asserted by
the choice of encoding may differ in a number of ways from the kinds of prior
probability distributions usually considered in traditional Bayesian statistics.
In the first place, such a prior may not be proper: the different possible
theories may not be assigned probabilities that collectively sum to 1. In the
second place, the prior may not have an easily expressible mathematical form.
For these reasons, Wallace ([2005], pp. 148–9) draws a distinction between
prior probabilities and coding probabilities, where the latter are probabilities
implicitly asserted by a choice of encoding for the first part of the message.
Wallace notes that careful thought must be given to the choice of encoding,
with regard to what coding probabilities are being implicitly asserted. He
also shows that, if a code can be constructed that assigns longer strings to
implausible theories and shorter strings to plausible theories, then such a
code may well be an acceptable summary of vague prior beliefs. Even if
the coding probability distribution, considered as a prior, is strictly speaking
improper, its use in practice will often lead to acceptable, even excellent
results.11

11 In case this use of improper priors should alarm friends or critics of Bayesianism, Wallace
includes some mathematical techniques for renormalising improper priors. For example, a
uniform prior distribution for a location parameter is improper, but we can renormalise this
prior by observing that the prior belief that the uniform distribution is meant to capture is that
the location is equally likely to be anywhere within a large but finite range. As long as there is
only negligible probability that the data will reflect a location from outside this range, we need
not even specify what the range is. He also observes that improper priors, when combined with
real data, usually lead to proper posterior densities.
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5.3.2 Language invariance
The SMML estimator is language invariant. That is, both the estimator and
the message length are unchanged by any one-to-one measure-preserving
transformation in the parametric representation of the model. It is thus
immune to the ‘problem of language variance’ often raised by Forster (see
for example [1995]; [1999], Section. 5) as a general objection to Bayesian
statistics. The model invariance of the SMML estimator follows from the fact
that transformations of the model space do not affect the model distribution,
and that the prior enters into the calculation of the message length only
via the marginal probability of the data. Hence, if we use an appropriately
transformed prior, a change in the representation of the model space has no
effect on message length.

5.3.3 Generality
The SMML method (or approximations to it, see Section 5.5 below), can
be used for a wide variety of problems. In the first place, it is applicable
equally to problems of parameter estimation and model selection. This unified
treatment can be regarded not only as a strong theoretical virtue, but one
which gives demonstrably better results in practice, as we show below. Many
other methods are restricted in the classes of models to which they can be
applied. The ML method requires the set of possible models to be either
countable or a continuum of fixed dimension. That is, it cannot directly be
used to choose among models with different numbers of parameters. Akaike’s
method cannot be applied to models with non-real valued parameters.12 By
contrast, the SMML method requires only that (1) the data can be represented
by a finite binary string; (2) there exists a language for describing models of
the data which is agreed to be efficient, i.e. there exists a prior density f (h);
(3) the integrals r(x) exist for all possible data values, and satisfy r(x) > 0,∑

X r(x) = 1.

5.3.4 Consistency and efficiency
An estimator is statistically consistent if it converges on the true distribution
given enough data. It is efficient if the rate of convergence is as fast as
possible. Starting from the basic results of information theory it can be
shown that because the SMML estimator chooses the shortest encoding of the

12 We say this because Akaike’s argument in support of penalising the number of parameters
applies to continuous-valued parameters rather than discrete-valued parameters. An example
of an inference problem with discrete-valued parameters is the inference of decision trees. If
AIC can be defined for decision trees, then it can presumably only take the form of penalising
the log-likelihood with twice the number of nodes. In the case of binary decision trees, this is
equivalent to a penalty of the number of nodes, which is the penalty function adopted in the
binary tree study by Murphy and Pazzani ([1994]). Even if we are to permit this interpretation
of AIC, MML has empirically been shown to work decidedly better on this problem in
(Needham and Dowe [2001]).
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model and data, it must be both consistent and efficient.13 These results are
(1) that the expected message length is minimised when the asserted probability
distribution agrees with the distribution of the source from which the data
actually comes, and (2) that when data from some source is optimally encoded,
the encoded string has the statistical properties of a random sequence.

Here’s the argument. The SMML method separates data into pattern
and noise. The pattern, which describes all the information relevant to the
quantities we are estimating, is encoded in the first part of the message.
Anything that cannot be deduced from the pattern is encoded in the second
part.

Suppose on the one hand that the asserted pattern does not contain all of
the pattern information which is present in the second part. Then the second
part of the message will contain some pattern information and so cannot be a
random sequence. In that case, there must exist some shorter encoding of the
second part, violating the assumption that the SMML estimator chooses the
shortest encoding.

Now suppose, on the other hand, that the asserted pattern contains some
noise, i.e. information not relevant to the quantities we are estimating. Since
the estimator is a deterministic function of the data, this information must be
recoverable from the data. It follows that the noise information in the first
part of the message is redundant, since it can be deduced from the second part
of the message. Once again the assumption that the SMML estimator chooses
the shortest encoding of the data is violated.

The above argument shows that the SMML assertion contains all and only
the information relevant to knowledge of the true model that can be extracted
from the data.14

5.4 Similarity to false oracles

Wallace ([1996]) defines an oracle to be an estimator which, regardless of the
data, always gives the true parameter value (or selects the correct model).
A false oracle is an estimator such that no fair criterion can be expected to
distinguish between it and an oracle. While we cannot expect to have access to
(true) oracles, Wallace shows that we can construct false oracles, which is the

13 Wallace and Freeman ([1987], p. 241) give a laconic hint to this effect, mentioning the second
result but leaving the reader to draw out for themselves the conclusions which follow from it.
A much more detailed argument can be found in (Wallace [2005], ch. 3.4.5, pp. 190–1), and
an independent derivation of an almost identical result can be found in (Barron and Cover
[1991]).

14 Strictly speaking, as Wallace ([2005], p. 191) notes, because optimal encoding ideally requires
a non-integral number of binary digits (as in footnote. 7), the above arguments imply only that
the assertion chosen by the SMML estimator lacks at most one binary digit of information
and contains at most one binary digit of noise.
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next best thing. He shows firstly that sampling from the posterior distribution
is a false oracle. Wallace ([1996], p. 307) notes, ‘This may seem a strange rule
compared with, say, choosing the mean, median or mode of the posterior, but
it has the advantage of being invariant under arbitrary measure-preserving
transformations of the parameter space.’ He then shows that the Strict MML
estimator closely approximates the behaviour of a false oracle.

5.5 Approximations to SMML

The basic idea of the SMML estimator developed above is that one partitions
the set of possible observations into an exhaustive set of disjoint regions.
Each region is represented by a single estimate, chosen as in Equation 1 of
Section 5.1 to maximise the weighted marginal likelihood of the observations
in the region it is representing.

This procedure can be carried out if we know how to construct the correct
partition of the possible observations, can calculate the marginal probability
of observing any datum and know how to choose the estimate to represent
each region. However, in the general case this is far from easy to do. Farr
and Wallace ([2002]) exhibit a polynomial-time algorithm for constructing
an SMML estimator for the binomial distribution, and they show that this
algorithm can be applied more generally to any estimation problem which
is one-dimensional in character. Wallace ([2005], ch. 3) has an example of a
one-dimensional problem of this type, the estimation of the mean of a normal
distribution of known variance. More generally still, as Farr and Wallace
([2002]) prove, construction of the SMML estimator is NP-hard. They were,
for example, unable to find a polynomial-time algorithm for the trinomial
distribution, although they were able to achieve quite good results with a
heuristic argument.

Fortunately, there are approximations to the SMML method that
are computationally tractable. There are two basic ideas. The most
computationally intractable parts of the SMML procedure are the calculation
of the marginal probabilities of observing any data and the construction of the
partition of all possible observations. These can both be avoided if we replace
reliance on the marginal probability of the data with an approximation
based on the prior probability distribution. Secondly, we use a quadratic
approximation to the log-likelihood function log f (x|h) in the neighbourhood
of parameter vector h.15

15 The estimator derived using these approximations is often referred to as MML87;
for continuous-valued attributes, it can be thought of as maximising the posterior
density divided by the square root of the Fisher information, which shows clearly
its difference from MAP estimation. More detailed expositions can be found in



Bayes not Bust! Why Simplicity is no Problem for Bayesians 727

Estimators derived using these approximations for the most part retain
the desirable properties of the SMML estimator described above, namely,
language invariance, independence from cost functions, generality (i.e.
applicability to cases where the likelihood function has no useful maximum),
consistency and efficiency.16 The estimators for the problems discussed in
Section 6 are all derived from these approximations.

6 Criticisms of AIC

We turn now to direct comparisons of AIC and MML. AIC tells us to optimise
a penalised maximum-likelihood function. Our criticism of AIC takes three
forms. First, there are cases where the use of any kind of maximum-likelihood
function leads to problems. Second, there are cases where the specific form
of the penalty function chosen, used by AIC to measure the complexity of a
model, can be shown to be too crude. Third, since AIC is applicable only to
problems containing real-valued parameters, it cannot be be applied to the
many kinds of problems where the parameters are discrete.17

Forster and Sober say they are impressed by the generality of AIC. We
are not. Overall, we think AIC is insufficiently general. There is nothing very
startling about this. Statistics is replete with techniques that are applicable
only within a limited range of cases. If our criticisms were purely negative,
they would not be particularly interesting. What is more significant is the
existence of an alternative method, based on the MML principle, that can be
successfully applied to all of the different cases that we are about to exhibit.

6.1 Problems with ML

Let us look again at AIC. As we have said, it is a technique for doing model
selection. The criterion gives us a measure of the goodness or badness of fit of
a model or family (F) to the data.

The first part of AIC says that the likelihood of the family is given by the
likelihood of the best fitting member of that family, where that is determined

(Wallace and Freeman [1987], Section. 5; Wallace and Dowe [2000], Section. 2; and Wallace
[2005], Chapter. 5). For non-quadratic approximations to SMML, based on different ideas,
see (Wallace [2005], Chapter. 4).

16 For the precise conditions under which the approximations of Wallace and Freeman ([1987])
can be applied, see (Wallace [2005], Chapter. 5.1.1).

17 In addition to the inference of decision trees mentioned in footnote. 12, other such problems
include the hierarchical mixture modelling of Boulton and Wallace ([1973]), as well as the
generalised Bayesian networks of Comley and Dowe ([2003], [2005]), which treat model families
with mixtures of continuous and discrete variables. These are but a few of many inference
problems well-studied in the machine learning and artificial intelligence literature for which
AIC appears to be undefined.
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by the method of ML. Then you correct this by adding a penalty for the
complexity of the model.

The first thing we want to point out is: not every problem involves model
selection. Many problems are just problems of parameter estimation. For
those problems, using AIC is equivalent to using the method of ML.

But there are many problems of parameter estimation where ML gives
the wrong answers. Fundamentally, the reason for this is ML’s incaution, its
tendency to find patterns in the data that are not really there. This tendency
is very pronounced when the amount of data per parameter is small. This can
happen either when the absolute amount of data itself is small, or when the
number of parameters to be estimated is large, e.g. growing with the amount
of data. We illustrate with examples of both kinds. Note that for all of the
problems discussed in this section, the MML estimators behave well on finite
samples and converge on the true parameter values in the limit.

6.1.1 Small sample bias in a Gaussian distribution
This is a well known result, and so on its own not especially impressive. But it
is a good warm up exercise.

Consider the simple univariate Gaussian distribution with mean µ and
standard deviation σ . The probability density function for this distribution is
given by:

f (x) =
N∏

i=1

1

σ
√

2π
e
− 1

2

[
xi−µ

σ

]2

whose negative logarithm can be written as

L = −
N∑

i=1

(
−1

2
log 2π − log σ − 1

2

[
(xi − µ)

σ

]2
)

Taking partial derivatives of L with respect to µ and σ gives

µ̂ML = 1
N

N∑
i=1

xi = x

and the sample variance σ̂
2
ML is given by:

σ̂
2
ML =

N∑
i=1

(xi − x)2

N

It is well known that this is a biased estimator of the true variance. For
large sample sizes, the bias is quite small; for small sample sizes the bias is
considerable. Replacing the divisor N by N − 1 gives an unbiased estimator,
but this move away from the ML estimator seems ad hoc. Sure, it works, but
why does it work? Some classical statisticians have suggested that changing the
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divisor to N − 1 is justified because
∑N

i=1(xi − x)2 is distributed as a constant
of proportionality (namely, the unbiased estimate of σ 2) times χ2

N−1, but this
special case of a fix hints more at problems than it does at solutions in the
general case.

The MML treatment of this problem is instructive. Because MML is a
Bayesian technique, the derivation of the estimator relies on the choice of a
prior. Critics of Bayesianism view this as a weakness, seeing the choice of
prior as arbitrary and difficult to justify. A typical objection in a problem like
this one might be that we have no particular reason to expect one value of σ

rather than another. Here, however, we can choose a prior that represents an
important belief that we do have about the data: that the spread of the data is
independent of the magnitude of the data, i.e. that σ is scale-invariant. That
is, we do not know, and it does not matter, whether the data are measured
in nanometres or light-years, molehills or mountains. Hence we choose a
prior which is uniform in log σ , namely, 1/σ . With this choice of prior,
µ̂MML = µ̂ML = µ̂, and the MML estimate of σ 2,

σ̂
2
MML =

N∑
i=1

(xi − µ̂)
2

N − 1
,

which as we noted above is unbiased for any sample size.18

Hence we see that what looks to be a kludge from the perspective of classical
statistics is actually justified by broader principles from the perspective of
MML.

6.1.2 The von Mises circular and von Mises–Fisher spherical distributions
The von Mises circular and von Mises–Fisher spherical distributions are
angular analogues of the Gaussian distribution. These distributions with mean
direction, µ, and concentration parameter, κ, can be thought of as the long-
term distribution of the direction of a compass needle in the plane (for the
circular distribution), or in Euclidean 3-space (for the spherical distribution),
subjected to something like magnetic field strength, κ.

κ = 0 corresponds to a uniform distribution around the circle (through the
sphere), and for large κ the distribution approximates a Gaussian distribution
with mean µ and variance, σ 2 = 1/κ. The von Mises circular distribution has

18 Despite the fact that the choice of prior is independently motivated, some sceptics about
Bayesianism might still be troubled that the MML estimator has been ‘cooked up’ by careful
choice of prior. So it is worth noting that in fact the choice of prior on its own makes the
situation worse, changing the divisor in the estimator from N to N + 1. What saves MML,
and brings the divisor back from N + 1 to N − 1, is the use it makes of the Fisher information,
the expectation of the determinant of the matrix of second partial derivatives of the negative
log-likelihood, which can be thought of as relating to the uncertainty of our estimates. See
(Wallace and Dowe [2000], Section. 2.1) for more details.
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been used to model protein dihedral angles (see Wallace and Dowe [2000] and
references therein) and hospital arrival times around a 24-hour clock.

It is generally agreed that (as with the Gaussian distribution) the best way
to estimate µ is to average the sample data—this corresponds to the direction
of a head-to-tail vector addition. The difficult issue is how to estimate κ.

Wallace and Dowe ([1993]) considered a variety of estimation criteria
for the circular distribution, including ML and MML.19 They found that
for all measurements of error (bias, absolute error, squared error and
Kullback–Leibler (KL) distance), for all (true) values of κ, for all sample
sizes, N , ML, and therefore AIC, was the worst (or equal worst)-performing
method on all occasions. The differences are especially apparent for small
sample sizes.20 By contrast, MML was in most cases the best, and otherwise
nearly the best of the estimators.

Dowe et al. ([1996]) similarly showed that ML is the worst-performing
estimation criterion, and in general MML the best, for the von Mises–Fisher
spherical distribution.

6.1.3 The Neyman–Scott problem
The small sample bias of ML in the Gaussian distribution led Neyman and
Scott ([1948]) to wonder how ML would perform on a problem where the
number of data per parameter to be estimated is necessarily small, because the
number of parameters to be estimated grows with the data.

The Neyman–Scott problem is one where we have 2N measurements
arising as 2 measurements each from N things. Given measurements
{xi1, xi2 : i = 1, ..., N}, assuming xi1 and xi2 to come from a population of
mean µi and standard deviation σ (independent of i), the problem is to
estimate σ and the µi .

MML is consistent (Dowe and Wallace [1997]) but the uncorrected small
sample bias of ML for the Gaussian distribution prevails here, and we see the
ML estimate of σ 2 inconsistently converging to 1

2σ 2.21 Similar inconsistencies
in ML can be seen in other problems where there is a finite amount of data per
parameter to be estimated, even as the number of data increases: for example,
single and multiple factor analysis22 (Wallace and Freeman [1992]; Wallace

19 The other criteria considered were N. I. Fisher’s modification to ML (Fisher [1993]), and
G. Schou’s marginalised ML (Schou [1978]).

20 Indeed, a theorem of Dowe’s shows that for the von Mises circular distribution, when N = 2,
regardless of the true value of κ (even with κ = 0), the expected value of the ML estimate of κ

is infinity.
21 See also (Wallace [2005], Chapter. 4.5) for further discussion.
22 In Section 5 (‘Control of Improper Solutions by a Bayesian Modeling’) of his paper on AIC

and factor analysis (Akaike [1987], p. 325), the inconsistency of AIC on this problem not only
led Akaike to adopt a Bayesian prior, but moreover a ‘prior’ whose logarithm is proportional
to the sample size.
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[1995]) and also for fully-parametrised mixture modelling (Wallace [2005],
Chapter. 6.8; Wallace and Dowe [2000], Section. 4.3).

6.1.4 Neyman—Scott, predictive accuracy and minimum expected KL distance
SMML and its approximations are not the only statistically invariant Bayesian
methods of point estimation. Another is the Minimum Expected KL Distance
(MEKLD) estimator (Kullback and Leibler [1951]; Dowe et al. [1998]; Wallace
[2005], pp. 205–9). The KL distance is a measure of the difference between
two probability distributions for the same variable. Let a(x) and b(x) be two
probability distributions of a discrete random variable x. Then the KL-distance
of b() from a() is defined as

KLD(a, b) =
∑

x

a(x) log(a(x)/b(x))

The KL-distance is a measure of how surprising observed values of x will
appear if we think they are being generated according to b() when in fact
they come from a(). Because it is invariant under re-parametrisation, the
KL-distance is useful as a general purpose cost-function, giving the cost of
mistaking a() for b(). Of course, we do not in general know what the true
distribution a() is, and so we cannot calculate directly how far away from it
is some other distribution, b(), that we have estimated from the data. But we
can minimise the expected cost with respect to the posterior distribution of the
true value. This MEKLD estimate is also called a predictive distribution; it is
the maximum expected log-likelihood estimate based, not on the data we have,
but on what data we might expect to get from the same source. According to
the predictive accuracy framework advocated by Forster, finding this estimate
is the goal of science, and AIC is the means to achieve this goal.

The Neyman–Scott problem raises difficulties for both of these claims. If
AIC provides the means to achieve predictive accuracy, then the estimates
recommended by AIC should converge to MEKLD estimates. As with all the
problems discussed in this section, the estimates recommended by AIC are just
those derived using the method of ML. For the Neyman–Scott problem, ML
inconsistently over-fits the data, with σ̂

2
ML → 1

2σ 2, MML consistently converges
on σ 2, while MEKLD inconsistently under-fits the data, with σ̂

2
MEKLD → 3

2σ 2

(Wallace [2005], p. 207). So even if we accept the goal of predictive accuracy,
AIC is not the means to achieve that goal.

The Neyman–Scott problem also casts doubt on the adequacy of predictive
accuracy as the single goal of statistics, because it shows an interesting
distinction between inference and prediction. We just noted above that
MEKLD under-fits the data, that is, it overestimates the value of σ . This
is not to say that MEKLD is failing in its task. While MEKLD is overly
conservative in terms of inference, in terms of expected predictive error it
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makes perfectly good sense to let all theories have their say and consequently,
to overestimate the noise term. Our position is not that inference is better than
prediction, only that they can be different things. If you have some data for the
Neyman–Scott problem and you want to minimise the surprise when you see
new data, you should use the predictive distribution. But if you are interested
in inferring the source from which the data actually came, then MML is the
method you need.

An example may help clarify the distinction. Say you want to predict
tomorrow’s maximum temperature. Today it’s hot, but there is a strong cold
front on its way. However, it is hard to know exactly when the front will
arrive. According to your weather model, if the front arrives early tomorrow,
temperatures will be cool, with a maximum of 20 ◦C, whereas if the front arrives
late, the maximum temperature will be 30 ◦C. According to your model, there
is a 40% chance that the front arrives early. What should your prediction be?
If you want to minimise your surprise on learning what the temperature was,
you should predict a maximum temperature of 26 ◦C, even though you are
almost certain that the maximum temperature will not have this value. If the
cost of being wrong is proportional to your distance from the right answer,
this prediction makes sense. However, if it is more important to get the right
answer, you should predict a temperature of 30 ◦C.23

6.2 Other problems with AIC

The preceding criticisms of AIC may strike some readers as unfair, since
the difficulties encountered are actually difficulties with the ML method of
estimating parameters, whereas AIC is being advanced as a method of doing
model selection. However, it is not so easy to get AIC off the hook. AIC
maximises a penalised maximum likelihood function. Any problems with ML
are therefore going to be conceptual problems for AIC. In addition, the
problems with ML identified above will become problems for AIC as soon as
AIC is asked to discriminate between different models, some or all of which
take these forms.

In any case, not all of the problems with AIC can be attributed to difficulties
with the method of ML. In this section we demonstrate several problems in
which AIC performs very badly in selecting a model, even where ML or similar
related methods can be used to estimate the parameters of the model. These
cases show that the penalty function used in AIC to balance model complexity
against goodness-of-fit with the data is too crude to work effectively in many
commonly occurring statistical problems.

23 See (Wallace and Dowe [1999a], Section. 8) for other examples and further discussion.
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6.2.1 Univariate polynomial regression
The key model selection problem discussed in (Forster and Sober [1994]) is
that of univariate polynomial regression, which they call the ‘curve-fitting
problem’. In this problem, the task is to choose the degree of a polynomial
approximation to an unknown function. It is specifically to this problem that
Forster claims Akaike has provided the solution.

Wallace ([unpublished]) compares the performance of five methods for
selecting the order of a polynomial approximation to a function. The methods
compared include AIC and MML.24 The tests were conducted as follows:
we have some unknown target function, t (x).25 We are given some training
data comprising N pairs {xn, yn : n = 1, . . . , N}, where the x-values are chosen
randomly from the uniform distribution on [−1,1], and the y-values are given
by yn = t (xn) + εn, where each of the noise values {εn : n = 1, . . . , N} are
selected from a Gaussian distribution of zero mean and unknown variance, v.

The task is to construct some polynomial function f (d, x) of degree d

which may be used to predict the value of t (x) in the interval [−1,1]. Only
polynomials of degree up to 20 are considered, and for any degree, only the
polynomial which minimises the squared error on the training data (i.e. the ML
polynomial) is considered. The model selection problem is thereby reduced to
the choice of degree, d.

The success of the chosen approximation is measured by its Expected
Squared Prediction Error, i.e. the average value of [f (d, x) − t (x)]2, estimated
using a Monte Carlo estimate as

ESPE[f (d, x)] = 1
M

M∑
m=1

[f (d, xm) − t (xm)]2

24 To be more precise, a version of AIC called final prediction error (FPE) is used (Akaike [1970]).
FPE is derived from AIC by estimating the variance of the noise in the data independently
for each model family (see Cherkassky and Ma [2003], p. 1694). The other methods compared
are Vapnik-Chervonenkis dimension (Vapnik [1995]), Schwartz’s Bayes Information Criterion
(Schwartz [1978]), and Craven and Wahba’s Generalised Cross-Validation technique (Craven
and Wahba [1979]).

25 The functions tested are a trigonometric function, a logarithmic function, a function with a
discontinuous derivative, and a discontinuous function. It is important to note that none of
the ‘true curves’ here are actually polynomial functions. As Cherkassky and Ma ([2003]) point
out, this violates an assumption of AIC that the true model is among the possible models.
However, we do not therefore consider the comparison between MML and AIC to be unfair
to AIC, for three reasons: (1) the theory of MML is in part motivated by the same assumption,
so violating it seems equally unfair to both methods; (2) as Cherkassky and Ma ([2003]) also
note, AIC is often used in contexts where this assumption does not hold; and (3) the violation
of the assumption is realistic, in the sense that many real-world settings require us to pick the
best polynomial approximation to a function where we cannot be sure that the true model is a
polynomial function. The problem of predicting the intensity of tropical cyclones by modelling
them as second-order polynomials, tackled in (Rumantir and Wallace [2003]) and discussed in
Section 6.2.3, is an example.
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Table 2 Comparison of MML and AIC on the task of selecting a
polynomial approximation to a non-polynomial function. Adapted
from (Wallace [unpublished]).

Target function: y = sin2
(π(x + 1.0)), 1000 Cases,

N = 10, Noise SD = 0.61, signal/noise = 10.0

KEY MML AIC

AV 0.1857 15.8055
SD 0.2633 63.8077
5pc 0.0078 0.0091

25pc 0.0385 0.0863
50pc 0.1236 0.7974
75pc 0.1880 5.4448
95pc 0.6075 60.7315
99pc 1.3700 306.5231
Max 3.0411 771.4965

DEG avERR CNT avERR CNT

0 0.141 222 0
1 0.281 33 0
2 0.406 27 7.587 2
3 0.698 23 13.099 17
4 0.303 177 39.709 78
5 0.421 30 18.996 214
6 0.106 426 10.882 340
7 0.112 52 18.547 195
8 0.095 10 7.068 154

with the test points {xm : m = 1, . . . ,M} chosen randomly and uniformly in
[−1,1]. A test consists of 1000 cases of this kind, and the ESPE is averaged
over the 1000 cases.

The results clearly show that AIC is not competitive with MML, except
under the very favourable conditions of low noise and large sample, where
the methods give similar results. The difference between the two methods is
especially stark when the amount of data is small. The results of one such
experiment are shown in Table 2, adapted from (Wallace [unpublished]).26

This experiment shows the average results over 1000 cases for approximation
of a trigonometric function with only 10 data points,27 under conditions of
low noise. The first row of the table shows the average ESPE (AV), followed

26 The results for the other model selection criteria mentioned in footnote. 24 have been removed
from this table. AIC was clearly the worst of all the methods studied.

27 This is why the maximum degree considered is only 8, rather than 20.
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by its standard deviation (SD), and percentile points and maximum of the
ESPE distribution over the cases. Finally, the average ESPE is shown for those
cases where a method has selected a polynomial of particular degree (avERR),
together with the number of times it chose that degree (CNT).

AIC’s pronounced tendency to over-fit the data is clear from the table.
While both AIC and MML chose a 6th-degree polynomial more often than
any other, AIC’s other choices were heavily weighted towards the higher
degrees. In 1000 cases, AIC never selected a polynomial of degree zero or one,
whereas MML selected one of these on 255 occasions. AIC chose the highest
possible 8th-degree polynomial 154 times, as against 10 times for MML.

The tendency to overfit is reflected in the average errors. We can see from
the table that the average ESPE for AIC is nearly a hundred times greater than
that for MML, and that AIC’s worst case is more than two hundred times
worse than MML’s worst case.

Nor is this case particularly unusual among the many different trials
conducted in (Wallace [unpublished]). In general, the average squared
prediction error for AIC is orders of magnitude greater than that for MML.
Moreover, the great superiority of MML over AIC in these tests cannot be
attributed to the use of helpful priors: the only prior beliefs assumed are that
all degrees are equally likely, and that the signal and noise are likely to be
of similar size. These assumptions are at best uninformative and at worst
misleading in this context.

6.2.2 Autoregressive econometric time series
Econometric autoregression has quite a bit in common with univariate
polynomial regression. Univariate polynomial regression consists of regressing
a variable on polynomial powers of another variable and a noise term.
Econometric autoregression consists of regressing a variable on lags of
itself (which can be thought of as powers of the Backshift operator:
B(xt ) = xt−1, B

2(xt ) = xt−2, . . .) and a noise term.
The study in (Fitzgibbon et al. [2004]) compares several criteria, including

AIC, a corrected version of AIC (AICc), and an MML estimator.28 The
comparison was performed by using ML to estimate the parameters for each
of the models, with the different criteria then being used to select the model
order. In all cases, MML was the best at choosing the model order and the one
most prone to under-estimating the model order while AIC was the worst at
choosing the model order and the one most prone to over-estimating the model
order. With T being the training sample size and the Mean Squared Prediction

28 The other criteria tested were Schwartz’s Bayesian Information Criterion (Schwartz [1978])
and a criterion due to Hannan and Quinn ([1979]). MML also outperformed both these criteria
in the test.
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Error (MSPE) for model order p with parameters (φ1, . . . , φp) being given by

MSPE(p) = 1
T

2T∑
i=T +1

(yi − (φ̂1yi−1 + · · · + φ̂pyi−p))2

in all cases, MML gave the least squared prediction error and AIC gave the
largest squared prediction error.

6.2.3 Multivariate second-order polynomial model selection
A variation of the polynomial regression problem arises when the order of
the model is fixed and known, while the models vary in selecting from among
a large set of variables. The task is both to select the correct variables and
to determine how the chosen variables influence the model directly and in
collaboration with other variables.

Rumantir and Wallace ([2003]) discuss this problem as it arises in the
context of predicting the intensity of tropical cyclones. The order of the
model is presumed to be a second-order polynomial, while the models vary
in selecting from among thirty six variables, representing a wide variety of
meteorological, geographical and hydrological data. Rumantir and Wallace
compare twelve different model selection techniques, including MML and
AIC, using both artificially generated and real data. MML was found reliably
to converge to the true model for the artificially generated data, and to a
reasonably parsimonious model when tested on real data. Indeed, MML was
shown to outperform existing cyclone prediction techniques, and to discover
new and useful regularities in the data. The models selected by AIC on the
artificial data were found to have over-fitted the data. AIC was not sufficiently
competitive with the other techniques to warrant its being tested on the real
data.

6.2.4 Gap or no gap: a clustering-like problem for AIC
The last statistical problem to be discussed in this section is a new problem
which has not (to our knowledge) previously been discussed in the literature.
Suppose that we have to select between the following two models: either a
quantity is uniformly distributed over [0, 1], or else it is uniformly distributed
over the intervals [0, a] ∪ [b, 1], where 0 < a < b < 1. (In this second case, there
is a gap—the interval (a, b)—over which the quantity is absent.) Although
this problem is different from, and simpler than, typical problems studied
in statistical mixture modelling, clustering, numerical taxonomy and intrinsic
classification, we choose it because it shows a weakness of AIC in an instructive
way.

Suppose that we have N data points. The expected average gap size is 1/N

and the expected size of the largest gap is (log N)/N (see Appendix B.1 for a
proof).
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Consider the case in which b = a + (log N)/N . As we show in Appendix
B.2, in this case AIC inconsistently prefers the gappy model to the model
without the gap, even though a gap of this size is just what we would expect if
the data actually came from a distribution with no gap in it. By contrast, as we
show in Appendix B.3, in this case MML correctly prefers the no-gap model.
We also show that MML will not prefer the gappy model until the size of the
largest gap in the data is approximately (2 log N)/N .29

In defence of AIC, it might be pointed out that AIC’s estimate of the
gap size tends to zero as the number of data approaches infinity. But
any tendency to overestimate the gap size—and especially inconsistently
so—augurs particularly badly for AIC, since one of the stated aims of AIC
is to maximise the predictive accuracy (i.e. minimise the KL-distance). Yet
overestimation of the gap size gives an infinite KL-distance.

6.3 Conclusions from the comparison of MML and AIC

In this section we have compared the performance of MML and AIC on a
wide variety of statistical problems. We conclude the section with a summary
of the three most significant implications arising from the comparison.

First, the very great superiority of MML over AIC in the inference problems
examined should be apparent. MML can be used to do either parameter
estimation or model selection. Where the problem is parameter estimation (the
Gaussian distribution, the von Mises circular and von Mises–Fisher spherical
distributions, the Neyman–Scott problem), AIC is equivalent to maximum-
likelihood estimation, which either performs badly or is inconsistent on these
problems. MML provides consistent estimates of the parameters in each case.

Where the problem is model selection (univariate polynomial regression,
econometric time series autoregression, multivariate second-order polynomial
model selection, the gap/no gap problem), AIC is either inconsistent or very
bad at choosing the model order, while MML performs well.

Second, Forster ([2002], pp. S129–31) has in the past defended AIC against
claims of inconsistency. But we are not merely repeating claims that Forster has
already rebutted. Forster’s defence of AIC concerns the alleged inconsistency
of AIC on only one of the problems we have discussed here, that of univariate
polynomial regression. We were careful not to repeat the charge; on that
problem we claimed only that the performance of MML is orders of magnitude
better than that of AIC, not that AIC is inconsistent. In fact, we accept Forster’s

29 Related, but more complex, illustrations of this point may be found in (Wallace and Boulton
[1975]) and (Wallace and Dowe [1999b]).
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defence of the consistency of AIC on this problem, since it is similar to that
which we give for SMML below in Section 7.1.30

However, Forster’s defence of AIC on the problem of univariate polynomial
regression is specific to that problem and will not generalise to other problems.
For example, it cannot be used to defend AIC against the charge that it
inconsistently prefers the gappy model in the gap/no gap problem. Nor to
our knowledge, has Forster ever considered the important class of cases,
represented in this paper by the Neyman–Scott problem but also including
single and multiple factor analysis and fully-parametrised mixture modelling,
in which the amount of data per parameter is bounded above. In these
problems, ML, and hence AIC, is inconsistent, MML consistent.

Third, the Neyman–Scott problem and the other finite data per parameter
problems have highly significant implications for Forster’s defence of the
goal of predictive accuracy as the goal of statistics. These problems show an
important and under-appreciated distinction between inference and prediction:
minimising the error in one’s predictions of future data is not the same as
inferring the true model. It is not that Forster is unaware of this distinction
(see, for example Forster [2001], p. 95). But since he believes that Bayesian
inference is impossible, he has concluded—too quickly, we think—that the
field has been left clear for predictive accuracy to claim as its own. What we
take ourselves to have shown here is that Bayesian inference is a viable goal
for statistics, and that predictive accuracy cannot be a substitute for it. We
discuss this point in more detail below in Section 7.2.

Two final points: while either prediction or inference can be legitimate goals
for statistics, it is important to suit one’s means to one’s goals: maximising
predictive accuracy in Neyman–Scott leads to inconsistent estimates (and,
therefore, inferences). If you want to maximise predictive accuracy, you
should minimise the expected KL distance (MEKLD); if you want the best
inference, you should use MML. Finally, it is important to note that on the
Neyman–Scott problem, AIC does not converge on the MEKLD estimate,
and hence does not deliver predictive accuracy, while MEKLD overestimates

30 Like AIC, Strict MML overshoots the simplest model family containing the true model in the
sense that it typically selects a model from a more complex family. (Although SMML does
not overshoot in the same way—for SMML, unlike AIC, the terms in the higher co-efficients
are insignificant.) Like AIC, Strict MML converges on the true model as the number of data
goes to infinity. And we agree with Forster that the definition of the simplest model family
containing the true model is dependent on how the parameter space is defined, and so is not
something we should be interested in per se. Rather, we should be interested in inferring the
true model itself. However, as we show below in Section 7.1, a simple modification to Strict
MML solves the problem of inferring the simplest model family containing the true model if
we are interested in solving it.
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the noise in the data, and MML correctly estimates the noise, ML (and hence
AIC) underestimates it.

7 Meeting Forster’s objections to Bayesianism

We have already seen above how the method of minimising message length is
immune to the problem of language variance. In this section, we show how
MML enables Bayesians to meet two other objections frequently raised by
Forster against Bayesian statistics.

7.1 The sub-family problem

The sub-family problem is a generalised version of the curve-fitting problem.
Consider any model selection problem in which one family of models, A, is a
subset of another family, B. Then for any consistent assignment of priors and
for any possible data, p(B| data) ≥ p(A| data). How, ask Forster and Sober
(Forster and Sober [1994]; Forster [2000], p. 214), can Bayesians explain the
fact we sometimes prefer model family A to model family B?

On the face of it, the SMML estimator described above is vulnerable to this
objection. The reason is that in its purest form, the first part of a message
constructed according to the strict MML procedure makes no reference to
families of models. The SMML estimator is not interested in families of models
per se. It partitions the data into subsets each of which is represented by an
estimate, which is to say, by a fully specified model. So consider a case of
the curve-fitting problem where the true curve is a second degree polynomial
(with Gaussian noise added). If asked to select the best curve to account for
some data from among all polynomials of, say, degree 8 or less, the particular
estimate chosen according to the SMML method is likely to fall very near
those axes of the parameter space where the higher order co-efficients have
values of zero, but it is unlikely to fall precisely on those axes. So the SMML
estimator will typically select a polynomial of degree 8, without noticing that
the co-efficients of all the terms in x3 and higher are very close to zero. Thus,
while the polynomial chosen as the SMML estimate will, across the range of
the data, be virtually indistinguishable from a quadratic, it will not actually be
a quadratic.

How then can the Bayesian solve the sub-family problem? There is a clue
to the answer in the description of the problem. Why in the case described
above does the SMML estimator choose a high-degree polynomial? Because
it is not interested in families of models, only in fully specified models. If
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we are interested in the question of which is the simplest family of models
containing the true model, then we can modify the SMML estimator to
direct its attention to that question. As it happens, this can be achieved
by a simple modification: we modify the first part of the message so that
a model family is asserted. The first part of the message now consists of
a statement of the model family, followed by a statement fully specifying
the parameters of the chosen family. This modified form of the estimator
results in a negligible increase in expected message length and is essentially
equivalent31 to that used in the comparison reported on in Section 6.2.1, where
the superior performance of MML shows that the estimator successfully solves
the curve-fitting problem.

The treatment of this specific problem illustrates the general form of the
answer to the sub-family problem within the Bayesian/MML framework.
Since models from family B are more complex than those from family A,
asserting a model from family B will lengthen the first part of the message.
If this lengthening is not compensated for by a greater shortening in the
second part of the message—as will be the case if the extra complexity in
model family B brings no extra explanatory power—then MML will prefer
the simpler model from family A as its explanation of the data. And this is true
notwithstanding the fact that model family B has overall the higher posterior
probability. In general, the MML estimate is not equal to the mode of the
posterior.

7.2 The problem of approximation, or, which framework for
statistics?

At bottom, the competition between MML and AIC is not just a disagreement
about which of two statistical methods is superior. There is, as Forster has
noted, a fundamental disagreement about the right framework for doing
statistics, a disagreement about what statisticians should be trying to do.

Forster defends the predictive accuracy framework. In this framework, the
basic object of interest is the model family, and the basic aim is prediction. In
the Bayesian/MML framework, the basic object of interest is the fully specified
model, and the basic aim is inference.

This is not to say that in the Bayesian/MML view, prediction is not a
legitimate goal of statistics. It is to say that we are sometimes legitimately

31 The form of the estimator described here and that used in (Wallace [unpublished]) and
reported on in Section 6.2.1 are not exactly the same, but the differences are inessential. The
purpose of Wallace’s study was to compare different model selection criteria. He therefore
estimated the parameters of each model family using the method of ML. However, since
univariate polynomial regression is one of those problems in which the likelihood function is
well-behaved, using MML (rather than ML) to estimate the parameters of each model family
would not have given significantly different answers.
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interested in which fully specified model is most probably true, and not nearly
so much in inferring from which class of models that theory comes, or in
predicting what future data sampled from a posterior distribution over that
class of models would look like.32

Why does Forster think we should be interested in model families rather than
in fully specified models? Forster gives two related arguments for preferring the
predictive accuracy framework. First, he objects to the Bayesian framework
because there is no sensible way to define the probability that a fully specified
model (with at least one real-valued parameter) is exactly true. As a result, he
thinks that the predictive accuracy framework is truer to the way real scientists
behave.

Here is Forster’s first argument:

‘We work with families of curves because they deliver the most reliable
estimates of the predictive accuracy of a few curves; namely their best
fitting cases. There is no reason to suspect that such an enterprise can be
construed as maximising the probability that these best fitting cases are
true. Why should we be interested in the probability of these curves’ being
true, when it is intuitively clear that no curve fitting procedure will ever
deliver curves that are exactly true? If we have to live with false hypotheses,
then it may be wise to lower our sights and aim at hypotheses that have
the highest possible predictive accuracy.’ (Forster and Sober [1994], p. 26,
emphasis in the original)

As we have already noted, we agree with Forster that no method of statisti-
cal induction delivers inferences that are exactly true of fully-specified models
with real-valued parameters.33 However, what if there were a method capable
of delivering inferences which are approximately true?

Forster ([2000], p. 214) considers a crude version of this suggestion, where a
theory is considered to be approximately true if the true values of parameters
differ only infinitesimally from the asserted values. Forster rightly dismisses
this attempt;34 we agree with him that the idea of infinitesimal closeness is not
the right way to define what it means for a theory to be approximately true.

32 A nice example of this from a real world application of MML comes from spam detection
(Oliver [2005]). Spammers often use templates that can be filled with random text to make each
spam unique. Spam-detectors are therefore interested in the problem of inferring the template
from which a given spam was generated. As Oliver explicitly notes, this is a problem where
we are interested very much in inference to the best fully specified model, and not at all in
predicting the precise form that future spam generated from that model will take.

33 Strictly speaking, while Forster’s claim is very nearly right, we do not completely agree with it.
But there is not enough space here to explore the reasons for our slight dissent.

34 Here is his argument: consider an example in which there are two models A and B, where
A asserts that θ = 0 and B asserts that θ 
= 0. If the meaning of ‘A is approximately true’
is ‘the true value of θ is infinitesimally close to 0’, then there is a member of B that is also
approximately true in virtue of being infinitesimally close to 0.
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However, Forster concludes from this that no better definition of what it
means for a theory to be approximately true is available to the Bayesian (or
to anyone). His pessimistic response to this (‘If we have to live with false
hypotheses, then it may be wise to lower our sights...’) is to give up entirely on
the idea of inferring the best fully-specified model, and move to a framework
within which the focus of interest is on model families instead of fully specified
models.

We think this pessimism is hasty and unfounded. The MML principle pro-
vides a rigorous, consistent and useful way of defining the approximate truth
of theories. This is possible because there is a trade-off involved in choosing
the precision of an estimate. On the one hand, if the estimates are stated too
coarsely, then although the first part of the message, asserting some particular
estimate, will be short, the second part of the message, encoding the data val-
ues, will have to be longer, because more information is required to locate the
values within the large region represented by the coarsely stated estimate. On
the other hand, if the estimates are stated too precisely, the length of the first
part of the message will be unnecessarily lengthened by redundant information.

The result of the trade-off is that MML methods deliver point estimates
stated to a precision consistent with the expected error in their estimation. It is
in this sense that the assertion of a theory chosen by an MML estimator is
approximately true: the data give us no reason for being any more (or less)
precise in our estimates.

The availability of this Bayesian method of point estimation undermines
Forster’s second argument:

‘The goals of probable truth and predictive accuracy are clearly different,
and it seems that predictive accuracy is the one that scientists care about
most. Wherever parameter values are replaced by point estimates, there
is zero chance of that specific value being the true one, yet scientists
are not perturbed by this. Economists don’t care if their predictions of
tomorrow’s stock prices are exactly right; being close would still produce
huge profits. Physicists don’t care whether their estimate of the speed of
light is exactly right, so long as it has a high degree of accuracy. Biologists
are not concerned if they fail to predict the exact corn yield of a new
strain, so long as they are approximately right. If the probability of truth
were something that they cared about, then point estimation would be a
puzzling practice. But if predictive accuracy is what scientists value, then
their methodology makes sense.’ (Forster [2001], p. 95)

Since the point estimate asserted by an MML estimator is stated only to a
precision warranted by the data, we can see that this argument relies on a false
contrast. Scientists can care about probability of truth and still use theories
that they know to be only approximately true. The MML framework thus
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preserves the strong intuition that scientists care about getting to the truth,
that is, inferring the model from which the data actually came.

8 Conclusion

The mathematical formalisation of the notion of theoretical simplicity is
an exciting development for statistics, with profound implications for both
statistical theory and practice, and for philosophy of science.

In this paper we have argued for the theoretical and empirical superiority
of the Bayesian method of MML over the non-Bayesian AIC, defended by
Malcolm Forster and Elliott Sober. The theoretical arguments show that
MML is a consistent and invariant Bayesian procedure. It is thus immune to
the problem of language variance raised by Forster and Sober as a general
objection to Bayesianism. It is also a general method, one which has been
applied successfully to problems of a wide range of statistical forms, and
originating in many different fields. It can be used for model selection and for
parameter estimation, regardless of whether the parameters are continuous or
discrete. AIC, by contrast, can only be used for model selection problems with
continuous parameters, as far as we know.

Our empirical arguments show that even in those cases where AIC
can be applied, in every case where AIC and MML have been directly
compared, MML outperforms AIC. For example, in the key case of univariate
polynomial regression (the ‘curve fitting problem’), AIC is not competitive
with MML except under favourable conditions of low noise and large
sample. For autoregressive time-series, and for the von Mises circular and
von Mises–Fisher spherical distributions, the performance of AIC is even
worse, being unable to compete with MML at all.

Of special significance is the Neyman–Scott problem, an example of an
important class of cases where the amount of data per parameter to be
estimated is bounded above. These cases show the inadequacy of the predictive
accuracy framework advocated by Forster and Sober: if we aim to maximise
the expected log-likelihood of re-sampled data, we end up with inconsistent
estimates. By contrast, MML gives consistent estimates in the Neyman–Scott
problem and similar cases.

Having laid out the many advantages of the Bayesian MML approach over
the non-Bayesian AIC approach, we leave the reader with Dowe’s question
(Dowe et al. [1998], p. 93; Wallace and Dowe [1999a], p. 282; Wallace and
Dowe [2000], Section. 5; Comley and Dowe [2005], Section. 11.3.1) as to
whether only MML and closely related Bayesian methods can, in general,
infer fully specified models with both statistical consistency and invariance.
Even if non-Bayesian methods can achieve this, we doubt that they will be as
efficient as MML.
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Appendices

A Details of the derivation of the Strict MML estimator

We begin by observing that the set of possible observations, X, is countable.
This must be so because any apparatus that we can construct with which to
take measurements can do so only with finite accuracy.

We also observe that the number of actual observations must be finite. Since
a countable quantity raised to the power of a finite quantity is countable, it
follows that the set of distinct hypotheses that the data could justify us in
making, H ∗ = {m(x) : x ∈ X}, is also countable, i.e. H ∗ = {hj : j ∈ N}.

For example, if we want to estimate the probability that a coin lands heads
from the number of heads in a sequence of 100 tosses, it would not make sense
to consider more than 101 different estimates of the bias of the coin, because
there are only 101 different possible observations we could make.

Since the number of assertable estimates is countable, we can define
cj = {i : m(xi) = hj } for each hj ∈ H ∗, and C = {cj : hj ∈ H ∗}. That is, each
cj is a group of possible data points, with all the points in the group being
mapped by the estimator m to a single estimate, hj . C is the set of these data
groups, which together form a partition of the data space. Given some set of
assertable estimates H ∗ as defined above, we assign non-zero prior probabilities
to the members of H ∗ —constrained by the prior density function—and then,
for each x ∈ X, choose h ∈ H ∗ to maximise p(h|x). This defines m∗ : X → H ∗,
and so shows the existence in theory of a solution to our point estimation
problem, {H,X, f, p}, provided that we have selected the right H ∗. We now
consider how best to choose H ∗.

For all j , let qj = ∑
i∈cj

m(xi) be the prior probability assigned to hj ,
which in Section. 5.1 we called the coding prior. We must have

∑
j qj = 1 and

qj > 0 for all j . Moreover, if i ∈ cj then p(xi |hj )qj ≥ p(xi |hj ′)qj ′ for all i and
j 
= j ′. That is, given a set of data points all of which are mapped to a single
estimate hj , no other choice of estimate in H ∗ gives a greater joint probability
of estimate and data.

To get a good approximation, perhaps the best approach would be to
compare r(xi) = ∫

H
p(xi |h)f (h)dh, the marginal probability of making some

observation, with r∗(xi) = ∑
j p(xi |hj )qj = ∑

j b(hj , xi). Each b(hj , xi) is the
joint probability of the estimate hj and a datum xi . r∗(xi) is therefore the
marginal probability of datum xi given the coding prior. However, we shall
instead maximise an average of b(x, h) over all x.

Suppose that we conduct N trials, with observations Y = {y1, . . . , yn, . . . ,

yN }, parameter values G = {g1, . . . , gn, . . . , gN }, and estimated values
K = {k1, . . . , kn, . . . , kN }. The joint probability of Y and G, J (G, Y ) =∏N

n=1 b(gn, yn).
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Our aim will be to choose the discrete model of the problem and the estimate
sequence, K , so as to give the highest possible joint probability, i.e. to choose
the model and K to maximise J (K, Y ) = ∏N

n=1 b(kn, yn).35

Let Di be the number of times xi occurs in Y , for all i. Then
J (K, Y ) = ∏

i{b(m(xi), xi)}Di , where m is some yet-to-be determined function.
Now, if N is large enough, then Di ≈ Nr(xi). So, we aim to choose the

model H ∗ and m to maximise:

B = 1
N

∑
i

Nr(xi) log b(m(xi), xi)

=
∑

j

(
∑
i∈cj

r(xi) log qj ) +
∑

j

(
∑
i∈cj

r(xi) log p(xi |hj ))

The first term gives the negative expected length of the assertion of the
model, and the second term gives the negative expected length of the data,
encoded under the assumption that the asserted model is the true model.

B MML, AIC and the Gap vs. No Gap Problem

We have data {0 ≤ xi ≤ 1 : i = 1...N}. Each of the xi are stated to some
accuracy ε > 0.36 We are to decide whether the data come from a uniform
distribution over the interval [0,1] with no gap, or from a uniform distribution
over [0, a] ∪ [b, 1], 0 < a < b < 1, where there is an interval (a, b) over which
the quantity is absent.

B.1 Expected size of the largest gap

We begin by showing that the expected size of the largest gap between two of
N data points from the non-gappy distribution is approximately (log N)/N .

To get things started, we assume that the N data points come
approximately from a negative exponential distribution, with rate r = N +

35 Wallace and Boulton ([1975], Section. 3.3) give a justification of why we should choose
this particular discrete model of the problem, appealing to a frequentist interpretation of
probability. For problems whose context makes a frequentist interpretation inappropriate,
Wallace elsewhere (Wallace and Dowe [1999a]; Wallace [2005], Chapter. 6.7.2, p. 275) appeals
to an interpretation of probability in terms of Turing machines and algorithmic complexity.

36 Classical statisticians do not normally discuss the accuracy to which the data is stated, despite
the fact that all data must be recorded with some finite accuracy in order that it be recorded at
all. ε can, however, be arbitrarily small. This is an important technical point: if ε were bounded
below for all data points, AIC could escape the charge that it always prefers the gappy model:
for then at some point, the uncertainty regions around the data points would overlap with each
other, leaving no room for any gaps. However, this escape route out of statistical inconsistency
for AIC only appears because of the introduction of an MML measurement accuracy, and the
inconsistency returns if we simply let the measurement accuracy εi of data point xi (previously
ε) depend upon i and tend to 0 sufficiently quickly.
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O(
√

N) ≈ N ; whereupon r/N = 1 + O(1/
√

N) = N/r and limN→∞ r/N =
1 = limN→∞ N/r.

The points are therefore uniformly distributed in [0, 1] and the average gap
size is 1/N . Then,

Pr(largest gap ≤ y) = Pr(all gaps ≤ y) = [Pr(a random gap ≤ y)]N

=
[∫ y

0
Ne−tN dt

]N

=
[∫ yN

0
e−u du

]N

= (1 − e−yN )
N

We now introduce a few results to be used in the rest of this appendix. As is
well known,

lim
M→∞

(
1 + k

M

)M

= ek, and (B.1)

lim
M→∞

(M + 2)2

M2 = 1 (B.2)

We also make use of a result suggested to us by Gérald R. Petit, generalising
B.1 to the case of f (M) = o(

√
M), i.e. where limM→∞ f (M)√

M
= 0:

lim
M→∞

(
1 + f (M)

M

)M

ef (M)
= 1 (B.3)

Letting γ (y,N) = eNy/N and so y = (log γN)/N, 0 < γ < ∞, in the special
case that y = 0 then γ = 1/N and Pr(largest gap ≤ y) = Pr(largest gap ≤
0) = 0 = limN→∞ e−N = limN→∞ e−1/γ . Otherwise, for y > 0, noting that
−1/γ = −N/eNy = o(

√
N) for each y in turn, by Equation (B.3) we have

that for each y > 0,

Pr(largest gap ≤ y) = (1 − e−(N log γN)/N )
N

= (1 − e−(log γ+log N))
N

= (1 − 1/γN)N

→ e−1/γ in the asymptotic limit of large N . (B.4)

Equation B.4 is a cumulative distribution for the size of the largest gap.
Differentiating equation B.4 can similarly be shown to give the distribution
for the largest gap itself; we can then find the expectation of this distribution.

f (γ ) = ∂

∂γ

[
Pr

(
largest gap ≤ y = log N + log γ

N

)]
→ ∂

∂γ
e−1/γ

= 1
γ 2

e−1/γ (B.5)
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Since 0 ≤ y ≤ 1 and y(γ ) is a continuous bounded function of γ for
0 < 1

N
≤ γ ≤ eN

N
, the expected size of the largest gap, E[f (γ )], is

E[f (γ )] =
∫ ∞

0
f (γ ) y(γ ) dγ

=
∫ ∞

0
f (γ )

log γ + log N

N
dγ

= log N

N

∫ ∞

0
f (γ ) dγ + 1

N

∫ ∞

0
f (γ ) log γ dγ

= log N

N
+ 1

N

∫ ∞

0
O(1)

e−1/γ

γ 2
× log γ dγ

= log N

N
+ O(

1
N

)

≈ log N

N

I.e. lim
N→∞

N

log N
E[f (γ )] = 1 (B.6)

B.2 Performance of AIC on the gap vs. no gap problem

Recall that AIC minimises −2 log(L(F )) + 2k, where k is the num-
ber of estimated parameters, and L(F) the likelihood of the best fit-
ting member of the family of curves. (By contrast, ML minimises
− log(L(F )). AIC differs from ML by the inclusion of the penalty function
+2k.)

We consider a case in which b = a + (log N)/N . The likelihood function is[
1 − log N

N

]−N

for the gappy model (for which k = 2), and 1N for the non-gappy
model (for which k = 0).

So, on the one hand, AICNG = −2 log(1N) + 2 × 0 = 0.
On the other hand,

AICG = 2N log(1 − (b − a)) + 2 × 2

≈ 2N log(1 − log N

N
) + 4

= 2N(− log N

N
− 1

2

(
log N

N

)2

+ · · ·) + 4

= −2 log N − (log N)2

N
+ · · · + 4

< 0, for moderately sized N.
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So AIC selects the model with the gap.37

B.3 Performance of MML in the gap vs. no gap problem

To encode the models, we employ the following coding scheme: we use 1 bit
(= loge 2 nits38 ) to indicate which of the two models is being used, then we
encode the parameters of the model (none for the no-gap model, the two
parameters a and b for the gappy model), then we encode the data.

For sufficiently small ε, the message length for the no-gap model is given
straightforwardly by:

LNG =
model︷︸︸︷
log 2 +

parameters︷︸︸︷
0

data︷ ︸︸ ︷
− N log ε . (B.7)

For the gappy model (see Fig. 1), we must decide to what precision to state
the parameters of the model a and b. Initially, let us say that we state a to
precision δ1 and b to δ2.

Then the message length for the gappy model is given by:

LG =
model︷︸︸︷
log 2

parameters39︷ ︸︸ ︷
− log δ1 − log δ2 − log 2

+
data︷ ︸︸ ︷

−N log ε + N log(1 − [(b − δ2) − (a + δ1)])

Assume (from symmetry) that δ1 = δ2 = δ
2 . So40

LG = −2 log
δ

2
− N log ε + N log(1 − [(b − a) − δ]). (B.8)

We wish to choose δ to minimise LG. Solving

0 = ∂LG

∂δ
= −2

δ
+ N

1 − [(b − a) − δ]
,

37 Since there are regularity conditions that must be satisfied in order to apply AIC, it might be
that one of the regularity conditions is not satisfied. But, in that case, AIC selects no model at
all!

38 In everything that follows all logarithms are natural logarithms (loge), and hence all message
lengths are in ‘natural bits’ or ‘nits’ (Boulton and Wallace [1970]; Comley and Dowe [2005],
Section. 11.4.1). 1 nit = log2 e bits; 1 bit = loge 2 nits.

39 Because it does not matter in what order we state the parameters of the model, a and b, it
possible to devise a code that saves loge 2 nits in the length of the assertion of that part of the
gappy model.

40 There is a potential concern with the expression LG in the case that b − a < δ, because in that
case, the uncertainty regions around the gap-limits cross over (see Fig. 1). However, as we show
at expression B.14, we only use LG (in preference to LNG) in the case that b − a >≈ (2 log N)/N ,
which for large N is substantially greater than δ = 2[1 − (b − a)]/(N − 2) ≈ 2

N
.
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0 1

a b

�

xi

a + δ
2 b − δ

2

δ
2

δ
2

ε

Figure 1. The gappy model, showing parameters a and b stated to precision δ
2 , and

one data point xi stated to accuracy ε.

we find that LG is minimised when

δ = 2[1 − (b − a)]
N − 2

, for N ≥ 3. (B.9)

Given N, we wish to know for what size gap MML will prefer the gappy
model to the no-gap model. This is equivalent to asking at what point the
message lengths LG and LNG are the same. Subtracting B.7 from B.8 we get the
expression

LG − LNG = −2 log
δ

2
− N log ε + N log(1 − [(b − a) − δ])

− log 2 + N log ε

= −2 log
δ

2
+ N log(1 − [(b − a) − δ]) − log 2

Substituting δ = 2[1−(b−a)]
N−2 from Equation B.9 above, and letting the expression

equal zero, we get:

0 = LG − LNG = − log 2 − 2 log
1 − (b − a)

N − 2

+N log
[
(1 − (b − a))

(
1 + 2

N − 2

)]
= −2 log(1 − (b − a)) + 2 log(N − 2) + N log(1 − (b − a))

+N log N − N log(N − 2) − log 2

= (N − 2) log(1 − (b − a)) − (N − 2) log(N − 2)

+N log N − log 2

= (N − 2) log
(1 − (b − a))

N − 2
+ N log N − log 2

= 2 log N + (N − 2) log
N(1 − (b − a))

N − 2
− log 2

Exponentiating, and given N , we seek (b − a) satisfying

1 = e0 = 1
2
N2 ·

[
N(1 − (b − a))

N − 2

]N−2
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1 = 1
2
N2 · (1 − (b − a))N−2 ·

[
N

N − 2

]N−2

1 = 1
2
N2 · (1 − (b − a))N−2 ·

[
1 + 2

N − 2

]N−2

For N ≥ 3, we can let M = N − 2, and say that

1 = M2(M + 2)2

2M2 · (1 − (b − a))M ·
[

1 + 2
M

]M

(B.10)

Using Equations B.1 and B.2 we can rewrite Equation B.10 as follows:

lim
M→∞

1
2
M2e2(1 − (b − a))M = 1, (B.11)

and using Equation B.3 it now follows that

lim
M→∞

[
(1 + 2

M
)(1 + 2 log M

M
)
]M

e2M2
= 1.

Therefore, Equation B.11 can be rewritten as

lim
M→∞

1
2

[
(1 + 2

M
)(1 + 2 log M

M
)(1 − M(b − a)

M
)

]M

= 1. (B.12)

Expanding,

lim
M→∞

1
2

[
1 + 1

M
(−M(b − a) + 2 + 2 log M)

+ 1
M2 (−2M(b − a) − 2M(b − a) log M + 4 log M)

+ 1
M3 (4M(b − a) log M)

]M

= 1.

Under the very reasonable assumption that M(b − a) = o(
√

M), the terms in
1

M2 and 1
M3 are small enough to be ignored, and we can re-apply Petit’s

result in Equation B.3, letting f (M) = −M(b − a) + 2 + 2 log M . We see
that

lim
M→∞

M2e2e−M(b−a) = 2

lim
M→∞

2(log M + 1) − M(b − a) = log 2

lim
M→∞

M(b − a)

2(log M + 1) − log 2
= 1 (B.13)

Recalling that M = N − 2 for N ≥ 3, we can say that

lim
N→∞

N(b − a)

2 log N
= 1 (B.14)
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What is the meaning of this result? We have shown that MML will prefer the
gappy model if there is a gap, b − a, in the data of approximately (2 log N)/N .
This is commendable. For if the true distribution were non-gappy, then
the expected size of the largest gap would still be (log N)/N . Therefore, to
prefer the gappy model when the largest gap in the data is (log N)/N would
be to leap to unwarranted conclusions. In fact, as we showed, this is just
what AIC does. Waiting until the the size of the largest gap in the data is
(2 log N)/N before switching over to the gappy model is therefore very sensible
behaviour.
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