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Abstract

This paper addresses the problem of learning
archetypal structural models from examples. To this end
we define a generative model for graphs where the dis-
tribution of observed nodes and edges is governed by a
set of independent Bernoulli trials with parameters to
be estimated from data in a situation where the corre-
spondences between the nodes in the data graphs and
the nodes in the model are not not known ab initio and
must be estimated from local structure. This results in
an EM-like approach where we alternate the estimation
of the node correspondences with the estimation of the
model parameters. Parameter estimation and model or-
der selection is addressed within a Minimum Message
Length (MML) framework.

1 Introduction

Graph-based representations have been used with
considerable success in computer vision in the abstrac-
tion and recognition of object shape and scene structure,
as they can concisely capture the relational arrangement
of object primitives, in a manner which can be invariant
to changes in object viewpoint. Despite their many ad-
vantages and attractive features, the methodology avail-
able for learning structural representations from sets of
training examples is relatively limited, and the process
of capturing the modes of structural variation for sets of
graphs has proved to be elusive.

Recently, there has been considerable interest in
learning structural representations from samples of
training data, in particular in the context of Bayesian
networks, or general relational models [2]. However,
these approaches rely on the availability of correspon-
dence information for the nodes of the different struc-
tures used in learning. In many cases the identity of
the nodes and their correspondences across samples of
training data are not known, rather, the correspondences
must be recovered from structure.

In the last few years, there has been some effort
aimed at learning structural archetypes and clustering
data abstracted in terms of graphs. Torsello and Han-
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cock [6] define a superstructure called tree-union that
captures the relations and observation probabilities of
all nodes of all the trees in the training set. However,
the model structure and model parameter are tightly
coupled, which forces the learning process to be ap-
proximated through a series of merges. Further, all
the observed nodes must be explicitly represented in
the model, which then must specify in the same way
real structural variations and random noise, limiting the
generalization capabilities of the model. In [5] was
proposed a generalization for graphs which allowed to
decouple structure and model parameters and used a
stochastic process to marginalize the set of correspon-
dences, however the approach does not deal with at-
tributes and all the observed nodes still need be ex-
plicitly represented in the model. Further, the issue of
model order selection was not addressed.

The aim in this paper is to develop an information-
theoretic framework for the learning of generative mod-
els of graph-structures from sets of examples. The ma-
jor characteristics of the model are the fact that the
model structure and parameters are decoupled, and that
we have two components to the model: one which de-
scribes the core part, or the proper set of structural vari-
ations, and one which defines an isotropic random struc-
tural noise.

2 Generative Graph Model

Consider the set of undirected graphs S =
(g1,---,91). Our goal is to learn a generative graph
model G that can be used to describe the distribution
of structure in S. To develop this probabilistic model,
we make an important simplifying assumption: We as-
sume that the observation of each node and each edge
is independent of the others. Hence, the proposed struc-
tural model is a complete graph G = (V, E, ©), where
V = {1,...,n} is the set of nodes, F C V x V is
the set of edges and O is a set of observation probabili-
ties such that node ¢+ € V' is present with probability 6;.
Futher, edge (¢, j) is present with probability 7;;, con-
ditioned on the fact that both nodes ¢ and j are present.
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Figure 1. The graph observation process.

Weight distributions can be added to the node and edge
models to deal with weighted graphs. In this paper we
assume that graphs are attributed with edge lengths, and
we model this observed quantity as a normal distribu-
tion of mean f;; and variance Ufj for each edge (i, 7).
These parameters will be learned together with the other
model parameters.

We work under the assumption that the correspon-
dence information between the observation’s nodes and
the model’s nodes that generated them is not known.
We can model this by saying that an unknown ran-
dom permutation is applied to the nodes of the sample.
For this reason, the observation probability of a sam-
ple graph depends on the unknown correspondences be-
tween sample and model nodes. Figure 1 shows a graph
model and the graphs that can be generated from it with
the corresponding probabilities. Here the numbers next
to the nodes and edges of the model represent the values
of ¢; and 7;;. Note that, when the correspondence infor-
mation (letters in the Figure) is dropped, we cannot dis-
tinguish between the second and third graphs anymore,
yielding the final distribution.

With this definition, since every node in the gener-
ated graphs must originate from a node in the model,
the only operation we can do to the structural model
to generate a new graph is the removal of nodes and
edges. This implies that the model must describe every
possible structural variation encountered in the data, be
it central to the distribution, or simply structural noise
that is encountered with very low probability. To avoid
this we allow for nodes to be added to the model by say-
ing that, with a certain probability. There external nodes
have identical probability 7 of being connected to any
other node and the same length distribution of parame-
ters jz and &2, where we force the observation probabil-
ity to be equal to the average density of the core part of
the structural model and the length model parameters
to be equal to the average over the parameters of the
core model. Hence, external nodes model isotropic (or
spherical) noise with the same average edge distribution
as the core model. In general, a generative model will
generate a graph with k external nodes according to a
geometric distribution P, = (1—0)0% , where § € [0, 1]
is a model parameter that quantifies the tendency of the
model to generate external nodes.

Let us assume that we have a model G with n nodes
and that we want to compute the probability that graph
g with m nodes was sampled from it. Let g be a graph

ando : (1,...,n) — (1,...,m + 1) be a set of cor-
respondences from the model nodes to the nodes in g
where (i) = m+ 1 if model node 7 has no correspond-
ing node in g, that is, if model node 7 is not observed in
graph g. Further, let7 : (1,...,m) — (1,...,n+1) be
the inverse set of correspondences, where w(h) = n+1
if h is an external node, otherwise o(w(h)) = h, and
m(o(i)) = i if o(i) # m + 1. With this notation, the
probability that a graph g was sampled from a model G
given the correspondences o and 7 is

P(9lg,0) = (1-0) [T TT €779 T T1 ®ntnymirr -
h=1k=h

i=1j=i

where @?jk is the probability that model edge (i, )

generated graph edge (h, k), @Zk withi = n+ 1 or

j = n+ 1is the probability that edge (h, k) is external
to the model, and pairs with the same index represent
a node instead of and edge. Letting G = (gn) be the
adjacency matrix of graph g, and letting Pr(z|u, 0%) =

_(@—p)?

%, we define Glf»ff and @Zk as follows:
0 ifi=jAh#koriZjAh=k
0; ifi=jAhR=kAGL, =1
1—0; if’i:j/\h:k‘/\Gh,h:O
OIF = & 7 Pr(lisluis, 0%) ifi#jAh# kA G, =1
1— 7y ifi #jANh#kANGp, = 1A
Grr =1 NG =0,
1 otherwise.
0 ifi=jAh#kori#jAh=k
—hk 0 ifh=kAi=j=n+1
@ij = L 7Pr(ly|a,5%) if(i=n+1Vi=n+1)AGu =1
1—-7 f(i=n+1Vji=n+1)AGr, =0
1 otherwise.

3 Model Estimation

Key to the estimation of the structural model is the
realization that, condition on a given set of node cor-
respondences, the node observation processes are inde-
pendent from one another. Hence, since the structural
component of the model is always a complete graph and
node/edge observation is dictated by the model param-
eters, knowing the set of correspondences would effec-
tively decouple parameters and structure.

Here we make the simplifying assumption that the
likelihood of the set of correspondences o, between
graph g and model G is strongly peaked, i.e., we have
P(g|G) ~ max,, P(g|G,0,). With this assumption
the estimation of the structural model can be achieved
with an EM-like process by alternating the estimation
of the correspondences o, of every graph g € S with a
fixed set of model parameters O, and the estimation of
O given the correspondences.

While this EM-like approach solves the problem of
estimating the structural model of a given size, the prob-
lem of model order selection remains open. We have



chosen to use Minimum Message Length (MML) crite-
rion [7] which allows us to address parameter estima-
tion and model order selection within a single frame-
work, solidly based on information theory.

3.1 Correspondence Estimation

The estimation of the set of correspondences o is an
instance of a graph matching problem., where, for each
graph g, we are looking for the set of correspondences
that maximizes P(g|G, o). To do this we relax the space
of partial correspondences, where a relaxed state is rep-
resented by a (n + 1) x (m + 1) matrix P = (p;)
satisfying the constraints p;;, > 0, ZZnJrll pirn = 1, and
Z”H pin = 1. The matrix P is almost doubly stochas-
tic, with the exception for the last row and column that
are not normalized. The probability P(g,G, o) can be
extended to the relaxed assignment space using as:

n m-+1m+1

(1-0 (ﬁH S pinolf pgk)

i=1j=1i h=1 k=h
m m n+ln+1l

(TTIT>. Yo valion). @

h=1k=i i=1 j=i

E(9,G,P) =

In an approach similar to Graduated assignment [3],
we maximize the energy function E by iterating the re-
currence P = ;i(DE?") , where DE" is the differen-
tial of E with respect to P* and p is a function project-
ing DE" to the relaxed assignment space.

3.2 Parameter Estimation

MML is a Bayesian method of point estimation
based on an information-theoretic formalization of Oc-
cam’s razor. Here, simplicity of an explanation is for-
malized as the joint cost of describing a probabilistic
model for the data and describing the data given the
model. Hence, to estimate a model class and the model
parameters, MML minimizes a two-part message. The
first encodes the model class/order and the parameters,
while the second assumes a Shannon-optimal encoding
of the data given the model. MML is closely related to
the Kolmogorov complexity, is invariant under 1-to-1
parameter transformations [7], and has general statisti-
cal consistency properties [1].

The cost of describing a fully specified model (in the
first part of the message) with a parameter vector fg of
dimension D is approximately

h(fg)
o l F(0g)

where kp are the lattice constants specifying how
tightly unit spheres can be packed in a D-dimensional

D
+ 5 log kD)

space, h(0) is the prior of the parameters 6, F'(6) is the
Fisher information matrix (Wallace and Freeman, 1987)

and the term 1/(/kBF(6g)) is the optimal round-off

in the parameter estimates.

According to Shannon’s theorem, the cost of encod-
ing the data (in the second part of the message) has a
tight lower bound in the negative log-likelihood func-
tion, to which we add the roundoff error D /2.

In this work we have opted for a standard non-
informative Jeffreys’s prior for the model parameters
which will push the parameters towards the edges of
their range forcing each node/edge to be observed either
very frequently or very rarely. A consequence of this
choice is that the MML point estimates of the parame-
ters are the same as the maximum likelihood estimates,
leaving the MML criterion only for model-order selec-
tion. In fact, the use of Jeffrey’s prior implies h(f) =

Fy(0), where F(0) is the single datum Fisher infor-
mation matrix and F'(6) = |S|P Fy(6). Hence, the final
description length, approximating log(kp) as described
in [7], is

_D 5]
I = 5 log <27r) —log(nD)—

where |S| is the number of samples and the number
of parameters for a n-node structural model is D =
3(n 1) +n4+2.

Recalling the maximum likelihood estimates for bi-
nomial distribution, we have 6; = I%I’ where a; is the

number of graphs that observe model node 4, i.e., that
— I{QGS\(%(') Uq( D }\

Z log P(g]G,04),

ges

have a node mapped to i, 7;;
where a;; is the number of graphs that observe both
nodes ¢ and 7, and 0= u+\S\’ where u is the set of ex-
ternal nodes that do not map to any node in the model.

Concluding, given a set of observation graphs S and
a model dimension n, we jointly estimate node cor-
respondences and model parameters by alternating the
two estimation processes in an EM-like approach, and
then we chose the model order that minimizes the mes-
sage length I;.

4 Experimental Evaluation

We tested our structural learning approach on shock-
graphs [4], a skeletal-based representation of the dif-
ferential structure of the boundary of a 2D shape. We
have used a database consisting of 72 shapes from the
MPEG?7 database, divided into 6 classes of 12 shapes
each. The shape classes where composed of bottles,
children, hands, glasses, horses, and tools. The size of
the shock-graphs varied from 4 to 20 nodes. We have
learned a model for each shape class and computed the
sampling probability of each graph from each model.
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Figure 2. The shape classes in the
database.
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Figure 3. Assignment probability of the
graphs to the learned models. Top:
full database, bottom: reduced database.
Left: the proposed model, right: NN rule.

For comparison, we also computed the structural simi-
larities using Graduated assignment [3].

Figure 3 plots the model-assignment probability for
each graph, i. e., a stacked histogram of the model prob-
abilities normalized over the sum of all model prob-
abilities associated with each graph, where he colors
of the classes are as follows: Bottle (red), Child (or-
ange), Hand (light green), Glass (dark green), Horse
(light bue), and Tool (dark blue). Figure 3 shows on
the top left the assignment of graphs to classes accord-
ing to the proposed approach, while on the top right it
plots the assignments obtained using the nearest neigh-
bor (NN) rule based on the distances obtained using
Graduated assignment. Here we can see that in most
cases shock-graphs are predominantly assigned to the
correct class,while NN has a significantly higher rate
of misclassifications of 14% versus the 7% misclassifi-
cation we obtained with our approach. Furthermore, it
should be noted that NN classification is computation-
ally more demanding than the classification using our
structural models, as NN requires computing the simi-
larity against each training graph, while our approach
requires computing the probabilities only against the
learned models. Clearly our approach requires the mod-
els to be learned ahead of time, but that can be per-
formed offline. To assess the generalization capabilities
of the approach we have repeated the experiment using
only 6 shapes to learn the models. The bottom row of
Figure 3 plot the model assignments obtained using our

approach and the NN rule. We can clearly see that the
approach generalizes fairly well in both cases, with the
probabilities approximately distributed in the same way
as those obtained from the full training set, resulting in
a 13% misclassification for our approach and 14% for
NN classification.

S Conclusions

In this paper we have proposed an approach to
the problem of learning a generative model of edge-
weighted graphs from examples in a situation where the
correspondences between the nodes in the data graphs
and the nodes in the model are not not known ab ini-
tio and must be estimated from local structure. To this
end, we defined a structural model which is learned with
an EM-like approach where we alternate the estimation
of the node correspondences with the estimation of the
model parameters. Parameter estimation and model or-
der selection are jointly addressed within a Minimum
Message Length (MML) framework. Experiments on a
shape recognition task show that the approach is effec-
tive in characterizing the modes of structural variation
present in a set of graphs.
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