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ABSTRACT 

The magnetic susceptibility of haemoglobin is modulated by 

oxygen saturation, providing a mechanism to non-invasively 

measure oxygen extraction fraction. When combined with 

perfusion techniques, quantitative susceptibility mapping 

facilitates regional measurement of cerebral metabolic rate 

of oxygen consumption. However, accurate measurement 

requires a complete vein map to measure anatomical 

variance in the metabolic demands of tissue. In this work we 

present a novel shape-based Markov Random Field 

technique to segmentation the cerebral veins that provides 

accurate and complete vein maps. The shape-based graph 

underpinning the model controls the spatial relationships 

between voxels and enforces cylindrical geometry, allowing 

increased sensitivity with accurate vein boundaries.  
Index Terms— vein segmentation, quantitative 

susceptibility mapping, oxygen extraction fraction 

 

1. INTRODUCTION 

 

Venous pathophysiology has been associated with multiple-

sclerosis, dementia and healthy ageing [1]–[3], and 

correlations have been observed between the venous 

vasculature and biomarkers of small vessel disease [4]. 

Studies of these processes in large healthy populations 

require minimally invasive, and automated, methods of 

quantifying cerebral metabolism and vascular health. 

Quantitative susceptibility mapping (QSM) is a 

new technique to measure magnetic susceptibility 

differences within the brain [5], [6], and has been used to 

measure venous oxygen saturation (SVO2) in vivo [3], [7]. In 

combination with MRI-based perfusion, MRI-based SVO2 

can be used to derive the cerebral metabolic rate of oxygen 

consumption (CMRO2) [7] without invasive contrast agents.  

CMRO2 is a tissue-based measure and requires a 

map of tissue oxygen extraction fraction (OEF) measuring 

the difference in arterial and venous oxygen saturation. 

Thus, SVO2 must be extrapolated from veins to the nearby 

tissue. To capture anatomical SVO2 variation, and correctly 

map tissue to veins, complete vein maps are essential. 

Unfortunately though, large downstream veins contain 

blood drained from multiple regions and lack anatomical 

specificity, and conversely, small veins are difficult to 

identify and can suffer partial volume effects.  

Metabolic impairment in the frontal and parietal 

regions has been identified in dementia and is a potential 

biomarker of cognitive compensation [8]. Fortunately, the 

pial veins in these regions are well suited to CMRO2 

measurements due to their size, contrast and anatomical 

coverage. In other regions, such as the temporal lobe and 

subcortical structures, vein contrast is reduced due to 

susceptibility artifacts and iron accumulation in the tissue. 

 Numerous methods have been proposed for MRI-

based vein segmentation [9]–[11]. Shape-driven diffusion 

and graph-based approaches have been proposed to enhance 

continuity and preserve narrow structures [9], [10]. When 

increasing the sensitivity of these methods, graph-based 

approaches often lack specificity due to the indiscriminant 

nature of their sensitivity terms. Diffusion approaches are 

more constrained, particularly shape-driven diffusion [9], 

however they may be too rigid for vessels of high curvature 

and insensitive to small vessels with low contrast.  

In this work a shape-based Markov Random Field 

technique (ShMRF) is proposed for vein segmentation and 

evaluated on frontal and parietal pial veins. ShMRF 

combines the statistical graph-based approaches with shape-

driven spatial dependencies. To our knowledge this direct 

coupling of spatial dependencies and shape information is 

novel, and allows for scale- and orientation-specific 

neighborhood profiles that focus graph sensitivity along 

vein centerlines, preserving narrow veins without 

exaggerating the boundaries of large veins. Veins were 

segmented from the QSM images using ShMRF and two 

alternative techniques from the literature, and compared 

with manually traced ground-truth. Accuracy was assessed 

using traditional overlap measures and differences in tissue-
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based OEF maps in the parietal and frontal regions 

generated from the vein segmentations. 

   

2. METHODS 

The purpose of a vein segmentation algorithm is to take an 

input image and produce a vein map, 𝛼(𝑟), where 𝛼(𝑟) = 1 

for vein voxels, and 𝛼(𝑟) = 0 for non-vein voxels 

(estimates are denoted with primes, e.g., 𝛼′(𝑟)). 

 

2.1 Markov Random Field 

 

The MRF was derived from the Ising model [12]. It had two 

energy terms namely a data term and a smoothness term 

(𝐸(𝑟) = 𝐸𝐷(𝑟) + 𝐸𝑆(𝑟)), with labels chosen to minimize 

the total energy. A two-component (vein, non-vein) 

Gaussian Mixture Model (GMM) was fitted to the QSM 

image using expectation maximization [13]. The mixing 

proportions, 𝑚𝑣(𝑟) and 𝑚𝑛𝑣(𝑟), were used in the data term. 

𝐸𝐷(𝑟) = {
log(𝑚𝑣(𝑟)) , 𝛼′(𝑟) = 1

log(𝑚𝑛𝑣(𝑟)) , 𝛼′(𝑟) = 0
 (1) 

The smoothness term penalizes higher numbers of voxels 

with opposing labels in the voxels’ neighborhood or clique 

(𝜁), multiplied by a graph weight (𝜔(𝑟, 𝑖)), where 𝑖 denotes 

the i
th

 voxel in the clique of 𝑟. 

𝐸𝑆(𝑟) = ∑ 𝜔(𝑟, 𝑖) ⋅ |𝛼′(𝑟) − 𝛼′(𝑟𝑖)|
𝑖∈𝜁

 (2) 

In an isotropic graph, 𝜔(𝑟, 𝑖) = 𝜔0. In [10] a label-specific 

anisotropic graph was employed to account for the uneven 

ratio of non-vein neighbors to long-thin veins. 

𝜔(𝑟, 𝑖) = {
𝜔1,
𝜔2,           

𝛼′(𝑖) = 1

𝛼′(𝑖) = 0
 (3) 

 

2.2 Shape-based Graph 

 

One of the most commonly used vessel enhancement filters 

is the Hessian-based vesselness filter [11], which uses the 

eigenvalues of the Hessian matrix in a vessel response 

function. In ShMRF, the graph was weighted by agreement 

between neighbor direction and the estimated vein 

centerline (𝑈′(𝑟)), represented by the eigenvector of the 

smallest eigenvalue of the Hessian matrix.  

𝜔(𝑟, 𝑖) =
|𝑁|

∑ 𝛺(𝑟, 𝑖)𝜁
𝑖

⋅ {
𝜔1 ⋅  𝛺(𝑟, 𝑖),

𝜔2 ⋅ 𝛺(𝑟, 𝑖),
           

𝛼′(𝑖) = 1

𝛼′(𝑖) = 0
 (4) 

𝛺(𝑟, 𝑖) = |𝜃(𝑟, 𝑖) ⋅ 𝑈′(𝑟)|2 (5) 

where 𝜃(𝑟, 𝑖) is the unit vector from 𝑟 to the i
th

 voxel in 𝜁, 

and 𝑁 is the size of the neighborhood (3x3x3). The vein 

neighbors are not evenly influenced (Eq. 4); rather the 

influence is focused on voxels in the direction of a proposed 

vein centerline (𝑈′(𝑟)). The weights were normalized, to 

ensure a unity mean weight. The final model was optimized 

using iterative conditional modes. 

 

2.3 Oxygen extraction fraction (OEF) mapping 

 

OEF was estimated using the vein susceptibility (𝜒𝑣𝑒𝑖𝑛) 

relative to ventricular CSF (𝜒𝑟𝑒𝑓). 

OEF(𝑟) = (𝜒𝑣𝑒𝑖𝑛 − 𝜒𝑟𝑒𝑓) (𝜒𝑑𝑜 ⋅ 𝐻𝑐𝑡)⁄  (6) 

where 𝜒𝑑𝑜 is fully-deoxygenated haemoglobin (4𝜋 × 0.27 

ppm) and Hct is haematocrit (0.4) [3]. A nearest-neighbor 

approach was taken to assigning venous measurements to 

tissue. To reduce partial volume effects, maximum filtering 

was performed along connected components of a 

temporarily dilated vein map. Maximum filtering replaced 

each vein map voxel with the maximum intensity vein map 

voxel within a 10-voxel distance along a connected path. 

 

3. EXPERIMENTS  

 

3.1. Acquisition 

 

Four healthy volunteers (3 female, mean age 26.0 years, 

standard deviation 5.4 years) were scanned on a 3T Siemens 

Skyra with a 32-channel head-neck coil using a single echo, 

flow-compensated, gradient-recalled echo (GRE) sequence 

(TE=20ms, TR=30ms, voxel=0.9x0.9x0.9mm, 

matrix=256×232×160, flip angle=15
o
).  

 

3.2. Data processing 

 

Raw k-space data was saved for each channel for phase and 

magnitude image reconstruction. Individual coil phase 

images were processed to remove phase wraps and 

background phase using Laplacian unwrapping [14] and V-

SHARP processing [15]. QSM maps were computed using 

LSQR in the STI-Suite [14]. SWI images were also 

processed and taken directly from the scanner console. 

Parietal and frontal regions were identified using an atlas 

[19] and linearly registered from MNI space to subject space 

based upon the GRE magnitude using FLIRT [16], [17]. 

 

3.3. Vein delineation 

 

Veins were manually traced by one of the authors (PW) 

under the supervision of a clinical radiologist (NF) using 

both SWI and QSM. Where QSM and SWI disagreed, 

knowledge of anatomy and expert judgment was used. An 

example slice taken is shown in Fig. 1. The inclusion of 

SWI in this process increased sensitivity to smaller veins. 

 

 
Fig. 1. Intensity projections (9mm) for SWI (minimum)  (A) 

and QSM (maximum) (B), with vein ground-truth overlay in 

red and fronto-parietal region outlined in blue. 
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3.4. Comparison 

 

For comparison, the vesselness filter (VN, [11]), and a 

recursive-ridged based filter (RR, [9]) were examined.  

Recommended parameter values were used for RR. VN and 

ShMRF parameters were tuned using a leave-one-out 

method, i.e., the parameters for subject 𝑥 were trained on 

𝑦 ∈ 𝑆/{𝑥}. A gridded search (1% of parameter space grid) 

was performed for each training instance. Performance was 

assessed using mean Hausdorff distance (MHD, [18]) minus 

the dilated Dice-Sorenson similarity measure (DSS, [9]).  

𝑀𝐻𝐷 = (𝔇(𝛼, 𝛼′) + 𝔇(𝛼′, 𝛼)) 2⁄  (7) 

where 𝔇(𝐴, 𝐵) is the mean distance of all surface voxels in 

𝐴 to the nearest voxel in 𝐵. Surface voxels were those 

removed by morphological erosion (3x3x3 kernel).  Average 

volume difference (𝐴𝑉𝐷 = |𝐹𝑃 − 𝐹𝑁| 𝑇𝑃 + 𝐹𝑁⁄ ) was also 

used to compare the techniques. 

 

4. RESULTS 

 
Fig. 2. 2D-Projections of cortical region in axial view for 

(A) ground truth, (B) ShMRF, (C) VN and (D) RR. The 

projection was of semi-transparent layers, as such, vessel 

volume influences pixel intensity (brighter equals larger). 

 

The projections shown in Fig. 2 visualise the density of the 

three techniques. ShMRF technique has increased continuity 

in smaller veins in comparison to RR. The VN technique 

was highly sensitive, generating many false positives. 

ShMRF recorded superior performance to the VN and RR 

techniques in the five of the six comparisons (Table 1). 

 

Table 1. Scores in combined frontal and parietal regions.  

 Ideal ShMRF VN RR 

MHD 0 1.21±0.13 1.46 ±0.11 1.68 ±0.27 

DSS 1 0.61±0.04 0.53±0.04 0.38±0.06 

AVD 0 0.53±0.05 0.52±0.05 0.86±0.03 

 

OEF maps were calculated using ground-truth vein maps, 

and maps from the three automatic methods. Automated 

maps minus ground-truth maps are shown in Fig. 3B-D. The 

ShMRF vein map had the lowest residuals (Fig. 3B) 

compared to the VN and RR vein maps (Fig. 3C and D). 

The ShMRF and VN technique had a negative bias, and RR 

technique had a positive bias. 

 

 
Fig. 3. (A) Axial slice from tissue OEF map calculated 

using the ground-truth manually traced vein map. Difference 

images for (B) ShMRF, (C) VN and (D) RR minus (A). 

 

ShMRF was found to have lower root mean-squared error 

(RMSE) in OEF maps compared to VN and RR techniques 

(Wilcoxon rank-sum test, 𝑝 ≅ 0.03 for both) (Table 2). The 

ShMRF approach required less than 5 minutes per subject 

on a desktop machine, and was comparable to VN and RR. 

 

Table 2. RMSE in OEF maps in combined frontal and 

parietal regions relative to manual tracing. 

ShMRF VN RR 

2.9%±0.4% 4.4%±0.3% 4.3%±0.4% 

 

5. DISCUSSION AND CONCLUSIONS 

 

Advances in QSM have enabled non-invasive local 

measurement of CMRO2, however complete venograms are 

necessary to capture variation in tissue OEF. Tissue with 

few or no segmented veins nearby must be assigned to more 

distant vessels, and is unlikely to be accurately measured (as 

was depicted in Fig 3D). In such a scenario, large 

homogenous regions on the OEF map grow.  

The shape-based Markov Random Field technique 

provided the most complete and accurate vein maps of the 

three segmentation techniques examined. The ShMRF 

technique achieved higher specificity than VN, whilst 

maintaining higher sensitivity than RR, by predicating 

shape-based influence on neighborhood labels. The 

framework ensures shape-enhancement only originates from 
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voxels that are labeled vein. Without this constraint, distinct 

objects may be joined together, as the VN is prone to do. 

Whilst the RR technique did not score as highly on the 

examined metrics, due primarily to reduced sensitivity, the 

specificity was comparable for this technique and ShMRF.  

Future work could include comparing with other 

vascular segmentation methods (e.g. [19]). 

OEF difference images showed a negative bias for 

ShMRF, which is indicative of false-positives or segmenting 

small veins that are adversely affected by partial volume. 

Visual inspection of the ShMRF venograms suggests the 

latter. Maximum filtering cannot mitigate partial volume 

when pure vein voxels are sparse, as is expected for small 

veins. Future work will address the effect of partial volume. 
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