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A B S T R A C T

Purpose: To improve the accuracy of automated vein segmentation by combining susceptibility-weighted images
(SWI), quantitative susceptibility maps (QSM), and a vein atlas to produce a resultant image called a composite
vein image (CV image).
Method: An atlas was constructed in common space from manually traced MRI images from ten volunteers. The
composite vein image was derived for each subject as a weighted sum of three inputs; an SWI image, a QSM image
and the vein atlas. The weights for each input and each anatomical location, called template priors, were derived
by assessing the accuracy of each input over an independent data set. The accuracy of vein segmentations derived
automatically from each of the CV image, SWI, and QSM image sets was assessed by comparison with manual
tracings. Three different automated vein segmentation techniques were used, and ten performance metrics
evaluated.
Results: Vein segmentations using the CV image were comprehensively better than those derived from SWI or QSM
images (mean Cohen's d ¼ 1.1). Sixty permutations of performance metric, benchmark image, and automated
segmentation technique were evaluated. Vein identification improvements that were both large and significant
(Cohen's d > 0.80, p < 0.05) were found in 77% of the permutations, compared to no improvement in 5%.
Conclusion: The accuracy of automated vein segmentations derived from the composite vein image was over-
whelmingly superior to segmentations derived from SWI or QSM alone.

Introduction

Mapping cerebral veins using magnetic resonance (MR) images has
until recently been technically challenging. Cerebral venograms are
increasingly important for advancing our knowledge of cerebral vascu-
larisation, oxygenation, metabolism, and studies of cerebrovascular to-
pology. The use of venograms in clinical research applications is growing
rapidly, including for quantifying oxygen saturation (Fan et al., 2014),
measuring the metabolic rate of oxygen consumption (Rodgers et al.,
2016), analyzing possible fMRI confounders (Vigneau-Roy et al., 2014),
and planning neurosurgery (Grabner et al., 2017).

Traditional vein imaging techniques require invasive contrast agents,
have potential arterial confounds, and are limited to the large vessels,
due to the reduced volume and flow of smaller cerebrovasculature seg-
ments. However, magnetic susceptibility provides an intrinsic contrast
mechanism that is exquisitely sensitive to the presence of iron, particu-
larly deoxygenated iron-rich haemoglobin proteins within red blood
cells, making susceptibility techniques very useful for imaging small as
well as large veins. The magnetic susceptibility of blood is modulated by
oxygen (Pauling and Coryell, 1936), which facilitates the separation of
arteries and veins, whilst providing a mechanism to quantify oxygen
saturation (Fan et al., 2014).
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Susceptibility-weighted imaging (SWI) and quantitative susceptibility
mapping (QSM) are MR techniques based on magnetic susceptibility that
provide a non-invasive method of imaging the cerebral veins. QSM and
SWI derive contrast from gradient-recalled echo (GRE) phase informa-
tion and have been applied to stroke, multiple sclerosis, cerebrovascular
disease, and examined in clinical and preclinical studies (Betts et al.,
2016; Deistung et al., 2016; Fan et al., 2015; Fujima et al., 2011; Good-
win et al., 2015; Jain et al., 2010; Li et al., 2013; Liu and Li, 2016;
Rodgers et al., 2013; Santhosh et al., 2009). The way in which SWI and
QSM process the phase information is very different.

SWI multiplies a non-linear mapping of high-pass filtered GRE phase
with the GRE magnitude image, compounding the effects of signal
cancellation from incoherent signals within each voxel and phase accu-
mulation due to local sources of magnetic susceptibility (Haacke et al.,
2004). Non-local sources are also included, such as the extravascular
phase information, resulting in the magnification of small veins. The
presentation of non-local sources, and non-linear mapping, generates a
non-quantitative image best suited to radiological interpretation.

QSM estimates the magnetic susceptibility distribution directly by
inverting the magnetic field information captured in the phase image
(Marques and Bowtell, 2005; Salomir et al., 2003). Mathematically, QSM
involves a linear system inversion that is ill-posed and requires regula-
rization or fitting (Li et al., 2015; Liu et al., 2017; Wang and Liu, 2015;
Wharton et al., 2010). QSM has the benefits of being quantitative and is
designed to resolve extravascular field effects, leaving only local sources
of magnetic susceptibility contrast.

The differing approaches (QSM and SWI) have unique image con-
trasts, and each have their own vein-like confounders. SWI images, for
instance, do not distinguish between signal cancellation due to venous
blood, and low concentrations of free protons (Haacke et al., 2004). The
lack of distinction is problematic when analyzing veins which reside near
non-vein low signal structures, such as in the vicinity of the tentorium
and in the interhemispheric fissure (due to the falx cerebri). Both SWI
and QSM also suffer different artefacts, such as cruciform artefacts in
QSM images. Additionally, vein contrast in both SWI and QSM is reduced
by iron depositions. The high amount of iron, for instance in the basal
ganglia, can impair venous segmentation.

As neither QSM nor SWI isolate blood signal intrinsically, unlike spin-
labelling or contrast agent-based techniques, venous voxels within the
brain must be identified before the veins can be analysed. The process of
identifying venous voxels in the brain, or segmentation, produces a vein
mask that can then be used to extract the vein signal from an image, or
examined directly for topographic analysis. In this work, the term seg-
mentation is used as a noun to refer to a binary mask that labels each
voxel as vein or non-vein.

A number of algorithms for automatic segmentation of blood vessels
in the body have been proposed, including shape-driven, intensity-driven
and hybrid approaches (Lesage et al., 2009). A common approach in the
analysis of SWI and QSM data is to employ a preliminary filtering step,
such as Hessian-based filtering (Frangi et al., 1998), before applying a
simple threshold classification method (Vigneau-Roy et al., 2014).
Hessian-based filtering and thresholding has been used to construct a
vein-atlas to study multiple-sclerosis (Grabner et al., 2014). These
filtering techniques have also been applied to build vascular network
models using both QSM (Koci!nski et al., 2017) and time-of-flight images
(Hsu et al., 2017). Recent work has combined Hessian-based filtering into
a segmentation framework with diffusion techniques to overcome noise
and low vein visibility (Bazin et al., 2016; Manniesing et al., 2006).
Statistical modeling of spatial relations has also been proposed to
improve continuity and smoothness in vein segmentation (B!eriault et al.,
2014; Ward et al., 2017b).

The previously mentioned work focused upon SWI (B!eriault et al.,
2014; Vigneau-Roy et al., 2014) or QSM (Bazin et al., 2016; Koci!nski
et al., 2017; Ward et al., 2017b), and did not attempt to extract infor-
mation from both images. Methods have been proposed that merge SWI
with QSM (Ward et al., 2015), SWI with R2* maps (Monti et al., 2015),

and QSM with both SWI and R2* (Deistung et al., 2013). These ap-
proaches were globally homogeneous, i.e., they combined voxel in-
tensities without consideration for anatomical location. As SWI and QSM
have differing image contrasts, and artefacts that are specific to anatomy,
it is possible that an improved segmentation could be achieved if the
method for combining the two images was sensitive to spatial location.

Prior anatomical knowledge has recently been incorporated into a
vein segmentation technique to reduce false positives in specific brain
regions (B!eriault et al., 2015). However, this approach was limited to
specific deep-brain regions (particularly the basal ganglia), it did not
directly address boundaries between tissue types and neural structures,
and it was hand-tuned.

There are two anatomical factors that contribute to vein segmentation
accuracy. The first is vein anatomy, i.e., expected vein occurrence, size
and shape at an anatomical location. The second is image contrast, i.e.,
expected tissue signal relative to vein signal, which is specific to SWI and
QSM. In this study, these two factors are exploited to improve cere-
brovenous contrast and subsequent vein segmentation accuracy. We
propose a vein identification and segmentation method that is based on a
locally varying combination of SWI and QSM contrast which is informed
by known vein anatomy in specific neuroanatomical structures. The
proposed method derives a single composite vein image (CV image) that
incorporates the strengths of SWI and QSM, with the anatomical
knowledge of a vein atlas.

The CV image is generated from three input images (SWI, QSM and
atlas) that are combined using a weighted-sum. The weights are derived
from template priors that capture the location-specific venous contrast of
the three input images throughout the brain. Separate vein atlases and
template priors were calculated for each subject within the study from an
independent sample of the cohort to ensure data independence. Future
applications of the technique would use a single template prior and atlas
calculated from the entire cohort. The CV image was compared to SWI
and QSM images for the purpose of vein segmentation using automated
techniques. Segmented CV images were compared with segmented SWI
and QSM images using a broad array of accuracy measures and three
automated segmentation techniques.

Methods

All procedures were reviewed and approved by the local ethics
committee. Informed consent was obtained from all volunteers. The code
and data used in this study have been made available to the public using
GitHub and figshare respectively (https://doi.org/10.4225/03/
57B6AB25DDBDC) (Ward, 2017a; Ward et al., 2017c).

Data acquisition

Ten healthy volunteers were scanned using a 3T Siemens Skyra with a
32-channel head and neck coil (6 females, mean age 56.2 years, standard
deviation 25.2). The protocol was a single echo, flow-compensated,
gradient-recalled echo (GRE) sequence (orientation ¼ axial,
TE ¼ 20 ms, TR ¼ 30 ms, flip angle ¼ 15", voxel ¼ 0.9 # 0.9 # 1.8 mm
anisotropic, matrix 256 # 232 # 72). Four of the subjects were acquired
with a smaller voxel size (voxel ¼ 0.9 mm isotropic,
matrix ¼ 256 # 232 # 160). A T1-Weighted MPRAGE scan was also
acquired and used for registration purposes (TE ¼ 2 ms, TR ¼ 2300 ms,
TI ¼ 900 ms, voxel ¼ 1.0 mm isotropic, matrix ¼ 240 # 256 # 192,
flip angle ¼ 9").

T1-weighted images were non-linearly registered to MNI152 space
(Montreal Neurological Institute standard brain atlas space) with a voxel
size of 0.5 mm using FNIRT from the FSL toolkit (https://fsl.fmrib.ox.ac.
uk/) (Jenkinson et al., 2012). Linear registration was performed between
the T1-weighted and GRE images using FLIRT, and the linear matrix and
the non-linear warp field were used in a single operation to interpolate
from the native GRE space to MNI space.

For all subjects, raw k-space data for the GRE acquisition was saved

P.G.D. Ward et al. NeuroImage 165 (2018) 294–305

295

https://doi.org/10.4225/03/57B6AB25DDBDC
https://doi.org/10.4225/03/57B6AB25DDBDC
https://fsl.fmrib.ox.ac.uk/
https://fsl.fmrib.ox.ac.uk/


for each coil and retrospectively reconstructed to generate phase and
magnitude images. Individual coil phase images were processed to
remove phase wraps and background phase shifts using Laplacian
unwrapping (Li et al., 2014) and V-SHARP (radius ¼ 25) (Wu et al.,
2012). Per coil processed-phase maps were then combined using a GRE
magnitude-weighted average to produce a single phase image. QSM
maps were computed with LSQR (parameters tol_LSQR ¼ 0.01,
D2_thres ¼ 0.01, Max_Iter ¼ 100) using the STI-Suite v2.2 (Li et al.,
2014). The SWI images were taken directly from the scanner console.

Six of the ten subjects were healthy elderly subjects recruited for the
ASPirin in Reducing Events in the Elderly (ASPREE) clinical trial (Group,
2013) and scanned at baseline as part of the ASPREE NEURO sub-study
(Ward et al., 2016b). The remaining four subjects were healthy volun-
teers recruited from the general population.

Manual vein tracing

A mask containing venous voxels was created for each subject by
manually labelling voxels as vein or non-vein, using FSLView (Jenkinson
et al., 2012), in native GRE space. The initial manual segmentation
process was performed completely manually. Tracing was performed by
author PW under the supervision of author NF (a clinical radiologist).
The venous voxels were identified based upon SWI contrast and the au-
thors knowledge of venous anatomy, in transverse reconstructions of the
3D SWI acquisition initially, and refined by reference to sagittal and

finally coronal reformats. Initial SWI-only masks were then overlaid
side-by-side on SWI and QSM images for editing. Editing was performed
slice by slice in the sagittal plane, followed by the transverse and finally
the coronal plane. An example ground-truth vein segmentation is shown
in Fig. 1.

Composite vein image process

The composite vein (CV) image ( €X) was constructed by combining a
vein atlas, with an SWI image and a QSM image. The set of inputs (atlas,
SWI and QSM) is referred to as C, where C ¼ fatlas; SWI; QSMg. Each
individual image is denoted Xc, where c 2 C, e.g., an SWI image is
referred to as XSWI.

The CV method combines the three inputs with weights based on the
relative predictive power of each input in different regions of the brain
(Fig. 2B). The relative predictive power was captured in a template prior
(Pc) for each of the three inputs (Fig. 2A). The inputs were normalized _Xc,
and then combined using a weighted-mean with the weights derived
from the priors, Pc, (Fig. 2B).

€Xð r!Þ ¼ 1
PC

c¼1Pcð r!Þ
⋅
XC

c¼1

!
Pcð r!Þ⋅ _Xcð r!Þ

"
(1)

The CV image, €X, for each subject used the atlas and priors pre-
calculated from the training cohort (M) (Fig. 2A). For each subject in
this study, the training cohort consisted of the other nine subjects to

Fig. 1. Example images of the manual vein tracings. Minimum-intensity projections for SWI (A and C) and maximum-intensity projections for QSM (B and D), with a semi-transparent vein
mask overlay in red. Sagittal (9 mm slab, A and B) and axial (18 mm slab, C and D) slices are shown from a single subject.
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ensure independence of the atlas and priors for each subject specific
CV image.

In summary, the images at various stages in the processing pipeline
are denoted Xc, _Xc, and €X. The input images, including SWI, QSM and a
vein atlas, are denoted by Xc. The normalized versions of these images are
denoted _Xc, and finally after combination, the CV image is denoted €X. All
these images are in native GRE space. The atlas construction, normali-
zation process, and details of the template priors are explained in the
following sub-sections.

Vein atlas

Manually traced vein masks (Y) were weighted to reflect the variance
and uncertainty of the human observer (W).

Wð r!Þ ¼
#
0:9; Yð r!Þ ¼ vein
0:1; Yð r!Þ ≠ vein

(2)

The weighted tracings (Wi) for each subject, i, were interpolated into
0.5 mm MNI space and the average (mean) calculated for each voxel, r!,
to construct a vein atlas.

XAtlasð r!Þ ¼ 1
jMj

XM

i¼1

Wið r!Þ (3)

where M is the set of subjects in the training cohort. Visual inspection of
the atlas was performed to explore the variability of vein location be-
tween subjects within the cohort. The atlas was interpolated from MNI
space to native GRE space for calculating the CV image ( €X).

Fig. 2. Schematic describing data flow and process for training the priors and atlas (A) and producing a composite vein image (B). The training data sets (manual vein tracings, SWI images,
QSM images) in (A) are used to calculate the vein atlas and template priors, and are in native space. After the log-loss scoring, the results are interpolated into MNI space to construct the
template priors. The inputs (vein atlas, atlas prior, SWI prior and QSM prior) are interpolated into native space prior to the operations in (B). All operations in (B) are performed in native
space. The training data set in (A) does not include the subject images in (B) to ensure independence.
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Normalization

The SWI and QSM images were processed separately to remove biases
and to normalize their voxel intensities using a Gaussian mixture model
(GMM) with two components (vein and non-vein). This approach has
been explored previously (Ward et al., 2015, 2017b), and similar tech-
niques have been used in blood vessel segmentation before (Bazin et al.,
2016; B!eriault et al., 2015, 2014; Hassouna et al., 2006).

For each image (SWI and QSM), a GMMwas fit using a log-likelihood
expectation-maximisation approach (Dempster et al., 1977). Both GMMs
(one for SWI and one for QSM) used the same initial seed taken from the
QSM images (XQSM > 0:05ppm) to impart prior knowledge of the
components.

To improve the stability and fit of the GMM to the SWI image, and
mitigate any residual bias, a high-pass filter was also applied to XSWI . The
high-pass filtering was achieved by applying a low-pass Gaussian filter
(FWHM ¼ 10.6 voxels) to the image and subtracting this from the orig-
inal image. The process was not necessary for the QSM image as the
reconstruction process yields a bias-free image, and there are fewer large
structures with similar voxel intensity to veins, when compared to
SWI images.

The GMM process mapped the image contrasts to a unity range [0,1]
and reduced the presence of subject specific biases. Normalized images
( _XQSM and _XSWI) were produced from the mixture coefficient of the vein
component for each voxel.

_Xi; c ¼
ϖc;VPr

!
V jXi;c; μc;V ;Σc;V

"

ϖc;VPr
!
V jXi;c; μc;V ;Σc;V

"
þϖc;'VPr

!
' V jXi;c; μc;'V ;Σc;'V

" (4)

where c was the image (SWI or QSM), i was the voxel, and
PrðVjXc; μc;V ;Σc;VÞ was the posterior probability of being labelled vein
(or not vein, ' V) given the distribution parameters for the image-
specific GMM: μ;Σ, relative abundance ϖ, and the voxel intensity, X.
Supporting information on this process has been published previously
(Ward et al., 2017b; Ward, 2017f).

The QSM values were not referenced to a specific structure as any
linear offset was removed by the GMM normalization. Whilst the QSM
values are quantitative, the normalization procedure is still required in
order to place the intensities into a common range prior to combination
with the atlas and SWI values.

The atlas (XAtlas) is intrinsically normalized, and was interpolated into
the subject space to provide the final input ( _XAtlas).

Template priors

Subject specific confidence maps, pi; c, were calculated using log-loss
scoring (Dowe, 2008; Good, 1952) for each input (c 2 C) using Eq. (5).

pi;c
!
_Xi;cð r!Þ;Wið r!Þ

"
¼( log

!
Wið r!Þ⋅

!
1( _Xi;cð r!Þ

"

þ ð1(Wið r!ÞÞ⋅ _Xi;cð r!Þ
" (5)

The template priors (Pc) for SWI, QSM and the vein atlas were
calculated by taking the cohort mean of the confidencemaps interpolated
into MNI space, i.e., pi;c was evaluated in native space prior to averaging
in MNI space to calculate Pc.

Pcð r!Þ ¼
1
M

XM

i¼1

pc;i
!
_Xi;cð r!Þ;Wið r!Þ

"
(6)

The predictive power represented in the priors for each information
source (PAtlas, PSWI , and PQSM) was examined visually. In order to visualize
all three values, each was normalized, _Pcð r!Þ ¼ Pcð r!Þ=max

d
Pdð r!Þ, where

d 2 C, and encoded in a colour channel of a colour image (blue, green,
red for PAtlas, PSWI , and PQSM respectively).

Performance evaluation

Vein contrast in the CV image was assessed in comparison to SWI and
QSM images using automated vein segmentation techniques. Three vein
segmentation techniques were employed to segment the veins for each of
the three image sets (the CV images, SWI images and QSM images). The
first segmentation technique was a Hessian-based vesselness filter fol-
lowed by an Otsu threshold (VN) (Frangi et al., 1998; Otsu, 1975). The
second was a statistical method based on an Ising model Markov random
field using an anisotropic graph (MRF) (B!eriault et al., 2014). The third
was a recursive ridge-based filter (RR) (Bazin et al., 2016). The three
segmentation techniques were selected to provide a comprehensive
assessment of the CV image, including a traditional and widely applied
method (VN), a contemporary method designed specifically for SWI
images (MRF), and a contemporary method designed specifically for
QSM images (RR).

The accuracy of the vein segmentations from each image set was
evaluated with standard metrics (Table 1). Many standard overlap met-
rics are not informative due to the high surface-to-area ratio of cerebral
vein masks. To overcome this limitation, dilated versions of many of the
metrics were used (Bazin et al., 2016). The metric values for the SWI and
QSM image based segmentations were calculated as benchmarks, and the
differences between these reference values and the segmentations
computed from the CV image were examined.

Two techniques had parameters that required training (VN andMRF).
A leave-one-out approach to training was taken, with the performance of
the left-out subject recorded for comparison purposes. The parameters
(Θ) were optimized in a standardized space to minimize a composite cost
function (Z), which included a regularization term (Λ).

Z ¼ ð1( DSSÞ þMHD
2

þ AVD
2

þ Λ (7)

Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

i

ðΘi ( 0:5Þ2
vuut (8)

whereNp is the number of parameters to train. Dice similarity score (DSS)
(Dice, 1945), mean Hausdorff distance (MHD) (Shonkwiler, 1989) and
average volume difference (AVD) are described in Table 1. Scaling

Table 1
Vein segmentation accuracy metrics. The metrics compare the manual mask of veins (V)
and non-veins (N) with an automated estimate (V' andN'). A mask morphologically dilated
by one-voxel is preceded by a δ, e.g. δV is the dilated manual vein mask. Dilation was used
as the boundaries of small vein may be uncertain due to bloom and partial volume. The
Hausdorff distance (41), D ðX;YÞ, is the mean value in a minimum distance map, i.e., the
minimum distance from each surface voxel in mask X to a surface voxel in mask Y . The
surface is defined as all voxels removed by a one-voxel morphological erosion.

Name Equation

Number of true-positives (veins) TP ¼
%%V∩V '

%%; δTP ¼ 1
2 ð
%%δV∩V '

%%þ
%%V∩δV '

%%Þ
Number of true-negatives (non-veins) TN ¼

%%N∩N '
%%; δTN ¼ 1

2 ð
%%δN∩N '

%%þ
%%N∩δN '

%%Þ
Number of false-positives FP ¼

%%N∩V '
%%

Number of false-negatives FN ¼
%%V∩N '

%%
Accuracy ACC ¼ δTP þδTN

jV∪Nj

Sensitivity SE ¼ jδV '∩Vj
jV j

Specificity SP ¼ jδN '∩Nj
jNj

Positive-predictor value PPV ¼ jδV∩V ' j
jV ' j

Negative-predictor value NPV ¼ jδN∩N ' j
jN 'j

Dice similarity score (Dice, 1945) DSS ¼ 2⋅δTP
jVjþjV ' j

Matthews correlation coefficient
(Matthews, 1975)

MCC ¼ TP⋅TN(FP⋅FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p

Mean Hausdorff distance (Shonkwiler,
1989)

MHD ¼ 1
2 ðDðV;V 'Þ þDðV ';VÞÞ

Average volume difference AVD ¼ jFP(FNj
jV j
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factors (division by 2 in Eq. (7)) were chosen to standardize the metric
ranges as DSS is constrained to a unity range, whilst MHD and AVD
are unbounded.

A gradient descent algorithm was used to search the parameter space
from an initial parameter estimate. The initial parameter estimate was
the optimal parameter values from a uniform random sample of the
entire parameter space (1000 samples). Each iteration of the search al-
gorithm used 32 randomly sampled potential steps. Samples were taken
from a hypercube with dimensions equal to 5% of the parameter space. In
all cases the cost function was found to have converged before 50 iter-
ations. All parameters are reported in Table 2. All operations were per-
formed in MATLAB 2015b using the MASSIVE supercomputer (Goscinski
et al., 2014).

Ten sets of parameters were trained for each technique (Table 2),
using a different subset of nine subjects from the ten available. The mean
and standard deviation of the results are shown in Table 2. The difference
in cost function value between the mean of the training set (nine sub-
jects) and the left-out validation subject was low. In the majority of cases
the validation score was better than the worst individual score in the
training set.

The difference in performance was assessed between the CV images
and SWI images, and CV images and QSM images. The magnitude of
performance difference was quantified using Cohen's d (Cohen, 2013)
and interpreted on a qualitative scale (Sawilowsky, 2009). The signifi-
cance of the difference was tested using a paired two-tailed Wilcoxon
signed-rank test (Wilcoxon, 1945). A description of all metrics used can
be found in Table 1.

The benefit of the atlas to the CV image was examined by comparing
images produced with and without the atlas. Atlas-free CV images were
produced by setting the template prior for the atlas to zero.

Results

A visual inspection of a single CV image (see Fig. 3) shows the
strength of combining the three inputs. The transverse slice (Fig. 3F–J)
depicts the iron rich basal ganglia, which are particularly bright on QSM
(Fig. 3G). The CV image is able to partially suppress the basal ganglia,
whilst retaining the high vein contrast of QSM. The atlas-free CV image
(Fig. 3D, I and N) does not show the same level of suppression in the basal
ganglia as the CV image. The vein atlas (Fig. 3C, H and M) has been non-
linearly interpolated into the subject space based on the GRE magnitude
and T1 contrast. The similarity between the atlas slices, and the contrast
in the SWI and QSM slices, suggests the non-linear registration can ac-
count for a large degree of inter-subject variability. The atlas shows very

few veins in the basal ganglia structures (Fig. 3H) and near the dentate
nuclei (Fig. 3M), which are iron rich regions where manual tracing
is difficult.

All permutations of vein segmentation technique, performancemetric
and benchmark image (SWI or QSM) were explored, resulting in 60
comparisons. When using the CV image, 77% of the permutations
showed a large or higher improvement (Cohen's d > 0.80) that was sta-
tistically significant (p < 0.05), compared to a negative effect in 5% of the
permutations. The mean effect size across all permutations was 1.1
(large) and very large effects in favor of the CV image were found in 65%
of comparisons. The results are shown pictographically in Fig. 4 and
metric score values are reported in Table 3.

The comparisons between the atlas-free CV image and the CV image
indicate the atlas contributes approximately half of the improvement
observed when using the CV images, with the remaining half from
combining the SWI and QSM images. The mean effect in performance
metrics was a 0.5 improvement when using the atlas (Cohen's d).

The impact of the atlas is heterogeneous between the segmentation
techniques. The VN andMRFmethods appear to benefit strongly from the
inclusion of the atlas, whilst the RR technique has almost no effect. The
weakness in the RR results indicate that for the RR technique the
improvement derives predominantly from the combination of the SWI
and QSM contrast and not from the vein atlas.

Negative results (5%) occurred in paired-metrics and were not
observed in comprehensive balanced metrics, including the DSS, MCC
and MHD, which displayed performance improvements with the CV
image. The scale of these quantitative improvements is varied, with the
DSS improvements ranging from 0.05 to 0.39 (Table 3). Greater
improvement was shown in comparison to the QSM based segmentations
relative to SWI based segmentations. In paired-metrics, a corresponding
positive effect was found for each negative effect in the metric pair, such
as negative specificity and positive sensitivity for the QSM image when
using the VN technique. In these paired cases the effect size was com-
parable for both positive and negative results.

Visual inspection of the segmentation results shows the MRF and VN
techniques perform poorly in the basal ganglia when using QSM (Fig. 5B
and F). In all examples, the CV image appears to perform equally or better
than the SWI or QSM-based segmentations with fewer false-positives
than SWI and fewer false-negatives than QSM. The RR segmentation
technique appears less prone to false-positives in the basal ganglia, which
further suggests that it benefits less from the inclusion of the atlas than
the other techniques.

Inconclusive results were most common for average volume differ-
ence (AVD) (50% of comparisons, Fig. 4). AVD is a measure of the bias in
the errors of the final masks, rather than a direct measure of performance.
The bias can also be observed by the relative values of sensitivity (SE) and
specificity (SP), or positive-predictor value (PPV) and negative-predictor
value (NPV). One example of bias is application of the MRF segmentation
technique to the SWI image, where AVD is poor with high SE but low SP
(see Table 3). The small change in SP (0.004) must be interpreted in the
context of a low number of true-positive voxels.

The similarity of vein locations between subjects was represented in
the vein atlas (Fig. 6). High atlas values indicated consistent vein loca-
tions between subjects. The highest value voxels were found near the
major veins, including in the superior sagittal sinus, dural sinuses,
straight sinus and internal cerebral veins (green regions in Fig. 6). The
deep gray matter structures, the inferior frontal and inferior temporal
regions showed lower values.

The relative predictive power of the atlas, SWI and QSM template
priors was observed to be heterogeneous across brain regions (Fig. 7).
QSM was found to have comparatively higher power in the falx cerebri
and lower power in the deep-gray matter structures, relative to SWI and
the atlas. The atlas was highest in the deep-gray matter, particularly on
the edge of structures. SWI had higher predictive power on the superior
surface of the cortex, and lower power on the inferior surface of the brain.

Table 2
Tuned parameter descriptions for each automated segmentation technique. The trained
value represents the mean and standard deviation across the 10 parameter sets trained.

Technique Parameter Description Trained value

CV SWI-Only QSM-Only

MRF βratio Weighting
factor
between
vein and
non-vein in
neighbours
in clique
potential
calculation.

0:10±0:02 0:58±0:02 0:48±0:01

VN α Non-plane
like factor

0:24±0:01 0:19±0:02 0:61±0:13

β Non-blob
like factor

0:77±0:09 0:34±0:21 0:16±0:02

γ Intensity
factor

1:61±0:08 3:89±0:22 7:65±1:23

scale Scales ½0:5 1:0* ½0:5 1:0* ½0:5 1:0*
RR Recommended parameters specified by creator suitable for contrasts

used (none trained).
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Fig. 3. Example slices of the SWI, QSM, the vein atlas, atlas-free CV images, and the CV image for a single subject. Minimum-intensity projections for SWI (A, F and K) and maximum-
intensity projections for QSM, the vein atlas, the atlas-free CV image, and the CV image, are shown. Projections are all over a depth of 9 mm. Slices are taken at approximately the mid-
sagittal plane in the sagittal view (A–E), through the basal ganglia in transverse view (F–J), and through the dentate nuclei in the cerebellum in the coronal view (K–O).

Fig. 4. The improvement in performance of three automated segmentation techniques when using the CV image compared to two alternative images. The size of the improvement (Cohen's
d) and the statistical significance of the improvement (p-values) are displayed in colour and size respectively. Red circles indicate superior performance using the CV image. Large circles
indicate more significant results. Each row corresponds to an automated segmentation technique (RR, MRF, or VN) and input image (SWI, QSM or atlas-free CV image (AFCV)). Each
column denotes a different performance metric. All metric abbreviations are provided in Table 1. Statistical significance was measured using a two-tailed Wilcoxon signed-rank test and is
uncorrected.
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Discussion

In this work, a composite vein (CV) imaging technique was proposed
that combined three sources of vein information, an atlas, an SWI image,
and a QSM image. The CV image showed a large improvement in vein
segmentation accuracy when compared with SWI and QSM images. A
robust improvement was observed in the majority of permutations across
ten performance metrics and three segmentation methods.

The CV image was found to combine the complementary strengths of
SWI and QSM, and produce an image with significantly improved vein

contrast by incorporating the relative predictive power of SWI and QSM
in a weighted-average approach. A comprehensive analysis was per-
formed using manually traced MRI images from ten volunteers, including
anisotropic and isotropic acquisitions, multiple automated segmentation
techniques, and multiple performance metrics.

The template priors characterized the anatomically heterogeneous
value of the three inputs. The atlas template prior (PAtlas) had higher
relative values to SWI and QSM in the deep gray matter structures
possibly due to non-venous iron deposits in tissue. However, the relative
predictive power of SWI increased towards the center of these structures.

Table 3
Metric values (mean ± standard deviation) for all combinations of images and techniques. Accuracy (ACC), negative-predictor value (NPV) and specificity (SP) are in units of 10(1 to improve
readability. Atlas-free CV images (AFCV) are included.

ACC (10(1) AVD DSS MCC MHD NPV (10(1) PPV SE SP (10(1)

RR CV 9.76 ± 0.0881 0.48 ± 0.32 0.66 ± 0.1 0.39 ± 0.05 1.16 ± 0.1 9.96 ± 0.0189 0.71 ± 0.1 0.69 ± 0.18 9.98 ± 0.04823
QSM 9.71 ± 0.0375 0.86 ± 0.02 0.34 ± 0.03 0.24 ± 0.01 1.86 ± 0.13 9.93 ± 0.01781 0.88 ± 0.04 0.26 ± 0.02 10 ± 0
SWI 9.7 ± 0.035 0.44 ± 0.12 0.51 ± 0.03 0.26 ± 0.02 1.63 ± 0.19 9.93 ± 0.01819 0.57 ± 0.08 0.48 ± 0.04 10 ± 0.00005
AFCV 9.74 ± 0.0403 0.29 ± 0.16 0.69 ± 0.04 0.39 ± 0.02 1.17 ± 0.11 9.95 ± 0.01584 0.7 ± 0.05 0.69 ± 0.09 9.95 ± 0.03053

MRF CV 9.77 ± 0.0286 0.28 ± 0.22 0.71 ± 0.03 0.5 ± 0.03 1.25 ± 0.16 9.97 ± 0.00876 0.72 ± 0.08 0.71 ± 0.09 9.98 ± 0.00889
QSM 9.69 ± 0.035 0.74 ± 0.04 0.38 ± 0.04 0.25 ± 0.04 1.98 ± 0.2 9.93 ± 0.01718 0.64 ± 0.09 0.31 ± 0.03 9.98 ± 0.00718
SWI 9.62 ± 0.0556 0.97 ± 0.4 0.66 ± 0.05 0.46 ± 0.03 1.1 ± 0.19 9.96 ± 0.01043 0.53 ± 0.06 0.92 ± 0.03 9.94 ± 0.01489
AFCV 9.6 ± 0.065 0.94 ± 0.44 0.64 ± 0.05 0.44 ± 0.03 1.27 ± 0.18 9.96 ± 0.01036 0.54 ± 0.07 0.83 ± 0.05 9.94 ± 0.01774

VN CV 9.82 ± 0.021 0.21 ± 0.11 0.77 ± 0.03 0.46 ± 0.03 0.98 ± 0.13 9.95 ± 0.01382 0.74 ± 0.09 0.81 ± 0.06 10 ± 0.00187
QSM 9.55 ± 0.0578 0.25 ± 0.16 0.38 ± 0.05 0.11 ± 0.04 1.83 ± 0.15 9.92 ± 0.01929 0.32 ± 0.09 0.45 ± 0.02 10 ± 0.00069
SWI 9.75 ± 0.0283 0.24 ± 0.14 0.67 ± 0.04 0.36 ± 0.02 1.19 ± 0.16 9.93 ± 0.01697 0.68 ± 0.09 0.69 ± 0.07 9.99 ± 0.0047
AFCV 9.77 ± 0.0291 0.3 ± 0.27 0.73 ± 0.04 0.43 ± 0.03 1.07 ± 0.17 9.95 ± 0.01416 0.65 ± 0.08 0.85 ± 0.04 9.99 ± 0.004

Fig. 5. Transverse projections of the segmentation output for each technique, overlaid upon the image used. The rows are for each technique: MRF (top row), VN (middle row) and RR
(bottom row). The columns are for each image: SWI (left), QSM (middle-left), Atlas-Free CV (middle-right) and CV (right). Minimum-intensity projections for SWI (A, E, I) and maximum-
intensity projections for QSM, Atlas-Free CV and CV image, are shown. Projections are all over a depth of 9 mm.
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High-pass filtering in SWI may be the cause of this effect by reducing the
low-frequency spatial contrast of these iron sources and increasing the
sharpness of structure boundaries. A common trend observed in the
larger veins, particularly those in the interhemispheric region, was
higher SWI predictive power in the center and higher QSM predictive
power at the vessel wall, extending into the surrounding tissue. Extra-
vascular enhancement on SWI images may be the source of the decrease
in SWI predictive power at the vessel wall. Two exceptions to the greater
predictive power of SWI in the center of larger veins were the superior
sagittal sinus and the transverse sinus, where the predictive power of the
atlas was higher. Decreased anatomical variability and hyper-intense
GRE signal due to imperfect flow compensation are possible causes of
the reduction in SWI predictive power relative to the atlas.

On the surface of the brain, neither SWI or QSM showed high pre-
dictive power away from the major sinuses (superior sagittal sinus and
transverse sinuses). Accurate segmentation of veins on the brain surface
is an active area of research. Success has been shown in cadavers with
very high image resolution (Grabner et al., 2017), however QSM
reconstruction is difficult on the surface of the brain, often leading to
inferior volume coverage. Whilst SWI has coverage in this region, it also
has poor contrast between veins and the skull. The template priors did
not show a strong reliance upon either SWI or QSM in this area.

We can speculate on the underlying mechanisms for the heteroge-
neity in the template priors. SWI and QSM are derived from the same
sequence, albeit in very different ways, and produce significantly
different venous contrast across the brain. The contribution of the GRE

magnitude, which is orthogonal to the phase information used by both
SWI and QSM, may be a key factor in the differentiation of the contrasts.
Whilst magnitude provides a contrast mechanism for sub-voxel sized
veins, and has been used to model partial volume in veins (McDaniel
et al., 2016), it can also act as a confounder near low-signal structures.
Further experiments are required to examine this directly. Greater seg-
mentation accuracy may be acquired by combining QSM with T2* maps
and separating the contributions of GRE magnitude and phase.

Approximately half of the observed improvement using the CV image
could be obtained without including the vein atlas. These results suggest
that the vein segmentation accuracy may be able to be improved by
combining SWI and QSM alone, or by including a vein atlas in a single
contrast segmentation approach. The combination of all three images
provided the largest beneficial impact for segmentation accuracy.

There was minimal discrepancy between performance of the training
and validation datasets. The tuned parameter values for each of the ten-
independent datasets had low variance (Table 2) despite the stochastic
nature of the initial parameter values. These two results indicate minimal
over-fitting occurred when optimizing the technique parameters. The
approach to optimization was kept consistent to ensure the findings in
this study were robust, however, unique optimization for different image
and technique combinations, and manual tuning, is advised when
applying automated segmentation techniques. Whilst comparisons of the
techniques used in this study are possible, such an assessment would be
flawed without fine-tuned optimization and an intended application to
focus upon.

Fig. 6. Vein frequency atlas (XAtlas) demonstrating high reproducibility in vein location across subjects in the major veins (e.g. sagittal sinus, green/yellow) and low reproducibility in the
deep gray matter structures. Values of 0% are transparent. Slice coordinates (red) are in MNI atlas space, with axial projections (A–C), coronal projections (D–F) and sagittal projections
(G–I). All slices are 0.5 mm thick.
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Comparative analysis of published automated vein segmentation
techniques is difficult for a number of reasons. Manually traced ground
truth vein masks typically cover small manually traced regions and/or
minimum-intensity projections (Bazin et al., 2016; B!eriault et al., 2014;
Monti et al., 2015). The small regions may not be indicative of perfor-
mance across the entire brain, and are a source of variability between
studies that cannot be controlled for. Studies also use different perfor-
mance metrics including sensitivity and specificity (Monti et al., 2015),
positive-predictor value, negative predictor value and overlap (Bazin
et al., 2016), and accuracy (B!eriault et al., 2014). The use of different
metrics may be due to the specific application that each technique has
been designed for. However, the selective use of metrics can result in
one-sided conclusions being drawn, and can frustrate
meta-analysis efforts.

The quantification of segmentation performance is a contentious issue
(Gerig et al., 2001). To capture compensatory behavior, where one
metric is optimized at the expense of another, metrics are often reported
in quasi-orthogonal pairs, such as specificity and sensitivity. Although,
when one label (vein) is less numerous in abundance than the other
(non-vein) the trade-off between pairs will not be even due to the
disparate magnitude of the denominators. Non-paired metrics, such as
overlap and volume difference metrics, are more robust in these sce-
narios, albeit at the expense of interpretability. Comprehensive reporting
of multiple metrics should be adopted to enhance both interpretability
and transparency.

Both anisotropic and isotropic image acquisitions were examined in

this study. Whilst a number of published studies have shown that images
acquired with anisotropic voxels are preferable for SWI images (Deistung
et al., 2008; Xu and Haacke, 2006), a recently published preliminary
study has shown that images acquired with isotropic voxels may be
optimal for QSM reconstructions (Karsa et al., 2017). A direct comparison
of anisotropic and isotropic image acquisitions was not possible in this
study due to the demographic differences between the two groups of
volunteers acquired with the different voxel resolutions. Future research
is required to compare template priors, and segmentation accuracy, be-
tween images acquired with anisotropic and isotropic voxel sizes.

The template priors, vein atlas, and manual vein tracings are publicly
available (Ward et al., 2017c). The manual vein tracing required hun-
dreds of hours to complete, and the release of the segmented data may
facilitate future work in vein segmentation techniques. The data sharing
may result in a large, publicly available set of cross-validated ground
truth vein images for future collaborative studies.

The value of the atlas and template priors in studies with data ac-
quired at a higher resolution and/or higher field strength is presently
unknown and requires further experimental work to be determined. Vi-
sual inspection of the vein atlas and the template priors indicates that the
predictive power of the atlas is lower near smaller diameter veins, which
is expected as the location of smaller veins is more varied between sub-
jects compared to the larger veins. For this reason, the CV technique
relies more heavily upon the SWI and QSM images in regions where
smaller vasculature is likely to become visible at higher field. As such, we
suspect the atlas and the template priors will be useful for data acquired

Fig. 7. Slices from the atlas, SWI and QSM template priors (PAtlas, PSWI , and PQSM respectively), colour-coded to represent the relative weights of each. Blue regions show where PAtlas is
highest, green regions where PSWI is highest and red regions where PQSM is highest. A triangular colour-map is included. Slice coordinates (red) are in MNI atlas space, with axial
projections (A–C), coronal projections (D–F) and sagittal projections (G–I). Slices are 0.5 mm in thickness.
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at higher resolution. Future work could compare the relative strengths of
QSM, SWI and the CV image across different resolutions. There may also
be value in calculating a multiscale atlas that captures the resolution
dependent contrast of small veins.

Care is advised when applying the template priors, and the atlas, to
patient cohorts. The subjects used in this study were healthy, and the
findings may not hold in the presence of pathology, such as stroke or
arteriovenous malformations. In general, in images that contain pathol-
ogy it is necessary to perform visual inspection and careful quality con-
trol when applying automated analysis techniques and whilst
using atlases.

Limitations

The findings in this study are biased by the selection of segmentation
algorithms chosen for the analysis. Whilst the algorithms represent a
diverse set of approaches, the CV image may not be suitable for other
untested algorithms. Furthermore, both SWI and QSM are sensitive toMR
sequence parameters and reconstruction techniques. The SWI images
were taken directly from the MRI console to reduce any effect from in-
house reconstruction, but this does not however mitigate the impact of
echo time on SWI images or address the differences between MRI ven-
dors. Studies comparing QSM reconstruction techniques have found
variations in the images (Langkammer et al., 2017), and possible echo
time dependencies (Sood et al., 2017). The GMM stability and the tem-
plate priors may not be optimal for data acquired with different param-
eters or processed using different algorithms.

A distinction should be considered between accurate vein segmen-
tation and accurate imitation of manually traced vein masks. The tracings
are not a direct measure of veins, but a subjective radiological interpre-
tation (Drew et al., 2013), and are produced in the presence of the ar-
tefacts that occur in susceptibility-based MRI. A ground truth that is
independent of MRI-based artefacts would be required to directly
quantify vein segmentation accuracy.

Furthermore, only binary masks have been addressed in this work.
However, vein geometry does not conform to a cubic grid. Recent work
has found significant error associated with binary representations of
veins in simulated QSM images (Ward et al., 2017e). Further work will
explore non-binary manual tracings to incorporate both partial volume
and marker uncertainty.

Conclusions

A large improvement in vein segmentation accuracy was achieved
using the composite vein image technique. The composite vein image
technique incorporates the heterogeneous vein contrast profile across the
brain to extract the complementary information available from SWI and
QSM images, and a vein atlas. The technique's performance was evalu-
ated with multiple segmentation techniques and metrics. The accuracy
provided by the composite vein image allows improved quantification of
cerebrovenous topology and cerebrovascular oxygenation using MRI.
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