
Adaptive Control of Hydraulic Systems with MML
Inferred RBF Networks

Daniel F. Schmidt, Andrew P. Paplinski, Gordon S. Lowe
Department of Computer Science and Software Engineering

Monash University
Melbourne, Australia

Email: {Daniel.Schmidt, Andrew.Paplinski, Gordon.Lowe}@csse.monash.edu.au

Abstract— In this paper the problem of adaptively controlling
a hydraulic system with uncertainties is considered. An adaptive
controller is derived to control actuator force with unknown
valve flow coefficients and fluid parameters. This is subsequently
cascaded into a position controller which uses RBF networks to
compensate for the effects of friction in the system. In contrast
to conventional adaptive controllers, the controller is augmented
with a further layer that adaptively determines the optimal
architecture for the RBF networks using the Minimum Message
Length costing criterion. This provides an automated method
of determining when it is no longer advantageous to increase
the network size. Stability results are presented, and simulation
demonstrates the ability of the MML criterion to determine when
a suitable fit has been achieved.

I. INTRODUCTION

Fluid power has played an important role in most forms of
heavy industry for many years now. Hydraulic actuators are
capable of producing much greater forces than electric motors,
and are often more compact. Subsequently, they find use in
many applications ranging from robotics [10], to machine
tools and mining equipment. However, hydraulically powered
systems are highly nonlinear in nature, making them difficult
to control with linearised models. Additionally, various uncer-
tainties common in the hydraulic systems make the problem
more difficult. This paper presents a stable, bounded adaptive
control scheme that handles uncertainties in the hydraulic
actuator, and uses the nonlinear approximating abilities of
RBF networks to compensate for friction present the system.
Additionally, and in contrast to most adaptive control schemes
that use approximation networks, we do not a priori select a
network size, but rather augment the system with a further
adaptation layer that uses the Minimum Message Length
criterion to select an architecture online. As far as the authors
are aware, it is the first time the MML criterion has been
applied to automatic control.

II. PREVIOUS WORK

Various approaches to efficiently control hydraulic systems
and handle the nonlinearities have been considered over time,
including both adaptive and non-adaptive techniques. Variable
structure control has been widely used, and provides con-
trollers that are tolerant of inexact system modelling, though
this advantage can be offset by the need to carefully tune
the deadzones if good performance is to be achieved. Both

linearised [1] and nonlinear [11] adaptive controllers have been
developed for hydraulic systems, with the work in [11] being
applied to systems using three-port valves, and adaptively
identifying both fluid parameters and rigid body parameters.
A nonlinear controller based around a Integrator Backstepping
like approach [4] for a hydraulic cylinder has been proposed
in [12] which gives good performance on a small volume,
high pressure hydraulic cylinder. In this approach the hydraulic
parameters and friction are identified offline. The approach
presented in this paper is similar but uses online identification
of parameters and RBF networks to compensate friction, with
the MML criterion used to determine the required sizes of the
networks.

Radial Basis Function networks have previously been ap-
plied to nonlinear, adaptive control on many occasions with
good results [2], [5], [8], [9], motivated by the fact they are
universal approximators over a compact region [6]. Much of
the recent work on using neural networks in control has fo-
cused on deriving stable online training laws, which generally
involves adjusting only the output weights of the networks
and assuming the other parameters are fixed in some regular
fashion. The problem then becomes one of linear regression,
and stable, bounded update laws for the weights can be derived
through Lyapunov analysis. Integrator Backstepping [4] can
then be used to extend the results to a large class of dynamic
systems. Most of these methods, however, ignore the issue of
the selection of the size of networks, usually assuming the
networks are picked large enough to hopefully approximate
all nonlinearities reasonable well. This can lead to oversized
networks being used, increasing both the computation time
and the dynamic order of the system.

The Minimum Message Length [13], [14], [15] objective
costing criterion is a method of evaluating the performance
of models, both in terms of the model’s fit to the data, and
the complexity of the model. In this fashion it regulates the
size of the model, yielding a model for which increases in
complexity are not expected to produce much increase in
performance. This also has the benefit of potentially avoiding
the overfitting problem. MML has been applied successfully
to various problems including RBF networks with free radius
and centre parameters [7].

In this paper we concentrate on identifying hydraulic pa-
rameters for a system controlled with a five-port valve, and

compensating for friction with MML inferred RBF networks.
The parameters of the body being moved by the hydraulic
actuators are assumed to be known, and emphasis is put on
the architecture adaptation layer of the control system.

III. PROBLEM STATEMENT: FLUID POWER SYSTEMS

A physical system driven by a double acting fluid-powered
actuator using a five-port valve conventionally connected as in
[12] has the following general equations of motion

ẋ1 = x2 (1)

ẋ2 =
1
m

(F + Θ(x1, x2) + h(x2)) (2)

Ḟ = A1ṗ1 −A2ṗ2 (3)

ṗ1 =
β

V1
(−V̇1 + q1(u)) (4)

ṗ2 =
β

V2
(−V̇2 + q2(u)) (5)

where x1 is the position of the system, x2 the velocity, F
the force exerted by the fluid-power actuator, p1, p2 are the
pressures in chambers 1 and 2 of the actuator, Θ(·) accounts
for the dynamics of the physical system, h(·) are the frictional
forces, q1, q2 are the flows of fluid into chambers 1 and 2, A1,
A2 are the areas of contact between the fluid and actuator in
chambers 1 and 2, V1, V2 are the volumes of fluid in the
chambers 1 and 2, m is the attached mass being moved, and
u is the control input to the system. Given some reference
trajectory, x1d, the general tracking problem is to drive x1 →
x1d as t → ∞. Assuming the system is affine in the control,
u, the flows, q1, q2, are given by the servo-valve equations

q1 =
{

ca
√

ps − p1u for u ≥ 0
cb
√

p1 − pru for u < 0 (6)

q2 =
{
−cc

√
p2 − pru for u ≥ 0

−cd
√

ps − p2u for u < 0 (7)

where β is the fluid bulk modulus, p1, p2 the pressures in the
two bellows, ps, pr the supply and reservoir pressures and u is
the control input to the servovalve. Using (4), (5) in (3) yields

Ḟ = −βx2

(
A2

2

V2
+

A2
1

V1

)
+ v(x1, p1, p2)u (8)

where

v = c1v1(·) + c2v2(·) (9)

with

v1 =


A1

V1

√
ps − p1 for u ≥ 0

A1

V1

√
p1 − pr for u < 0

(10)

v2 =


A2

V2

√
p2 − pr for u ≥ 0

A2

V2

√
ps − p2 for u < 0

(11)

and

c1 =
{

caβ for u ≥ 0
cbβ for u < 0 (12)

c2 =
{

ccβ for u ≥ 0
cdβ for u < 0 (13)

(14)

The variables β, c1, c2, and friction function h(x2) are all
assumed to be a priori unknown and possibly time varying.
This is reasonable as the bulk modulus is dependant on the
quality of the fluid, which may vary over time, the valve flow
coefficients depend on the construction of the valve itself, and
may vary from valve to valve, and friction depends on the
construction of the system. It is possible to additionally treat
the other parameters, such as the stroke and volume, as a priori
unknown but these parameters are easily measured and remain
constant, and thus little advantage would be gained in doing
so.

IV. FUNCTION APPROXIMATION WITH MML COSTED
RBF NETWORKS

A. Minimum Message Length Inference

The Minimum Message Length costing criterion [13] is used
to objectively cost a model, in terms of its fit to the data
and its complexity. Using the MML87 approximation [15] of
the Minimum Message Length (MML) inference scheme, the
‘optimal’ parameters, θ∗, of some model for a given set of
data X are

θ∗ = arg min
θ∈D

{− log(h(θ))+
1
2

log(F (θ))−log(f(X|θ))+K}
(15)

where h(·) are the priors over the parameters, F (·) is the
determinant of the expected Fisher Information Matrix, f(·) is
the likelihood function of the data given the parameters, and
K is some constant introduced through the approximation.

B. RBF Networks

Consider a network of m radial basis functions, with q
inputs, given by

y =
m∑

i=1

wiφ(x− ci, ri) (16)

where w ∈ <m are the output weights, r ∈ <m+ are the basis
function ‘radius’ parameters, c ∈ <m×q the basis function
centres, x ∈ <q is the data input, and φ(·) is some nonlinear
basis function. As RBF neurons are local approximators,
providing c ∈ R, where R is a q dimensional region that
encompasses the maximum and minimum values of the input
vector x, an arbritrary approximation of any nonlinear function
can be achieved as m →∞, assuming appropriate selection of
c (for example, a uniform grid). Clearly this is unreasonable
and we would like to be able to automate the optimal selection
of m; this has the dual result of preventing overfitting in the
presence of noise, and reducing computation time. We propose
to use the MML costing criterion to automatically select an
optimal value of m in our adaptive control system.

C. Message Length for Fixed Radius and Centre RBFs

A Message Length formulation for RBF networks with
variable c and r parameters has been described in [7]. This
is used as a basis to derive a message length for fixed hidden
layer parameter networks, in which c and r are determined by
some spacing specification.

1) Likelihood: Define the outputs of the basis functions as

Φ(x) = [φ1(x− c1, r1), ..., φm(x− cm, rm)] (17)

Given some Gaussian noise corrupting the target with a
precision of τ = 1

σ2 and N input/target exemplar pairs (xi,yi),
the likelihood function, f(y|x, θ) is given by

f = (2π)−
N
2 τ

N
2 exp

(
−τ

2

N∑
n=1

(yn −wT Φ(xn))2
)

(18)

and the negative-log likelihood is L = − log(f).
2) Fisher Information: The Fisher Information is the de-

terminant of the expectation of the second derivatives of the
likelihood with respect to the parameters, and gives a measure
of the sensitivity of the model on the parameters. Given N
pieces of data, the terms in the m + 1×m + 1 Fisher Matrix
for our problem are〈

∂2L

∂τ2

〉
=

N

2τ2
(19)〈

∂2L

∂τ∂wi

〉
=

〈
∂2L

∂wi∂τ

〉
= 0 (20)〈

∂2L

∂wi∂wj

〉
= τ

N∑
n=1

Φi(xn)Φj(xn) (21)

where 〈·〉 denotes an expectation.
3) Priors: To find the full message length prior probability

distributions must be defined over the model parameters. We
use a uniform prior over the number of neurons, with some
upper limit M being the reasonable upper limit of neurons
that could be considered to be used, a log-uniform prior for τ ,
and a Gaussian prior for the weights, with fixed accuracy τW .
Additionally, the range of the input space the network spans,
given by xmin, xmax ∈ <q, must also be stated so that the
c and r parameters may be generated; a uniform prior over
some region Q of the input space is used for these parameters.
Defining θ = [m, τ,w, xmin, xmax], we have

h(θ) = h(m)h(τ)h(w)h(xmin)h(xmax) (22)

h(m) =
1
M

(23)

h(τ) =
2

(τ2
U − τ2

L)τ
(24)

h(w|τW) = (2π)−
m
2 τW

m
2 exp

(
−τW

2

m∑
n=1

w2
n

)
(25)

h(xmin) = h(xmax) =
1

Qq
(26)

(27)

4) Message Length: The complete message length expres-
sion is given by

M(y|x, θ) = −log(h(θ)) +
1
2
|F (x, θ)| − log(f(y|x, θ) + K

(28)
The MML point estimate of model parameters θ̂MML is found
by setting ∂M

∂θi
= 0 and solving for θi.

5) Parameter Estimation: The estimates for the weights, w,
are found by the parameter update laws described in the next
section. Though this algorithm searches for the weights that
yield the minimum mean squared error fit and not the weights
that minimise the message length, the differences between the
estimates are small, especially if 1

τW
� ‖w‖2∞. Given a set

of weights, ŵ, the MML estimate for τ , τ̂MML can be found
explicitly by solving ∂M

∂τ = 0 for τ and is given by

τ̂MML =
N −m∑N

n=1(yn − ŵφ(xn))2
(29)

V. NONLINEAR CONTROLLER

A. Force Control

The first step is to derive a stabilising controller for the
actuator force, with unknown parameters β, c1 and c2. Rather
than directly tracking the desired force signal, we require our
adaptive control to instead track the output of a first-order
reference model, given by

ḞR = KF (FD − FR) (30)

where FD is the desired force, FR the output of our reference
model, and KF determines the dynamic response of our
reference model. Defining z = F − FR as the error between
the actual force and the reference model then ż = Ḟ − ḞR.
We then select the control law u as

u =
β̂x2

(
A2

1
V1

+ A2
2

V2

)
−KF z + Ḟd

ĉ1v1 + ĉ2v2
(31)

where (̂·) denotes an estimate. Defining κ ≡ u, the update
laws for our paramater estimates are

˙̂
β = γβx2

(
A2

1

V1
+

A2
2

V2

)
z (32)

˙̂c1 = γ1κv1z (33)
˙̂c2 = γ2κv2z (34)

where γβ , γ1, γ2 > 0 are adaptation gains.

B. Position Control

We now construct an outer position control loop to ensure
that x1 tracks some twice differentiable signal. Rather than
directly tracking the reference trajectory, x1d, we require our
controller to track the output of a reference model, x1r, given
by

ẍ1r = a1(x1d − x1r)− a2ẋ1r (35)

with a1 > 0, a2 > 0. This has the benefit that the derivatives
ẋ1r and ẍ1r are directly available for measurement from our
reference model. Defining

ε1 = x1 − x1r (36)
ε2 = x2 − ẋ1r = x2 − x2r (37)

we propose that the desired force be

FD = mẋ2r −KP ε1 −KV ε2 −Θ(·) + wT
HΦH(·) (38)

where ΦH(·) is an RBF network used to approximate the
friction function h(·). The parameter update law for the
weights wH is given by

ẇH = −ΛH ((ε2 + K1ε1)ΦH(|x2|)− σwH) (39)

where ΛH ∈ <m×m+ is a matrix of adaptation gains, K1 is
a constant picked as described in the next section, and σ > 0
is a small constant used to regulate the weights and prevent
drifting and growth (the so called ‘sigma-modification’ [8]).
The weights are given by

wH =

 w+
H for x2 > 0 or x2 = 0, FD−H > 0

w−H for x2 < 0 or x2 = 0, FD−H < 0
0 for x2 = 0, FD−H = 0

(40)

and the network by

ΦH =

 Φ+
H for x2 > 0 or x2 = 0, FD−H > 0

Φ−H for x2 < 0 or x2 = 0, FD−H < 0
0 for x2 = 0, FD−H = 0

(41)

where FD−H as in (38) without the friction compensation
term. We use two networks depending on the sign of x2 to
avoid the inevitable discontinuity present at x2 = 0 due to
the nature of the static friction forces, which fixed grid RBF
networks cannot easily approximate.

C. Stability

Claim: The system described by (1 - 7), controlled by
control laws (31) and (38), with parameter update laws (32),
(33), (34) and (39) is stable and bounded.

Proof:
Define (̃·) = (̂·) − (·)∗, where (·)∗ represents the optimal

value of the estimate, i.e. β∗ = β, c∗1 = c1, c∗2 = c2, and

w∗H = arg min
wH∈<m

{
sup
x∈R

|h(x)−wT
HΦH(x)|

}
(42)

where R is the region over which ΦH(·) is chosen to approx-
imate h(·).

1) Force Stabilisation: We propose the following Lyapunov
function

VF (z, β̃, c̃1, c̃2) =
1
2
z2 +

1
2
γ−1

β β̃2 +
1
2
γ−1
1 c̃2

1 +
1
2
γ−1
2 c̃2

2 (43)

taking the derivative of (43) along the trajectories of (8), and
using (31), (32 - 34) yields

V̇F = −KF z2 (44)

and thus F → FD as t → ∞, or F = FD + ∆F , where
∆F → 0 as t →∞.

2) Position Control: We treat ε2 as a ‘virtual control’, and
define ζ = ε2 + K1ε1 as the error between the ε2 and the
controller that stabilises ε1 (i.e. a backstepping formulation
[4]). The system in (ε1, ζ) co-ordinates is then given by

ε̇1 = z −K1ε1 (45)
ζ̇ = ε̇2 + K1ε̇1 (46)

Now consider the Lyapunov function

VP (ε1, ζ) =
1
2
ε2
1 +

1
2
ζ2 + w̃T

HΛ−1
H w̃H (47)

Taking the derivative along trajectories of (1), (2) yields

V̇P = −K1ε
2
1 + ζ(

1
m

(F − h(x2) + Θ(·))− ẋ2r (48)

+K2ε̇1 + ε1) + (wH −w∗H)ẇH (49)

Now, we set

FD = wT
HΦH(·)+mẋ2r−mK1ε̇1−ε1−mK2ζ−Θ(·) (50)

From (44) we know that F → FD as t → ∞, so setting
F = FD +∆F , where ∆F is some disturbance that decays to
0, and using (39) in (48) we have

V̇P = −K1ε
2
1 −K2ζ

2 + (δH + ∆F)ζ − σw̃T
HwH (51)

and by completion of squares

V̇P ≤ −K1ε
2
1−K2ζ

2 + (δH + ∆F)ζ +
σ‖w∗H‖2

2
− σ‖w̃H‖2

2
(52)

where δH is an error term introduced by the approximation
of h(·) by wT

HΦH(·). Given that ∆F , δH and ‖w∗H‖ are all
bounded, we can conclude that ε1 and ε2 are bounded. It is
important to note that (50) is the same as (38), with

KV = m(K1 + K2) (53)
KP = m(K1K2 + 1) (54)

Selecting K1 > 0, K2 > 0 ensures the overall system is stable
and bounded.

VI. ARCHITECTURE ADAPTATION

A standard adaptive controller consists of control and pa-
rameter update laws; the selection of architecture for any func-
tion approximation networks is done prior to implementation
and is usually selected to be large enough to hopefully deal
with the a priori unknown nonlinearities the network must
approximate. This typically results in much larger networks
than are required, which increases the both dynamic order of
the system and computation time.

In contrast, we add another adaptation layer to the system,
running at a sampling rate generally much lower than the
control and parameter update laws, that selects the architecture
of our networks. The controllers and parameter estimators
drive our errors to some bounds, ∆, defined by the current
network architecture. The architecture adaptation layer drives
these bounds down to the smallest practical value, that is,
the value for which increases in m have little impact on our
control performance. Figure 1 shows the block diagram of the
complete control system.

A. Algorithm Outline

We use the MML costing criterion to assess the performance
of our RBF networks. The basic procedures is as follows:

1) Gather data from measurements
2) Cost the current network with data
3) When training has stabilised:

a) If the current architecture is cheaper than previ-
ous, smaller architecture, increase the size of the
network

b) If current architecture is more expensive than pre-
vious, smaller architecture, return to previous size

4) Repeat ad infinitum
This simple algorithm iteratively increases the architecture

size until the cost of stating the architecture outweighs the
benefits gained from the extra neurons. Additionally, the ‘look-
ahead’ depth can be set to greater than one; that is, have the
algorithm check two or more increased networks sizes before
making a decision in step (3). The following sections outline
the procedure in greater detail.

B. Data Collection

Data is required to cost the networks. This problem, and the
problem of forgetting collected data if the system cannot be
assumed to be time invariant, has many solutions, each with
advantages and drawbacks [3]. We use a method that is simple
to implement and allows for data to be forgotten over time.
Assuming a maximum of N samples is required, the input
space to the networks is split into m − 1 partitions based on
the basis function centres, c, with each partition holding up
to N/(m − 1) samples. As measurements are read in, they
are added into their appropriate partition with a probability of
paccept, randomly replacing one of the existing samples stored
in the partition if the partition is already full. Clearly, paccept

determines the rate of ’forgetfullness’ in the data collection.
This is not necessarily an ideal parititioning of the data space
- obviously it is more desirable to have larger numbers of
exemplars in regions that are more nonlinear - but it is at least
unbiased and ensures that there is a suitable amount of data
available for each parameter we are attempting to fit (i.e. each
wi associated with a ci). A danger of this scheme is that if
system stays in some small region for a large period of time,
the partition will fill completely with data samples spanning
only this small region. Adding an extra mechanism to the
data collection process to detect such situations and decrease
paccept accordingly, or increasing the number of partitions can
moderate this problem.

C. Costing the Networks

The networks are costed using (28) on the current set of
data. As the parameter update laws are always active as long as
there is some error, and there will always be some error present
due to inaccurate approximations by the networks, there must
be some method of determining when training has stabilised to
some region of models. To determine this, a simple procedure
is used. Costing the networks occurs at some regular interval,

x1, x2, p1, p2

x1d u

m

Sampling
Rate: T

Sampling
Rate: >> T

Position
Trajectory
Generator

Hydraulic
System

Architecture Adaptation

Adaptive
Controller

Fig. 1. Block diagram of Adaptive Control System

TS , and if the current costed network is the lowest found so far
for the current architecture it is saved. If it remains the lowest
cost network found over the next HC costings, where HC

is some positive constant, it is assumed that the training has
stabilised. At this point, if the lowest cost network is cheaper
than the lowest cost network from the previous architecture,
the network size is increased by some number of neurons. If
this lowest cost network is more expensive than the cheapest
from the previous architecture, the network is resized back to
the previous size.

The MML cost depends on the amount of data used, and
unless the entire state space has been traversed reasonably
frequently all data collection partitons may not have been
completely filled. Therefore, we cost all the networks with
the current set of data. Clearly, if we expect poor initial
approximations (i.e. the functions to be approximated will be
highly nonlinear) it is wise to select HC as quite large to
counter the larger region of possible models the training laws
converge to, though naturally this increases the time to it takes
for the architecture adaptation.

D. Resizing the networks

To ensure the minimum disturbances are introduced to
the controller, and that previously learned information is
preserved, the networks are resized by generating the new
weights as a fit of the new network to the function learned
by the previous one. To this end, P exemplars are generated
from each of partitions around the centres, and these are used
to fit the new network weights through a linear regression.
Additionally, the collected data must be repartitioned based
on the centres of our new network.

VII. SIMULATION RESULTS

To test the adaptive controllers and architecture selection,
simulations have been performed in Matlab’sTM SimulinkTM

package. The system to be controlled is a double acting
hydraulic cylinder, with a 454kg attached mass and pressure
supply of 1.379 MPa (200 PSI). A typical hydraulic oil
(ρ = 825kg/m3, β = 8.3 × 108) was used as the fluid, and
the valve coefficients were c+

1 = 0.43, c−1 = 0.53, c+
2 = 0.83,

c−2 = 0.76. The friction functions have been chosen to be
similar to those experimentally found in [12].

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

600

700

800

900

1000

1100

Velocity (m/s)

F
 (

N
)

Solid: Actual Friction, Dashed: RBF Approximation

Fig. 2. Approximation of positive friction function

A. Controller parameters

The initial network size for both Φ+
H and Φ−H was five

Gaussian basis functions, arranged in a uniform grid in [0, 1.2]
(1.2ms−1 being the maximum velocity our system was able to
achieve) with an extra basis function one radius to the left and
right of 0 and 1.2. For costing the friction networks, assuming
a suitable observer, ˆ̇x2, for ẋ2 exists, and measurements for
p1 and p2 are available, the estimated friction for a some x2

is given by

ĥ(x2) = (p1A1 − p2A2)−mˆ̇x2 + ∆U (55)

As no real, physical system is completely noise free and
perfectly modelled, ∆U is included to represent disturbances
due to unmodelled dynamics, sensor and observer noise. In
our simulation, this is modelled by assuming the pressure
sensors and the acceleration observer are corrupted by some
Gaussian white noise. Equation (55) also assumes that all other
forces acting on the system, such as any external forces, are
known and accounted for by Θ(·). For our reference model,
parameters a1 = 120, a2 = 20, KF = 200 for our force
controller, and K1 = 10,K2 = 100 for our position control
loop. Costing was done with N = 1000 data points, and
with a horizon HC = 5. The controller sampling rate was
500Hz, and the architecture adaptation sampling rate was
1Hz. Additionally, a ‘look ahead’ depth of two architectures
was chosen.

B. Simulation Results

The simulation was run for 60 seconds, with the system
being required to track a trajectory of steps and ramps that
covered most of the state space. Figures 2 and 3 show the
final fits of the two networks to the friction function. The fits
are good, with a larger error near x2 = 0 and x2 > 1.1, i.e.
very low and high speeds which our trajectories did not often
require. The mean squared error between the positive friction
function and the fit found by the network is approximately
1.05 × 104, i.e. a standard deviation of approximately 32N .

0 0.2 0.4 0.6 0.8 1 1.2
-1100

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Velocity (m/s)

F
 (

N
)

Solid: Actual Friction, Dashed: RBF Approximation

Fig. 3. Approximation of negative friction function

The mean squared error between the negative friction function
and the fit found by the network is approximately 716, i.e. a
standard deviation of approximately 26N . These values can
be substituted into δH in (52) to find the approximate bounds
of stability with the chosen architectures.

In Figure 4 the evolution of message lengths of the two
networks over time is shown; at time 40s the size of network
Φ−H is finally selected as 33 basis functions, and it returns to
this architecture at 47s after trying two larger networks. At
50s the size of network Φ+

H is selected as 31 basis functions,
and it tries two larger architectures before determining they
give no decrease in message length and returning to 31 basis,
whereupon simulation was halted. Finally, Figure 5 shows the
performance of the position controller as it tracks a segment
of the reference trajectory. The controller delivers very good
performance (standard deviation < 5.8 × 10−4m) with the
network sizes that were selected by the MML criterion.

Finally, hydraulic parameter estimates were found to be
ĉ+
1 ≈ 0.44, ĉ−1 ≈ 0.52, ĉ+

2 ≈ 0.83, ĉ−2 ≈ 0.79, and
β̂ ≈ 8.8 × 108 during the simulation runs. They converged
very quickly on these value (within 5s) and remained in a
small region around them for the rest of the simulation run.

C. Remarks

The adaptive controller selected reasonably similar network
sizes for both friction networks. Direct comparisons of the
message lengths of the two networks are not particularly
useful, as both are being costed on different sets of data, and
a set that more completely spans the input space will test
the networks generalisation capabilities much more heavily.
However, the MML criterion has picked reasonable size net-
works that approximate both functions quite well, and give
good tracking results.

One important issue to raise in regards to the adaptive
architecture selection scheme is its sensitivity on a selection
of a good value of paccept in the collection of data (section
VI-B). If paccept is too high, the data used to cost the networks

0 10 20 30 40 50 60
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000
M

e
s
s
a

g
e

 L
e

n
g

th
 (

n
it
s
)

Time (s)

Solid: Positive Friction Network, Dashed: Negative Friction Network

Fig. 4. Network message lengths

will always contain too much recent data, which the network
has just been trained upon. This tends to result in larger
architectures costing well because they have ‘overfitted’ to
the most recent data. Selecting a small value of paccept and
leaving the system to run for some large length of time before
switching on architecture adaptation will remove this problem,
but for this to work effectively, the system, if time varying,
must change quite slowly over time.

VIII. LIMITATIONS AND FUTURE WORK

Further work will consist primarily of extending the MML
costing of the RBF networks in an adaptive control framework;
the most obvious progression is to extend the networks to
learn the entire physical system’s dynamics, Θ(·), and to
approximate the entire valve flow function in (9) with RBF
networks to handle extra nonlinearities such as leakage. Fur-
ther, extending the MML costing to consider systems with
process noise is another important direction to pursue, as the
advantages of MML model selection are most pronounced
in noisy environments. Additional work using MML to find
an optimal partitioning of the data space, and improving the
architecture adaptation algorithm, in particular determining
when training has stabilised, is also considered.

IX. CONCLUSION

This paper presents a stable, bounded adaptive control
system for hydraulic servo systems that adaptively identifies
valve flow coefficients and fluid parameters, and uses a pair
of RBF networks to compensate for the effects of friction.
Additionally, in contrast to conventional adaptive controllers,
the system is augmented with a further architecture adaptation
layer that automatically selects the size of the networks, using
the Minimum Message Length objective costing criterion.
Smaller networks have smaller computational requirements
and lower dynamic orders, and are thus desirable, and the
MML criterion provides a method of determining when the
approximation is ‘good’ enough, and increasing the order will
yield small benefits. Additionally, the MML criterion requires

44 44.5 45 45.5 46 46.5 47 47.5 48
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
o

s
it
io

n
 (

m
)

Solid: Desired, Dashed: Actual

Fig. 5. Position tracking of trajectory

no ‘tuning’ of parameters or constants. Simulation results
demonstrate the ability of the architecture adaptation layer to
select a reasonable sized network to approximate a typical
nonlinear friction function for our nonlinear controller.

REFERENCES

[1] J. E. Bobrow, K. Lum, ”Adaptive, high bandwidth control of a hydraulic
actuator”, Proceedings of the 1995 American Control Conference, pp.
71-75, American Automatic Control Council, June 1995

[2] J. Y. Choi, J. A. Farrell, ”Adaptive Observer Backstepping Control Using
Neural Networks”, IEEE Transactions on Neural Networks, Vol. 12, No.
5, pp. 1103-1112, September 2001

[3] T. Hrycej, Neurocontrol: Towards an Industrial Control Methodology,
Wiley, 1997.

[4] M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive
Control Design, John Wiley and Sons, 1995.

[5] Y. Li, S. Qiang, X. Zhuang, O. Kaynak, ”Robust and Adaptive Backstep-
ping Contol for Nonlinear Systems Using RBF Neural Networks”, IEEE
Transactions on Neural Networks, Vol. 15, No. 3, pp. 693-701, May 2004

[6] Y. Liao, S. Fang, H. L. W. Nuttle, ”Relaxed Conditions for Radial-basis
Function Networks to be Universal Approximators”, Neural Networks,
Vol. 16, No. 7, pp. 1019-1028, 2003

[7] E. Makalic, L. Allison, A. Paplinski, ”MML Inference of RBF Net-
works for Regression”, VIII Brazilian Symposium on Neural Networks,
September-October, 2004

[8] H. D. Patino, D. Liu, ”Neural Network-Based Model Reference Adaptive
Control System”, IEEE Transactions on Systems, Man, and Cybernetics
– Part B: Cybernetics, Vol. 30, No. 1, pp. 198-204, February 2000

[9] R. M. Sanner, J. E. Slotine, ”Gaussian Networks for Direct Adaptive
Control”, IEEE Transactions on Neural Networks, Vol. 3, No. 6, pp. 837-
863, November 1992

[10] D. F. Schmidt, G. S. Lowe, A. P. Paplinski, ”On the Design of a
Hydraulically Actuacted Finger for Dextrous Manipulation”, Proceedings
of the 2004 IEEE International Conference on Robotics and Automation,
pp. 3001-3006, May 2004

[11] M. R. Sirouspour, S. E. Salcudean, ”Nonlinear Control of Hydraulic
Robots”, IEEE Transactions on Robotics and Automation, Vol. 17, No.
2, April 2001

[12] G. A. Sohl and J. E. Bobrow, ”Experiments and Simulations on the
Nonlinear Control of a Hydraulic Servosystem,” IEEE Transactions on
Control Systems Technology, Vol. 7, pp. 238-247, March 1999

[13] C. S. Wallace, D. M. Boulton, ”An Information Measure for Classifica-
tion”, Computer Journal, 11(23), pp. 195-209, 1968

[14] C. S. Wallace, D. L. Dowe, ”Minimum Message Length and Kolmogorov
Complexity”, Computer Journal, Vol 42., pp. 270-283, 1999

[15] C. S. Wallace, P. R. Freeman, ”Estimation and Inference by Compact
Encoding (with discussion)” Journal of the Royal Statistics Society, Series
B, 49, pp. 240-265, 1987

