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Abstract
This paper adapts models from the area of spatial
statistics to the task of predicting a user’s inter-
ests (i. e., implicit item ratings) within a recom-
mender system in the museum domain. We de-
velop a model based on Gaussian spatial processes,
and discuss two ways of computing item-to-item
distances in the museum setting. Our model was
evaluated with a real-world dataset collected by
tracking visitors in a museum. Overall, our model
attains a higher predictive accuracy than nearest-
neighbour collaborative filters. In addition, the
model variant using physical distances outperforms
that using distances computed from item-to-item
similarities.

1 Introduction
Spatial processes (random fields) are a subclass of stochastic
processes which are applied to domains that have a geospa-
tial interpretation, e. g., [Diggle et al., 1998; Banerjee et al.,
2004]. They are typically used in the field of spatial statistics
to model spatial associations between a set of observations
made at certain locations, and to predict values at locations
where no observations have been made. This paper applies
such models to the prediction of a user’s interests or item rat-
ings in recommender systems (RS). We develop our Spatial
Process Model (SPM) by adapting a Gaussian spatial process
model to the RS scenario, and demonstrate our model’s ap-
plicability to the task of predicting implicit ratings in the mu-
seum domain. The use of spatial processes requires a measure
of distance between items in addition to users’ ratings. This
measure, which is non-specific (e. g., it may be a physical or
a conceptual distance), can be readily obtained in most cases.
For example, distances could be computed from feature vec-
tors representing the items (similarly to content-based RS),
from item-to-item similarities (similarly to item-to-item col-
laborative filtering [Sarwar et al., 2001]), or from physical
distance. In this paper, we explore the latter two measures.

Our application scenario is motivated by the need to au-
tomatically recommend exhibits to museum visitors, based
on non-intrusive observations of their actions in the physi-
cal space. Employing RS in this scenario is challenging due
to (1) the physical nature of the domain, (2) having exhibit

viewing times rather than explicit ratings, and (3) predictions
differing from recommendations (we do not want to recom-
mend exhibits that visitors are going to see anyway). We turn
the first challenge into an advantage by exploiting the fact
that physical distances between exhibits are meaningful, en-
abling the use of walking distance between exhibits to calcu-
late (content) distance. This supports the direct, interpretable
application of spatial processes by using a simple paramet-
ric Gaussian spatial process model (with the ensuing low
variance in parameter estimates), compared to more complex
non-parametric approaches, e. g., [Schwaighofer et al., 2005].
The second challenge, which stems from the variable seman-
tics of viewing times (time t for different exhibits could mean
interest or boredom), is naturally addressed by SPM’s struc-
ture. The third challenge can be addressed by (a) using SPM
to build a model of a visitor’s interests in unseen exhibits,
(b) inferring a predictive model of a visitor’s pathway through
the remainder of the museum [Bohnert et al., 2008], and
(c) combining these models to recommend exhibits of interest
that may be overlooked if the predicted pathway is followed.

SPM was evaluated with a real-world dataset of time spans
spent by museum visitors at exhibits (viewed as implicit rat-
ings). We compared our model’s performance to that of (1) a
baseline model which delivers a non-personalised prediction,
and (2) a nearest-neighbour collaborative filter incorporat-
ing performance-enhancing modifications, e. g., [James and
Stein, 1961; Herlocker et al., 1999]. Our results show that
SPM significantly outperforms both models.

The paper is organised as follows. In Section 2, we discuss
related research. Section 3 describes our domain and dataset.
Our spatial processes approach for modelling and predicting
exhibit interests is developed in Section 4. In Section 5, we
present the results of our evaluation, followed by a discussion
in Section 6 and our conclusions in Section 7.

2 Related Research
Recommender systems (RS) are designed to direct users to
personally interesting items in situations where the amount
of available information exceeds the users’ processing capa-
bility [Resnick and Varian, 1997; Burke, 2002]. Typically,
such systems (1) use information about a user (i. e., a user
model) to predict ratings of items that the user has not yet
considered, and (2) recommend suitable items based on these
predictions. Collaborative modelling techniques constitute



one of the main model classes applied in RS [Albrecht and
Zukerman, 2007]. They base their predictions upon the as-
sumption that users who have agreed in their behaviour in the
past will agree in the future.

The greatest strength of collaborative approaches is that
they are independent of any representation of the items being
recommended, and work well for complex objects, for which
features are not readily apparent. The two main collaborative
approaches are memory-based and model-based. Previous
research has mainly focused on memory-based approaches,
such as nearest-neighbour models (classic collaborative fil-
tering), e. g., [Herlocker et al., 1999]. The main drawback of
memory-based algorithms is that they operate over the entire
user database to make predictions. In contrast, model-based
approaches use techniques such as Bayesian networks, latent-
factor models and artificial neural networks, e. g., [Breese et
al., 1998; Bell et al., 2007], to first learn a statistical model
in an offline fashion, and then use it to make predictions and
generate recommendations. This decomposition can signifi-
cantly speed up the recommendation generation process.

Personalised guide systems in physical domains have of-
ten employed adaptable user models, which require visitors
to explicitly state their interests in some form. For example,
the GUIDE project [Cheverst et al., 2002] developed a hand-
held tourist guide for visitors to the city of Lancaster, UK.
It employed a user model obtained from explicit user input
to generate a dynamic and user-adapted city tour, where the
order of the visited items could be varied. In the museum do-
main, the CHIP project [Aroyo et al., 2007] investigates how
Semantic Web techniques can be used to provide personalised
access to digital museum collections both online and in the
physical museum, based on models that require an explicit
initialisation.

Less attention has been paid to predicting preferences
from non-intrusive observations, and to utilising adaptive user
models that do not require explicit user input. In the museum
domain, adaptive user models are usually updated from a
user’s interactions with the system, the focus being on adapt-
ing content presentation as opposed to predicting and rec-
ommending exhibits to be viewed. For example, HyperAu-
dio [Petrelli and Not, 2005] dynamically adapted the pre-
sented content and hyperlinks to stereotypical assumptions
about a user, and to what a user has already accessed and
seems interested in. The augmented audio reality system for
museums ec(h)o [Hatala and Wakkary, 2005] treated user in-
terests in a dynamic manner, and adapted its user model on
the basis of a user’s interactions with the system. The col-
lected user modelling data were used to deliver personalised
information associated with exhibits via audio display. The
PEACH project [Stock et al., 2007] developed a multimedia
handheld guide which adapts its user model on the basis of
both explicit visitor feedback and implicit observations of a
visitor’s interactions with the device. This user model was
then used to generate personalised multimedia presentations.

These systems, like most systems in the museum domain,
rely on knowledge-based user models in some way, and
hence, require an explicit, a-priori engineered representation
of the domain knowledge. In contrast, our research investi-
gates non-intrusive statistical user modelling and recommen-

dation techniques that do not require such an explicit domain
knowledge representation [Albrecht and Zukerman, 2007].

3 Domain and Dataset
The GECKO project endeavours to develop user modelling
and personalisation techniques for information-rich physical
spaces, relying on non-intrusive observations of users’ be-
haviour [Bohnert et al., 2008]. Developing such non-intrusive
user modelling and personalisation techniques for museums
requires datasets about visitor behaviour in the physical mu-
seum space (i. e., visitor pathways). Datasets that are suitable
for the development phase can be obtained by manually track-
ing museum visitors. Such a data collection methodology is
clearly inappropriate for model deployment, but it facilitates
model development by eschewing issues related to technol-
ogy selection and instrumentation accuracy.

Museums such as Melbourne Museum (Melbourne, Aus-
tralia) display thousands of exhibits distributed over many
separate galleries and exhibitions. Normally, visitors do not
require recommendations to travel between individual, logi-
cally related exhibits in close physical proximity. Rather, they
may prefer recommendations regarding physically separated
areas. In order to gather data for assessing predictive models
that support appropriate recommendations, we grouped Mel-
bourne Museum’s individual exhibits into semantically co-
herent and spatially confined exhibit areas. This task, which
was performed with the assistance of museum staff, yielded
126 exhibit areas. Figure 1 depicts the site map of Melbourne
Museum showing these exhibit areas, together with one of the
visitor pathways we collected.

To obtain our dataset, we manually tracked visitors to Mel-
bourne Museum from April to June 2008, using a custom-
made tracking tool running on laptop computers [Bohnert and
Zukerman, 2009]. In total, we recorded over 170 visitor path-
ways. We only tracked first-time adult visitors travelling on
their own, to ensure that neither prior knowledge about the
museum nor other visitors’ interests influenced a visitor’s de-
cisions about which exhibits to view. Prior to the data col-
lection, we briefed our trackers on the usage of our tracking
software, the layout of the museum, and its digital represen-
tation on the site map. Additionally, we clarified what should
be considered a viewing event. After the data collection, the
visitor pathways were post-processed using a post-processing
tool we developed. For instance, we removed tracking events
that could not have possibly occurred, e. g., visitor transitions
from one end of the museum to the other and back within
a few seconds, or transitions outside the museum walls and
back. We also removed incomplete visitor pathways, e. g.,
due to a laptop computer running out of battery, or a vis-
itor leaving unexpectedly. The resulting dataset comprises
158 complete visitor pathways in the form of time-annotated
sequences of visited exhibit areas, with a total visit length
of 291:22:37 hours, and a total viewing time of 240:00:28
hours. The dataset also contains demographic information
about the visitors, which was obtained by means of post-visit
interviews conducted by our trackers. In total, we obtained
8327 viewing durations at the 126 exhibit areas, yielding an
average of 52.7 exhibit areas per visitor (41.8% of the exhibit



(a) Melbourne Museum – Ground level (b) Melbourne Museum – Upper level

Figure 1: Visitor pathway visualised on a site map of Melbourne Museum

Table 1: Dataset statistics

Mean Stddev Min Max
Visit length (hrs) 1:50:39 0:47:54 0:28:23 4:42:12
Viewing time (hrs) 1:31:09 0:42:05 0:14:09 4:08:27

Exhibit areas / visitor 52.70 20.69 16 103
Visitors / exhibit area 66.09 25.36 6 117

areas). Hence, on average 58.2% of the exhibit areas were
not viewed by a visitor. This indicates that there is potential
for pointing a visitor to relevant but unvisited exhibit areas.
Table 1 summarises further statistics of the dataset.

Clearly, the deployment of an automated RS in a museum
requires suitable positioning technologies to non-intrusively
track visitors, and models to infer which exhibits are being
viewed. Although our dataset was obtained manually, it pro-
vides information of the type that may be inferred from sens-
ing data (the work described in [Schmidt et al., 2009] links
sensory and manually obtained information). Additionally,
the results obtained from experiments with this dataset are
essential for model development, as they provide an upper
bound for the predictive performance of our model.

4 Using Gaussian Spatial Processes to Model
and Predict Visitors’ Exhibit Interests

In this section, we first describe how we use viewing time to
quantify interest in exhibits (Section 4.1), and discuss the ap-
plicability of spatial process models [Banerjee et al., 2004]
to the prediction of a visitor’s interest in exhibits in our RS
scenario (Section 4.2). We then propose a model-based col-
laborative approach based on the theory of Gaussian spa-
tial processes for predicting a visitor’s (log) viewing times
(viewed as exhibit interests) from non-intrusive observations
of his/her (log) viewing times at visited exhibits (Section 4.3).

4.1 From Viewing Time to Exhibit Interest
In an information-seeking context, people usually spend more
time on relevant information than on irrelevant information,

as viewing time correlates positively with preference and in-
terest [Parsons et al., 2004]. Hence, viewing time can be used
as an indirect measure of interest. We propose to use log
viewing time (instead of raw viewing time), due to the fol-
lowing reasons. When examining our dataset (Section 3), we
found the distributions of viewing times at exhibits to be pos-
itively skewed (we use the terms ‘exhibit’ and ‘exhibit area’
synonymously in the remainder of this paper). Thus, the usual
assumption of a Gaussian model did not seem appropriate. To
select a more appropriate family of probability distributions,
we used the Bayesian Information Criterion (BIC) [Schwarz,
1978]. We tested exponential, gamma, normal, log-normal
and Weibull distributions. The log-normal family fitted best,
with respect to both number of best fits and average BIC score
(averaged over all exhibits). Hence, we transformed all view-
ing times to their log-equivalent to obtain approximately nor-
mally distributed data. This transformation fits well with the
idea that for high viewing times, an increase in viewing time
indicates a smaller increase in the modelled interest than a
similar increase in the context of low viewing times.

4.2 Spatial Statistics in the Context of Our
Application Scenario

Spatial statistics is concerned with the analysis and predic-
tion of geographic data [Banerjee et al., 2004]. Utilising spa-
tial processes, the field deals with tasks such as modelling the
associations between observations made at certain locations,
and predicting values at locations where no observations have
been made. The assumption made for spatial processes, that
correlation between observations increases with decreasing
site distance, fits well with our RS scenario, where viewing
times are usually more correlated the more related exhibits
are. Hence, by introducing a notion of spatial distance be-
tween exhibits to functionally specify this correlation struc-
ture, we can use spatial process models for predicting view-
ing times (i. e., exhibit interests). We use s1, . . . , sn to de-
note the locations of exhibits i, j ∈ I = {1, . . . , n} in a
space providing such a distance measure, i. e., ‖si− sj‖. For
example, ‖si − sj‖ can be computed from feature vectors
representing the items (similarly to content-based RS), from
item-to-item similarities (similarly to item-to-item collabora-
tive filtering [Sarwar et al., 2001]), or from physical distance.



In this paper, we explore the two latter options: Item-to-Item
Distance and Physical Distance.

• Item-to-Item Distance (I2I). Item-to-item collaborative
filtering [Sarwar et al., 2001] utilises a database of rat-
ings to compute item-to-item similarities, and predicts
a current user’s rating of an unseen item from his/her
ratings of those items that are most similar to the item
in question. Inspired by how item-to-item similarities
are computed in this process, we use the observed log
viewing times to derive the I2I distance measure as fol-
lows. We first transform the log viewing times into z-
scores by normalising the values for each visitor sepa-
rately. This ensures that varying viewing behaviour does
not affect the similarity computation.1 Secondly, we cal-
culate item-to-item similarities using Pearson’s correla-
tion coefficient on the normalised log viewing times of
exhibits i and j (using only the normalised log viewing
times of those visitors that have viewed both exhibits i
and j). The resulting similarity value from within the in-
terval [−1, 1] is finally transformed into a distance mea-
sure by mapping it onto a value in [0, 1] (a similarity
value of −1 yields a distance of 1, and a similarity of 1
yields a distance of 0).

• Physical Distance (PD). Museums are carefully themed
by curatorial staff, such that closely-related exhibits are
in physical proximity. Based on this observation, we
hypothesise that physical walking distance between ex-
hibits is inversely proportional to their (content) simi-
larity. Thus, we use physical walking distance PD as
a measure of distance between exhibits. Specifically,
a SVG file-based representation of Melbourne Museum
was used to calculate the walking distances by mapping
the site map (Figure 1) onto a graph structure which pre-
serves the physical layout of the museum (i. e., prevent-
ing paths from passing through walls or ceilings). We
normalised the resulting distances to the interval [0, 1].

4.3 Our Gaussian Spatial Process Model
In this section, we utilise theory from the area of spatial
statistics (Section 4.2) to formulate a Gaussian spatial process
model, called Spatial Process Model (SPM), for predicting a
museum visitor’s interests in unseen exhibits (i. e., log view-
ing times) from his/her viewing behaviour at visited exhibits.

Let U = {1, . . . ,m} be the set of all visitors, and
I = {1, . . . , n} be the set of all items. Typically, for a vis-
itor u ∈ U , we have viewing times for only a subset of I , say
for nu exhibits. Denoting a visitor’s log viewing time vec-
tor with ru, we collect all observed log viewing times into a
vector r = (r1, . . . , rm) of dimension

∑m
u=1 nu. Associated

with each exhibit i ∈ I is a log viewing time mean µi and
a standard deviation σi. Let µ = (µ1, . . . , µn) be the vector
of mean log viewing times, and σ = (σ1, . . . , σn) the vector
of standard deviations. Furthermore, µu and σu are the vec-
tors of means and standard deviations respectively for only
those exhibits viewed by a visitor u. For example, if visitor 1

1We also tested a variant of the I2I measure without visitor-wise
normalisation. However, this variant yielded inferior results.

viewed exhibits 2, 3, 7 and 9, then µ1 = (µ2, µ3, µ7, µ9) and
σ1 = (σ2, σ3, σ7, σ9).

Similarly to spatial processes, SPM assumes a special cor-
relation structure between the viewing times of different ex-
hibits. In our experiments, we use a powered exponen-
tial [Banerjee et al., 2004]:

ρ(‖si − sj‖;φ, ν) = exp (− (φ‖si − sj‖)ν) ,

where φ > 0 and 0 < ν < 2. That is, ρ(‖si − sj‖;φ, ν)
models the correlation between the log viewing times of ex-
hibits i and j (ρ(‖si − sj‖;φ, ν) depends on the sites si
and sj of exhibits i and j only through the distance
‖si − sj‖). Let H(φ, ν) be a correlation matrix with com-
ponents (H(φ, ν))ij = ρ(‖si−sj‖;φ, ν) collecting all these
correlations, and let Hu(φ, ν) denote a visitor u’s correlation
matrix (dimension nu × nu). That is, Hu(φ, ν) corresponds
to H(φ, ν) without the rows and columns for unvisited ex-
hibits. Also, let θ =

(
µ,σ, τ2, φ, ν

)
be a vector representing

the 2n+ 3 model parameters, where τ2 denotes the variance
of non-spatial error terms necessary to fully specify the model
(these terms model non-spatial variation in the data). Then,
modelling the data using Gaussian spatial processes (a de-
tailed derivation appears in [Bohnert et al., 2009]), r given θ
is multivariate normal of dimension

∑m
u=1 nu. As the view-

ing times of different visitors u = 1, . . . ,m are independent,
the model simplifies to

ru |θ ∼ N (µu,Σu) for all u = 1, . . . ,m, (1)

where Σu = σu1nu
Hu(φ, ν)σu1nu

+ τ21nu
is a visitor u’s

covariance matrix, and 1nu
is the identity matrix of dimen-

sion nu × nu.
We employ Bayesian inference using SPM’s likelihood

function derived from Equation 1 to estimate θ from r (in
particular, we use slice Gibbs sampling [Neal, 2003]). This
solution offers attractive advantages over the classic frequen-
tist approach, such as the opportunity of incorporating prior
knowledge into parameter estimation via the prior distribu-
tion, and capturing the uncertainty about the parameters via
the posterior distribution.

Given the model parameters θ =
(
µ,σ, τ2, φ, ν

)
, our

model is fully specified, and we can use standard multivari-
ate normal theory to predict a current visitor a’s log viewing
times of unseen exhibits, say ra,1, from a vector of observed
log viewing times ra,2. This is because (ra,1, ra,2) |θ is nor-
mally distributed (similarly to Equation 1). If we use the fol-
lowing notation[

ra,1
ra,2

]
|θ ∼ N

([
µa,1
µa,2

]
,

[
Σa,11 Σa,12
ΣTa,12 Σa,22

])
,

then the conditional distribution p (ra,1|ra,2,θ) is normal
with mean vector and covariance matrix

E (ra,1|ra,2,θ) = µa,1 + Σa,12Σ−1
a,22 (ra,2 − µa,2) ,

Cov (ra,1|ra,2,θ) = Σa,11 − Σa,12Σ−1
a,22ΣTa,12,

where E (ra,1|ra,2,θ) represents a personalised prediction
of the log viewing times ra,1. Additionally, a measure
of confidence in this prediction can be easily derived from



Cov (ra,1|ra,2,θ), i. e., by using the variances on the diago-
nal of this matrix.

Being a model-based approach, SPM offers advantages
over memory-based collaborative filters. For instance, the
model parameters θ =

(
µ,σ, τ2, φ, ν

)
have a clear inter-

pretation, and the confidence measure provided by the model
supports an informed interpretation of the model’s predic-
tions. Additionally, recommendation generation is sped up by
decoupling the model-fitting phase from the prediction phase.

5 Evaluation
This section reports on the results of an evaluation performed
with our dataset (Section 3), including comparison with a
nearest-neighbour collaborative filter.2

5.1 Experimental Setup
To evaluate the predictive performance of our Spatial Process
Model (SPM), we implemented two additional models: Mean
Model (MM) and Collaborative Filter (CF). MM, which we
use as a baseline, predicts the log viewing time of an ex-
hibit area i to be its (non-personalised) mean log viewing
time µi. For CF, we implemented a nearest-neighbour col-
laborative filtering algorithm, and added modifications from
the literature that improve its performance, such as shrink-
age to the mean [James and Stein, 1961] and significance
weighting [Herlocker et al., 1999]. Additionally, to ensure
that varying exhibit area complexity does not affect the simi-
larity computation for selecting the nearest neighbours (view-
ing time increases with exhibit complexity), we transformed
the log viewing times into z-scores by normalising the values
for each of the exhibit areas separately. Visitor-to-visitor dif-
ferences with respect to their mean viewing durations were
removed by transforming predictions to the current visitor’s
viewing-time scale [Herlocker et al., 1999]. Refer to [Bohn-
ert and Zukerman, 2009] for a detailed description of CF. We
tested several thousand different parameterisations, but in this
paper, we report only on the performance of the best one.

Due to the relatively small dataset, we used leave-one-out
cross validation to evaluate the performance of the different
models. That is, for each visitor, we trained the models with
a reduced dataset containing the data of 157 of the 158 visit
trajectories, and used the withheld visitor pathway for test-
ing. To train and instantiate the SPM variants (i. e., SPM-I2I
and SPM-PD), we obtained a sample of θ =

(
µ,σ, τ2, φ, ν

)
from p(θ|r) by performing slice Gibbs sampling [Neal, 2003]
on the training data. For each of the 129 free model parame-
ters,3 we used (uninformative) independent uniform prior dis-
tributions. We used every 20-th sample after a burn-in phase
of 1000 iterations as a sample of θ from p(θ|r), and stopped
the sampling procedure after 8000 iterations. Thus, in total,
we obtained 350 samples of θ from p(θ|r). This procedure

2For our experiments, we ignore travel between exhibit areas,
and collapse multiple viewing events of one area into one event.

3We set σi =
√
σ2

r,i − τ2 to speed up the sampling process,

where σ2
r,i denotes the sample variance of the log viewing times at

exhibit i, calculated from the observed log viewing times rui. This
reduces the number of free parameters from 255 (126×2+3) to 129.

was followed to obtain samples of θ for both SPM variants,
i. e., for both distance measures I2I and PD (Section 4.2). We
then used the posterior means estimated from these samples
to compute predictions by conditioning a multivariate normal
distribution (Section 4.3). We improved SPM-I2I’s predic-
tive performance by using the (non-personalised) mean log
viewing time µi as a prediction whenever the conditioning
would have been based on fewer than K log viewing times
(in our case, K = 19). This modification was not applied to
SPM-PD. For CF, predictions were computed from the rat-
ings of the nearest neighbours; and for MM, we used µi, esti-
mated from the appropriate reduced dataset, as a prediction.

We performed two types of experiments: Individual Ex-
hibit and Progressive Visit.

• Individual Exhibit (IE). IE evaluates predictive perfor-
mance for a single exhibit. For each observed visitor-
exhibit area pair (u, i), we removed the observation rui
from the vector of visitor u’s log viewing durations, and
computed a prediction r̂ui from the other observations.
This experiment is lenient in the sense that all available
observations except the observation for exhibit area i are
kept in a visitor’s viewing duration vector.

• Progressive Visit (PV). PV evaluates performance as a
museum visit progresses, i. e., as the number of viewed
exhibit areas increases. For each visitor, we started with
an empty visit, and iteratively added each viewed exhibit
area to the visit history, together with its log viewing
time. We then predicted the log viewing times of all yet
unvisited exhibit areas.

For both experiments, we used the mean absolute error
(MAE) to measure predictive accuracy as follows:

MAE =
1∑

u∈U |Iu|
∑
u∈U

∑
i∈Iu

|rui − r̂ui|,

where Iu denotes a visitor u’s set of exhibit areas for which
predictions were computed. For IE, we calculated the total
MAE for all valid visitor-exhibit area pairs; and for PV , we
computed the MAE for the yet unvisited exhibit areas for all
visitors at each time fraction of a visit (to account for different
visit lengths, we normalised all visits to a length of 1).

5.2 Results
Table 2 shows the results for the IE experiment, where both
spatial models (SPM-I2I and SPM-PD) outperform both MM
and CF. Specifically, SPM-I2I achieves an MAE of 0.7756
(stderr 0.0068), and SPM-PD attains an MAE of 0.7548
(stderr 0.0066), outperforming SPM-I2I as well. The pair-
wise performance differences are statistically significant with
p� 0.01 for all model pairings.

The performance of SPM-PD, SPM-I2I, CF and the base-
line MM for the PV experiment is depicted in Figure 2. CF
outperforms MM slightly (statistically significantly for visit
fractions 0.191 to 0.374 and for several shorter intervals later
on, p < 0.05). More importantly, both SPM-I2I and SPM-PD
perform significantly better than MM and CF. For SPM-I2I,
this performance increase is statistically significant for visit
fractions 0.189 to 0.960 when comparing to MM, and except



Table 2: Model performance for the IE experiment (MAE)

MAE Stderr
Mean Model (MM) 0.8618 0.0071
Collaborative Filter (CF) 0.7868 0.0068
Spatial Process Model using I2I
(SPM-I2I) 0.7756 0.0068
Spatial Process Model using PD
(SPM-PD) 0.7548 0.0066
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Figure 2: Model performance for the PV experiment (MAE)

for a few short intervals, for visit fractions 0.375 to 0.902
when comparing to CF. In comparison, SPM-PD performs
significantly better than both MM and CF for visit fractions
0.019 to 0.922 (statistically significantly, p < 0.05). Ad-
ditionally, SPM-PD outperforms SPM-I2I until visit fraction
0.660 (statistically significantly, p < 0.05). Drawing atten-
tion to the initial portion of the visits, SPM-PD’s MAE de-
creases rapidly, whereas the MAE for MM and CF remains
at a higher level. Generally, the faster a model adapts to
a visitor’s interests, the more likely it is to quickly deliver
(personally) useful recommendations. Such behaviour in the
early stages of a museum visit is essential in order to build
trust in the RS, and to guide a visitor in a phase of the visit
where such guidance is most likely needed. A similar im-
provement in performance cannot be observed for SPM-I2I,
which suggests that a visitor’s exhibit interests observed in
close physical proximity are better predictors of interests in
unseen exhibits than interests in exhibits with positively cor-
related viewing times. As expected, MM performs at a rela-
tively constant MAE level. For CF, SPM-I2I and SPM-PD
we expected to see an improvement in performance (rela-
tive to MM) as the number of visited exhibit areas increases.
However, this trend is rather subtle (it can be observed when
plotting the models’ performance relative to MM). Addition-
ally, for all four models, there is a performance drop towards
the end of a visit. We postulate that these phenomena may be
explained, at least partially, by the increased influence of out-
liers on the MAE as the number of exhibit areas remaining to
be viewed is reduced with the progression of a visit. This in-
fluence in turn offsets potential gains in performance obtained
from additional observations. Our hypothesis is supported by
a widening in the standard error bands for all models as a
visit progresses, in particular towards the end (not shown in
Figure 2 for clarity of presentation). However, this behaviour
requires further, more rigorous investigation.

6 Discussion
SPM offers advantages over other model-based approaches in
that, unlike neural networks (and memory-based techniques),
it returns the confidence in a prediction, and its parameters
have a clear interpretation; unlike Bayesian networks, our
model does not require a domain-specific adaptation, such
as designing the network topology. In addition, the dis-
tance measure endows our model with capabilities of hybrid
RS [Burke, 2002; Albrecht and Zukerman, 2007] by seam-
lessly supporting the incorporation of other types of models
(e. g., content-based). The distance measure also alleviates
the cold-start problem. The new-item problem is addressed
by utilising the (distance-based) correlation between this item
and the other items. The new-user problem is similarly han-
dled through the correlation between items rated by a user
and the other items (when utilising Physical Distance as the
distance measure, our model can make useful personalised
predictions after only one item has been rated).

Our dataset is relatively small compared to other real-world
RS applications. Although a high number of ratings per user
slows down the slice Gibbs sampler due to repeated inversion
of matrices of high dimension, employing our model with
larger datasets should not represent a problem in practice.
This is because the number of ratings per user is usually small
compared to the number of users and items, and the compu-
tational complexity of evaluating the likelihood function de-
pends only linearly on the number of users in the database.

7 Conclusions and Future Work
In this paper, we utilised the theory of spatial processes to de-
velop a model-based approach for predicting users’ interests
in exhibits (i. e., implicit item ratings) within a RS in the mu-
seum domain. We applied our model to a real-world dataset
collected by tracking visitors in a museum, using two mea-
sures of item-to-item (content) distance: (1) distances com-
puted from item-to-item similarities (as in item-to-item col-
laborative filtering), and (2) physical walking distance. For
both distance measures, our model attains a higher predictive
accuracy than nearest-neighbour collaborative filters. Addi-
tionally, the model variant using physical distances outper-
forms that using distances computed from item-to-item sim-
ilarities. Under the realistic Progressive Visit setting, our
model using physical distance to measure item-to-item dis-
tance rapidly adapts to a user’s ratings (starting from as little
as one rating), thus alleviating the new-user problem common
to collaborative filtering. This is not the case for the model
variant based on distance computed from item-to-item simi-
larities, which suggests that a visitor’s interests observed for
exhibits in close physical proximity are better predictors of
interests in unseen exhibits than those interests for exhibits
with positively correlated viewing times.

In the future, we intend to hybridise our model by incor-
porating content-based item features into our distance mea-
sure, and to explore hybrids of models utilising a variety of
item-to-item distances. We also plan to extend our model
to fit non-Gaussian item ratings, e. g., [Diggle et al., 1998;
Yu et al., 2006].
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