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Abstract 

The number of intersection accidents around the world has reached a plateau and 

has not decreased in spite of the innovation and improvement in road and vehicle 

safety technologies. The key challenge in enhancing intersection safety is to 

identify vehicles that have a high potential to be involved in a collision as early as 

possible and take preventative action thereof.  Thus, there is a clear need for an 

intersection collision warning and avoidance system that is able to warn drivers 

of an impending potential collision.  

 

Today’s vehicles and on-road infrastructures are equipped with a large number of 

sophisticated sensory devices. These sensory devices are capable of monitoring 

and providing data pertaining to vehicle status, real-time traffic conditions, traffic 

incidents, and road crashes. The wealth of data available through these sensors 

provides a new opportunity for intersection safety. By analysing this sensor data, 

there is a potential to determine contextual knowledge about situations that can 

lead to crashes in particular intersections. Such knowledge can have a significant 

positive impact on the key issue of improving intersection safety. However, along 

with the opportunity come several challenges. While technology has advanced to 

provide important data, we still do not have adequate mechanisms to capture, 



 

xii 

integrate, and analyse this information. Furthermore, current research has not 

addressed the key issue of how to usefully leverage contextual knowledge 

obtained through such an analysis. 

 

In this thesis, we propose and develop a novel intersection safety framework that 

we term the U&I Aware (Ubiquitous Awareness Intersection) Framework. This 

framework addresses the need to analyse sensor data to extract important 

contextual knowledge about crashes at the intersection. We propose and develop 

mechanisms to use this knowledge in early identification of vehicles that have a 

high likelihood of colliding.  

 

Through the use of contextual knowledge, we show that we can significantly 

improve on collision detection algorithms that typically compute collision points 

and Time-To-Collision (TTC) for all possible vehicle pairs in an intersection. We 

also show that we maintain high accuracy in identifying vehicles that have a 

potential to collide. Thus, our experimental evaluation demonstrates the clear 

advantage of the U&I Aware Framework in improving the speed and accuracy of 

identifying vehicles that are likely to collide at an intersection over conventional 

collision detection algorithms that compute all possible vehicle pairs in an 

intersection. 
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CHAPTER 1  

 

Introduction 

“Road crashes are a huge cause of human trauma” 
1
 

 

Safety hazards on the road are faced by every road user in the world. Road 

tragedy is one of the highest causes of death universally. Every minute, on 

average, no less than one person dies in a crash worldwide [Jones02]. The 

statistics of road crashes worldwide are as follows: 

• According to the International Road Traffic Accident Database, globally, 

there are likely to be 10 million road crashes every year, which claim one and 

a half million fatalities [Frye01]. 

• In 2004 alone, there were 42,636 lives claimed on U.S. roads [ATSB06a]. 

• Each year, over 2,000 people die on Australian roads, over 60,000 are injured, 

and over 20,000 suffer serious injuries [BITRE00]. 

• Financially, road crashes cost Australia $17 billion a year [UQ06]. 

• In 2004, there were 1,583 people killed in 1,444 collisions in Australia 

[ATSB05]. A 3.3% increase happened in 2005, as 1,636 deaths occurred in 

1,481 road crashes [ATSB05].   

                                                 
 
 
1  Australian Transport Safety Bureau, http://www.infrastructure.gov.au/roads/safety/ (Accessed 
on 10 June 2008) 
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• In Victoria, there were 343 fatalities in 2004, which was the highest count 

over all other states [ATSB06a].  

• In Western Australia, from the year 1990 to 1999, the total of fatal and non-

fatal crashes was 363,080 collisions [Hents00].  

 

The above figures clearly signal the importance of improving road safety in 

human lives. Interdisciplinary research groups and automotive industries have 

come together to tackle the issues of road safety. Nonetheless, computer science 

plays a major part in the developments of tools and techniques for improving 

safety and performance of Intelligent Transportation Systems, which are 

discussed further in the next subsection. 

 

1.1. Intelligent Transportation Systems 

In today’s world, mobility is a vital need of society. Therefore, there is an 

escalating requirement for the provision of transportation systems that are 

efficient, safe, and automated. Intelligent Transportation Systems (ITS) aim to 

improve the efficiency and safety of transport systems [Charles03]. ITS is 

described as “the application of computing, information and communications 

technologies to the vehicles and networks that move people and goods” 

[Charles03].  

 

Road safety stakeholders around the world are joining forces to enhance safety 

and performance of traffic by implementing state-of-the-art technologies on the 

road and in vehicles. One of the rapidly developing technologies used in 

transportation systems is sensor technology. Sensors are designed and created to 

monitor the conditions of the vehicles, the road, and the environment in specific 

vicinities, such as weather information and traffic conditions. This enables 
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drivers and traffic authorities to be better informed when the information and 

knowledge gained from sensors are made available to them. In all the currently 

released vehicles, there are up to one hundred sensors on board each car 

[Knoll06] (see Figure 1.1 [Jones02]).  

 

 

Figure 1.1. Sensors that Enhance Car Safety [Jones02] 

 

The first generation collision-avoidance technology is already available in 

modern vehicles in the form of Adaptive Cruise Control (ACC). ACC systems 

are equipped with laser beams or radars to measure the distance of the vehicle 

from the vehicle ahead and compare both vehicles’ relative speeds. ACC 

maintains the car’s speed on a given value and distance between itself and the 

other cars that are ahead. However, ACC is mainly effective for driving on 

highways. Along with ACC technology, there are many sensors that enhance 

vehicular safety [Sharke03], [Strob04], [Jones02]. Sensors can also be used to 

monitor environmental conditions [Jones02], such as detection of wet, frozen, or 

snowy roads. Table 1.1 lists the various sensors that are currently available and 

the usage of each sensor type in this context. 
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Table 1.1. Available Sensors on Vehicles (adapted from [Strob04]) 

Sensor 

Types 

Sensors Usages 

Imaging 
sensors 

camera modules,  3D range 
cameras, infrared sensors,  
driver face and gaze 
trackers, road surface 
condition sensors 

Lane detection, lane deviation, lane 
departures, obstacle detection, 
collision warning, driver vigilance 
monitoring, driver distraction 
monitoring  

Range 
sensors 

radar, laser scanner, 
ultrasonic sensors, 
forward/rear/side collision 
sensors 

Lane deviation, lane departure, blind 
spot warning obstacle detection, 
collision warning, Adaptive Cruise 
Control, intelligent brake control 

Digital 
maps  

Global Positioning System 
(GPS), Geographic 
Information System (GIS) 

Virtual sensors that provide 
information about the topology and 
the geometry of the infrastructure in 
the vehicle’s environment 

Commu-
nication 
devices 

Wireless communication, 
local weather broadcast 

Virtual sensors that detect hazards by 
receiving information or warning from 
external parties 

Proprio-
ceptive 
sensors 

Inertial Navigation System, 
gyrometer, odometer, 
tachometer, speedometer 

Motion detection, navigation aid, 
position tracking, orientation tracking, 
and velocity measurement 

Mechani-
cal sensors 

Engine condition sensors, 
tire pressure sensors 

Vehicle health monitoring 

 

Existing range sensors, such as radar (long range sensor – using radio waves) and 

LIDAR (Light Detection and Ranging – using laser light) have been installed in 

vehicles to detect stationary objects, detect moving objects, measure distance, 

velocity, acceleration, and separation distance between two objects in traffic. The 

ranging and detection performance of radar and LIDAR vary according to 

products and manufacturers. For example, Bosch ‘Long Range RADAR’ sensor 

is able to detect 2 to 120 metres in terms of range with a 5% accuracy (maximum 

accuracy 0.5 metres), distinguish two objects in separation with minimum 

separation distance of 5 metres, measure up to 50 m/s relative speed, view objects 

within ± 8° horizontal angle and ± 1.5° vertical angle, and detect stationary 

objects [Strob04]. On the other hand, Continental Temic’s ‘Adaptive Cruise 

Control RADAR System ARS 300’ is capable of covering a range of 0.25 to 170 

metres with 0.25 metres accuracy, detect separation distance of 2 metres, measure 

-24.7 to 73.6 m/s (-89 to 265 km/h) relative speed, measure -20 to 20 m/s2 

relative acceleration, and can handle stationary objects [Strob04]. More detailed 
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facts on range sensors [Strob04] are displayed in Table 1.2. Many of these range 

sensors are utilised as collision warning sensors in vehicles. 

 

Table 1.2. Various RADAR/LIDAR Features (adapted from [Strob04]) 

Product /  Company Range Separa-

tion 

Range 

Relative 

Speed 

Relative 

Accele-

ration 

Horizontal / 

Vertical 

View Angle 

Bosch Long Range 
RADAR Sensor 

2 to 
120 m 

5 m ± 50 m/s Not 
known 

± 8° / ± 1.5° 

Continental Temic 
‘Adaptive Cruise 
Control RADAR 
System ARS 200’ 

1 to 
150 m 

7.5 m -24.7 to 
73.6 m/s (-
89 to 265 
km / h) 

-20 to 20 
m/s2 

± 5.1° / ± 
1.7° 

Continental Temic 
‘Adaptive Cruise 
Control RADAR 
System ARS 300’ 

0.25 to 
170 m     

2 m -24.7 to 
73.6 m/s (-
89 to 265 
km / h) 

-20 to 20 
m/s2 

± 9° / ± 2.1° 

Continental Temic side 
looking short range 
RADAR ‘SLR 100’ 

0.2 to 
30 m 

0.2 m -35 to 35 m 
/ s (-127 to 
127 km / h) 

None 120° / 15° 

Continental Temic 
cosing velocity 
detecting short range 
LIDAR ‘CID 100’ 

10 m Not 
known 

1 to 56 m / 
s (5 to 200 
km / h) 

Not 
known 

36° / 8° 

Continental Temic 
short range LIDAR 
‘SIS 200’ 

0.5 to 
50 m 

Not 
known 

-60 to 60 m 
/ s 

Not 
known 

± 15° / 3 to 
6.5° 

DENSO ‘LIDAR 
Sensor’ 

0 to 
130 m 

Not 
known 

51 m / s 6.35 m / 
s² 

± 18.0° / 4 ° 

DENSO ‘RADAR 
Sensor’ 

5 to 
180 m 

Not 
known 

-55.5 +27.8 
m / s 

6.35 m / 
s² 

±10° / 4° 

DELPHI ‘Long Range 
RADAR Sensor’ 

1 to 
150 m 

Not 
known 

-63.9 to 
31.9 m/s 

Not 
known 

Not known 

DELPHI ‘Short Range 
RADAR Sensor’ 

0 to 6 
m 

Not 
known 

± 8.8 m / s Not 
known 

Not known 

Hella ‘Adaptive Cruise 
Control (ACC) B’ 
(LIDAR sensor) 

200 m Not 
known 

± 50 m / s Not 
known 

16° / 3° 

Hella ‘24 GHz Short 
Range RADAR’ 

0.75 to 
50 m 

1.80 m 0 to 70 m / 
s 

Not 
known 

± 50 to ± 70° 
/ 13 ° 

IBEO ‘ALASCA’ 0.3 to 
80 m 

0.5 to 1 
m 

Not 
available 

Not 
available 

240° / 3.2° 

RoadEye ‘Forward 
looking RADAR 
(FLR) sensor’ 

2 to 
150 m 

1.5 to 9 
m 

± 50 m/s Not 
available 

± 18° / 4 ° 

TRW Automotive long 
range RADAR sensor 
‘AC 10’ 

200 m 0 m ± 50 m/s Not 
known 

± 6° / ± 2.5° 

Valeo ‘Multiple Beam 
RADAR’ 

0.5 to 
60 m 

Not 
known 

0 to 69.4 m 
/ s 

Not 
available 

150° / Not 
known 
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Sensor systems that perceive where the driver is looking are also being developed 

[Fletch03], [Jones02], [Sara04], and [Seeing05]. This advancement is leading to 

enhance other research such as driver fatigue or inattention detection, driver 

distraction monitoring, pedestrian spotting, blind-spot checking, merging 

assistance to confirm whether adequate clearance exists between cars, driver 

warning for lane keeping, computer-augmented vision (that is, lane boundary or 

vehicle highlighting on a head-up display, traffic sign detection and recognition), 

and human factors research aids [Fletch03], [Seeing05]. An example of a facial 

imaging sensor system is FaceLAB, which is a head, face, eye, eyelid and gaze 

tracking system for human subjects and operates in a 3-dimensional volume using 

an entirely non-contact, video-based sensor that captures and processes facial 

images using a monochrome stereo camera hardwired to a workstation 

[Seeing05]. Proprietary algorithms use the image sequences to focus on facial 

landmarks such as the lips, nose, and eyes. This filtering generates head position 

and orientation measurements precise to within 1 mm and 2 degrees [Seeing05].  

Such a facial imaging sensor system is a component that is generally included in 

Advanced Driving Assistance Systems (ADAS) [Gruyer05]. 

 

ADAS have been built to help drivers to manage driving tasks. An example of 

ADAS is AIDE (Adaptive Integrated Driver-vehicle Interface) [AIDE04]. Such 

driving assistance systems are developed to monitor the driver’s condition by 

observing the face and gaze of the driver to detect drowsiness (left picture in 

Figure 1.2) and to provide information about road, vehicle, and other drivers and 

also to issue warnings when threats are present (right picture in Figure 1.2).  

Although ADAS have been developed in recent years, with features such as lane 

deviation detection, speed limit control, and face and gaze tracking to enhance 

drivers’ vigilance, existing ADAS can only provide dedicated functions and 

display a partial view of driver behaviours [Gruyer05]. It is necessary for ADAS 
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to communicate with other vehicles and also sensors on the road for a holistic 

view of the driver, vehicle, and environment. 

 

 

Figure 1.2. AIDE Project [AIDE04] 

 

Long before in-vehicle sensors existed, many roadside sensors have been 

implemented and used for traffic monitoring. For example, to sense a vehicle’s 

speed at a point, conventional inductive loop detectors, self-powered vehicle 

detectors, optical sensors, or radar sensors have been employed [Ferlis01]. 

Inductive loop detectors are used to detect the presence of vehicles in certain road 

segments. They are also used to measure traffic flow and estimate vehicle speed. 

In the past few years, inductive loop detectors have proven effective for detecting 

incidents, such as road blockage or traffic jam. A sensor named Traffic-Dot 

[Coleri05] is able to detect the presence, speed, length and size of vehicles with 

up to 97% accuracy, which is better than inductive loop detectors. Imaging 

sensors have also been recently installed to monitor traffic patterns and passing 

vehicle trajectories. Imaging sensors such as video cameras are used to monitor 

certain traffic violations, e.g., red light cameras for red light running detection 

and speed cameras for detecting speed limit violations.   

 

However, despite the presence of range sensors, such as forward, rear, and side 

collision sensors in current vehicles and traffic monitoring sensors on the 

roadside, road collisions still occur. This is not merely because only few vehicles 

are currently equipped with those sensors and there are still limitations with 

sensor technologies (reliability and error rate of sensors), but also because in-
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vehicle collision sensors alone cannot guarantee that a vehicle is free from 

impending collisions since collisions most likely involve more than one vehicle. 

Existing ITS devices such as obstacle detection or vehicle detection (radar or 

vision based) are not enough for intersections, since such sensors have limited 

visibility and detection. When a number of vehicles that are due to collide are 

approaching with a very high speed or from different intersection legs, it is 

possible that radar or vision based sensors are not able to detect the approaching 

vehicles until the collision becomes imminent. Since not all vehicles are equipped 

with such obstacle detection sensors, there is a need to communicate such 

information about incoming collision threats to other possible affected vehicles.  

 

Similarly, traffic performance has not been greatly improved with the presence of 

digital maps and communication devices. With the increase in number of vehicles 

on roads, there is greater need to optimize the traffic network. Traffic information 

should be analysed and learnt so that road users can be better informed about 

public transport, parking, traffic conditions, best travel routes, and much more. 

Therefore, there is a clear need to leverage sensory information for more 

intelligent decision making in ITS.  

 

Apart from the advances in sensor technology, the wireless technology has also 

been advancing (see Table 1.3). Along with the advances of wireless 

communication technology, short and long range communication technology 

between vehicle and infrastructure and between vehicles is being developed. The 

standard of IEEE 802.11p (Wireless Access for the Vehicular Environment, 

WAVE) is currently being formulated [Kerry08]. It is an extension of the 802.11 

wireless network standards to support ITS applications. It enables high speed data 

exchange between vehicles and between vehicles and road infrastructures. 
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Table 1.3. Advances of Wireless Communication Technology 

Time Event 

1896 Guglielmo Marconi invented wireless telegraph devices [Duben03] 

1897 The birth of radio – Marconi’s invention of wireless telegraph was patented 
[Shea00] 

1901 – 
1902 

Marconi’s telegraph device is able to send and receive a telegraph across the 
Atlantic Ocean[Jensen94], [Shea00] 

1914 First voice over radio transmission [Shea00] 

1927 First commercial radiotelephone service between UK and US [Duben03] 

1946 First interconnection of mobile users to public switched telephone  
network (PSTN) [Shea00].  

1946 First car-based mobile telephone set up using ‘push-to-talk’ technology 
[Duben03] 

1950s A number of ‘push-to-talk’ mobile services established in major cities. The first 
paging access control equipment (PACE) paging systems launched. [Duben03] 

1960s Improved Mobile Telephone Service (IMTS) launched; supports full-duplex, 
with more channels and more power [Shea00], [Duben03] 

1962 The first communication satellite, Telstar, launched into orbit [Duben03] 

1968 Defense Advanced Research Projects Agency (DARPA) in US developed the 
Advanced Research Projects Agency Network (ARPANET), the father of the 
modern Internet [Duben03] 

1976 Bell Mobile Phone has 543 pay customers utilising 12 channels in the New York 
City region [Shea00] 

1977 The Advanced Mobile Phone System (AMPS), invented by Bell Labs, installed 
in the US with geographic regions partitioned into ‘cells’ [Duben03] 

1980s The era of analogue signals (1G) [Light02] 

1983 January 1, TCP/IP selected as the official protocol for the ARPANET, causing 
rapid growth in Internet technology [Duben03] 

1989 The European digital cellular standard, GSM, was defined by Groupe Spècial 
Mobile [Shea00] 

1990s The era of digital signals (2G) [Light02] 

1992 There were 1 million users of Internet [Duben03] 

1994 Ericsson telecommunications company began to develop a technology to connect 
portable devices without cables, it was later named Bluetooth [Morr02] 

2000 802.11(b) wireless based networks are in high demand [Duban03]. 802.11 
wireless local area network (WLAN) standards are utilised to build Wi-Fi Hot-
Spot networks and metropolitan area network (MAN) [Jha04]. 

2000 The era of third generation cellular system (3G) [Shea00].  
Bluetooth standards launched [Shea00]. 

2001 WiMAX, the Worldwide Interoperability for Microwave Access, introduced by 
Wimax Forum [Wimax07], to support delivery of wireless broadband access 
over long distances as an alternative to wired broadband like cable and DSL, 
from point-to-point links to full mobile cellular type access, with expected 
capacity up to 40 Mbps per channel. WiMAX is also used to connect Wi-Fi 
hotspots. 

Now Development of the next generation wireless communication systems (the fourth 
generation (4G) or beyond 3G (B3G) systems) to support up to 100 Mbps in 
outdoor environments and up to 1 Gbps in indoor environments [Bharga06], an 
all-IP end-to-end solution and will combine mobility with multimedia-rich 
content, high bit rate, and IP transport  [Jha04]. Development of IEEE 802.11p 
(Wireless Access for the Vehicular Environment, WAVE) [Kerry08]. 
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Communications devices can be used to capture local weather broadcasts and 

forewarn the driver about upcoming dangers, such as an oil spill or a major 

accident, transmitted from the road infrastructure by digital short-range 

communications. Such special purpose devices are being developed to facilitate 

vehicle-to-vehicle communication. However, existing small and mobile devices 

such as mobile phones or PDA that have wireless or Bluetooth technology can 

also be used for vehicle-to-vehicle and vehicle-to-infrastructure communication. 

Therefore, sensor data can be transmitted easily from one point to another for 

further analysis and processing. 

 

Additionally, it is also necessary to increase safety in road transportation systems 

and traffic networks by automation. Autonomy is a desired attribute for 

transportation coordination. Many human operated machines in transportation 

systems, including vehicles and rule based traffic controls, are now being 

developed into semi-autonomous machines (where human intervention is still 

required) and fully autonomous machines (which are able to be independent 

without the need for human intervention). In order to integrate automation into 

roads and traffic networks for, multi-disciplinary approaches should be taken into 

account. One approach that can be applied into ITS is to integrate intelligent 

pervasive computing techniques for road safety advancement. This is supported 

by the fact that computing and sensory devices are becoming more ubiquitous in 

the road environment. 

 

As stated by the U.S. Department of Transportation, there are eight areas where 

ITS can advance safety [Sharke03]. Those major areas are categorised into four 

types of collision avoidances (rear-end, lane change and merge, road departure, 

and intersection), two types of enhancements (vision and vehicle stability), and 

two types of monitoring (driver condition and driver distraction). One of the main 

focuses of ITS is to improve intersection safety, which is a complex issue that 
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requires support from all areas of ITS [IVI02]. Therefore, the following section 

discusses specifically the issues and challenges in intersection safety. 

1.2. Intersection Safety 

The need for enhancing intersection safety is supported by the fact that the figure 

of the annual toll of human loss caused by intersection crashes has not 

significantly changed, regardless of improved intersection design and more 

sophisticated ITS technology over the years [USDOT04]. The following facts and 

figures explain the necessity of an effective and efficient intersection collision 

warning and avoidance systems on the road. 

• Intersections are among the most dangerous locations on U.S. roads [Frye01]. 

The figure of fatal motor vehicle crashes at traffic signals is increasing more 

rapidly than any other type of fatal crash in USA. 9,612 fatalities (22 percent 

of total fatalities), and roughly 1.5 million injuries and 3 million crashes took 

place at or within an intersection [USDOT04]. 

• Yearly, 27 percent of the crashes in the United States occur at intersections 

[Frye01]. However, in 2002, in the USA, approximately 3.2 million 

intersection-related crashes occurred, corresponding to 50 percent of all 

reported crashes [USDOT04]. 

• Financially, intersection crashes cost $96 billion annually in the USA 

[USDOT04]. 

• In Japan, intersection collision figures are even more devastating, with more 

than 58 percent of all traffic crashes occurring at intersections. Intersection-

related fatalities in Japan are approximately 30 percent of all Japanese traffic 

accidents, and those fatal crashes mainly happen at intersections without 

traffic signals [Frye01]. 

• In Western Australia, almost half (49%) of all crashes that occurred in the 

years 1990 to 1999 took place at intersections [Hents00]. 
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• In Queensland, there were 40863 collisions that occurred at intersections in 

the years 2002 to 2005. This figure constitutes 45 percent of all collisions 

during that period [Queens07]. During the same period, 0.61% of all 

intersection crashes were fatal and 19.28% of all intersection crashes caused 

serious injury [Queens07]. 

 

Intersection collisions are multifaceted problems. It affects all types of vehicle 

platforms, i.e. light vehicles, commercial vehicles, transit vehicles, and specialty 

vehicles [IVI02].  The complexity of intersections is mainly due to the varied 

characteristics of intersections [Stubbs03], such as:  

• Different intersection geometry: shapes, number of legs, median width, 

number of lanes. The number and frequency of accidents in any particular 

intersection is affected by the geometry of the intersection. Each intersection 

normally has a different treatment for its safety based on its geometry; 

• Different intersection characteristics: signalised/unsignalised, rural/urban 

setting; 

• Different usage of intersections: traffic volume, types of vehicles, various 

average traffic speed, and road turn types;  

• Different users of intersections should also be considered when dealing with 

intersection safety issues: pedestrians of all ages including those with 

cognitive and physical abilities/disabilities, cyclists, older drivers, younger 

drivers, transit/light rail/trolley vehicles, trucks including loading/unloading 

manoeuvres, emergency vehicles, adjacent driveways serving commercial 

properties, and commuters [USDOT04]. 

 

Negotiating intersections is one of the most difficult tasks a driver needs to cope 

with [USDOT04]. To successfully perform a vehicle manoeuvre through an 

intersection, the driver must integrate diverse types and amounts of information, 
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make a decision and perform the desired action. One shortcoming is that the 

human brain resembles serial processors and the load of the cognitive task at 

intersections can be quite onerous. There are a number of matters a driver must 

consider when nearing an intersection, such as observing and regulating speed, 

maintaining lane position, watching for other vehicles, observing traffic signals 

or signs, watching for pedestrians, bicyclists, people in wheelchairs and blind or 

visually-impaired people, decelerating for a stop, searching for path guidance, 

and selecting the proper lane [USDOT04]. 

 

Research suggests that driver error may account for roughly 90 percent of all 

crashes in the U.S. [Funder04, Sara04, Sharke03, USDOT04], whereas in 

Australia, road crashes that are ascribed to driver error is at the rate of 95 percent 

[Krish05]. Although technologies in automotive safety and highway design are 

advancing, the one factor that has not changed is the driver. Therefore, the key 

factor to prevent collisions in intersections is to understand collisions in each 

intersection and to help drivers in being aware of the potential threats they face. 

 

From the above characteristics that pertain to intersection collisions, a driving 

assistance or collision warning system for intersections is both highly desirable 

and necessary. Such a system must in particular be able to detect potential 

collisions and warn drivers of those threats. There have been a number of 

initiatives in developing intersection collision warning and avoidance systems. 

As far as the current state of the art is concerned, no existing intersection 

collision warning and avoidance system can tackle intersection collision 

problems entirely. This is mainly because many of these systems cannot 

guarantee an effective and efficient real-time collision warning delivery, since: 

• The data source only comes from either roadside infrastructure or vehicle and 

is therefore not comprehensive; 
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• Available resources and communication means for cooperative methods have 

not been considered; 

• Most methods of the warning delivery only rely on roadside infrastructure 

(e.g. through LED displays);  

• These systems have been designed just for specific intersections and thus 

create the difficulty of transferring the technology and systems to different 

intersection types. 

 

Therefore, an intersection collision warning and avoidance system should be 

developed to meet the above issues by incorporating: 

• the ability to detect and warn of collisions in real time so that impending 

collisions can be avoided by potentially affected drivers; 

• the adaptability of the system to various kinds of intersections. 

 

Research in intersection safety should investigate and propose novel methods for 

detecting and issuing about warning intersection collisions in real time that can 

be used in any intersection type. Research in this thesis is motivated by these two 

important issues in intersection safety. 

 

1.3. Motivations of the Thesis 

An intersection collision warning and/or avoidance systems should achieve the 

goal of real-time collision detection in order to avoid imminent crashes. A fast 

and accurate detection would allow time for the system to warn about a potential 

collision, for drivers to respond to warnings, and for avoidance systems or drivers 

to steer clear from the potential collision. Therefore, a collision avoidance system 

should consider different components that make up the available time to avoid 

the collision: detection time, communication time, time taken by vehicles or 
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infrastructures to issue warnings, and driver’s response time including time to 

brake or change manoeuvre. Given that time to avoid a collision is typically in 

the order of seconds, various methods or techniques that can reduce 

computational time and warning time are of paramount significance.  

 

Existing intersection collision warning and avoidance systems [USDOT99], 

[Ferlis01], [Funder04], [Stubbs03], [Veera02], [Verid00] mainly consist of two 

components: detection and warning. None of these systems have considered the 

enormous value of learning from sensor data. The advances in computational data 

analysis techniques provide valuable research that can leverage the vast amount 

of sensor data available in vehicles and on the road. The information and 

knowledge learnt from this sensor data can be useful for both the adaptability of 

the system for various intersections and also improve the efficiency and 

effectiveness of the system to detect threats, issue warnings, and avoid collisions 

in real time. As stated in the previous section, these features are greatly desired in 

an intersection collision warning and avoidance system. 

 

Since the development and installation of sensors in vehicles and on the road, 

there is a need to understand sensor data for better situation recognition at an 

intersection. In order to comprehend driver behaviours and traffic conditions for 

uses in safety applications, simply relying on raw conventional sensor data, such 

as from ground loop sensors installed on the road, is insufficient [Chan04]. 

Information that significantly enhances understanding and knowledge about the 

intersection can be gained from analysing sensor data. This very important 

dimension has largely been unaddressed in the current systems and in the 

literature. An intersection collision warning and avoidance system should take 

into account the availability of sensor data and incorporate techniques to analyse 

this data for better understanding of the intersection. As data becomes easily 

available and accessible, new knowledge and interesting patterns can be learnt 
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and extracted, such as collision patterns, driver behaviours, vehicle conditions, 

best travel routes, traffic trends, and so on. 

 

The key patterns that vary across intersections and are useful for determining the 

causes of collisions in an intersection are collision patterns. In order to improve 

the safety and design of an intersection, one of the first procedures is to execute a 

field observation and statistical analysis of collision patterns, since understanding 

patterns of collisions in an intersection can assist in planning for 

countermeasures. However, manual observation and manual analysis of collision 

patterns are expensive. Besides, given the vast volume of observed data, a manual 

approach is potentially infeasible. For example, as analysed by Veridian 

Engineering [Verid00], the collision patterns that occur in cross intersections are 

across path turn, perpendicular paths without violation of the traffic control, 

perpendicular paths with violation of traffic control, and premature intersection 

entry. Those collision patterns have not included other common collision 

patterns, such as rear-end collisions. It is necessary to have a comprehensive set 

of collision patterns, because in the future, impending collisions that match the 

collision patterns can then be detected. Such knowledge can also be utilised to 

improve the intersection design or safety measurements. Since it is necessary to 

have a comprehensive collection of collision patterns in an intersection safety 

system, human manual observation (without the help of the state-of-the-art 

computing technology) alone is not ideal due to the higher cost as well as the 

potential for error. Therefore, there is a need to investigate the application of 

machine learning or data mining techniques to extract collision patterns in an 

intersection. Collision patterns can be learnt from traffic data accumulated by 

sensors and historical collision data. 

 

Furthermore, results of those studies [Verid00] cannot be applied for all types of 

intersections due to the uniqueness of each intersection. Due to the fact that each 
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intersection has a different set of collision patterns from another (i.e. a set of 

collision patterns is only applicable to a particular type of intersection), existing 

intersection collision detection and warning systems are built only to suit a 

particular intersection or a certain intersection type, such as the IDS (Intersection 

Decision Support) installed in an intersection in California [Funder04]. These 

systems cannot deal with emergent and changing patterns in the intersection. 

 

Given the uniqueness of each intersection, rather than manually fine-tuning a 

system for each intersection, ideally, an intelligent system for intersection safety 

should be able to adapt to different types of intersections automatically 

[Salim05]. Changes and emergent trends are important characteristics of 

intersections particularly since variability is very high. Situations in road 

intersections, such as traffic trends, weather changes, and collision patterns, are 

very dynamic and vary from one intersection to another and can vary even within 

an intersection as conditions change. The ability to cope with subtle incremental 

changes in patterns has not been considered in the current intersection collision 

warning and avoidance systems. As a result, these systems have applied a fixed 

or static knowledge base rather than a dynamic knowledge base that is able to 

evolve in the presence of changes and emergent trends by incrementally adding 

new and relevant patterns and rules learnt from analysis of sensor data. 

 

When the data from sensors on the road and in the vehicle are learnt and the 

results of such learning are added into the knowledge base, the intersection 

collision warning and avoidance system is made aware of possible collision 

patterns and able to detect future collisions based on relevant patterns. The 

knowledge base that contains relevant collision patterns learnt at the intersection 

can be used as the basis for the detection component in an intersection collision 

warning and avoidance system. In existing systems, all vehicles and users at the 

intersection are considered in the collision detection calculation. If the number of 



 
 
 

 18  
 
 

vehicles and road users increases, the time required for collision detection 

calculation also increases exponentially. If a knowledge base was used as the 

basis for collision detection calculation, the vehicles and road users that do not 

match the collision patterns in the knowledge base can be ruled out for 

performing calculations. This in turn can significantly improve the efficiency and 

effectiveness of an intersection safety system.  

 

Lastly, in order to have a real-time intersection collision warning, a real-time 

messaging protocol that enables communication between vehicles and road 

infrastructure should be established as the telecommunication infrastructure, such 

as the wireless broadband and mobile phone networks, are already available.  

This allows exchange of useful information needed for collision detection and 

warning messages required for collision avoidance. Due to the limitation in 

warning time available, the cost involved in issuing a warning message should be 

calculated in order to ensure that the warning message is received in time by the 

intended recipient. The messaging protocol designed in such a system should be 

simple and asynchronous, as we need to avoid unnecessary delay in transmitting 

warning messages. 

 

In a nutshell, an intersection safety framework that is able to cope with the issues 

of learning collision patterns and issuing timely warning through early detection 

of potential collisions is required. It should monitor continuously and learn the 

occurrences of collision patterns that are not learnt merely through manual field 

observation conducted from time to time. The need to know collision patterns 

comprehensively is not only for the purpose of having an intersection safety 

framework that is able to adapt to various intersections (i.e. a generic intersection 

collision warning and avoidance system with incremental learning at local 

vicinities), but also for the effectiveness and efficiency of the system in detecting 

collisions and issuing warnings to potentially affected drivers in real-time. A 
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communication model and protocol that are designed specifically with 

intersection safety in mind are required. Therefore, in this thesis we propose and 

develop a real-time and generic context-aware framework for collision detection 

and warning in road intersections, which is elaborated further in the next 

subsection. 

 

1.4. Objectives of the Thesis 

We aim to develop a collision avoidance framework, which has the ability to deal 

with the following three main research questions [Salim08b]:  

• How to develop an intersection safety system that can adapt to all kinds of 

intersections? 

• How to detect collisions at road intersections in real time? 

• How to warn drivers of potential collisions or hazards in real time?  

 

Therefore, this research aims to develop a framework that is capable of real-time 

collision detection and warning to avoid impending threats. Further, it must be 

adaptive to different intersection types through the knowledge acquisition of 

intersection accidents. As such, the main objective of this thesis is to propose a 

real-time and generic context-aware framework for collision avoidance in road 

intersections.  

 

The notion of context-awareness implies the framework could understand the 

situation of its surroundings and change its behaviour accordingly [Dey99]. We 

need to design a framework that takes into account all possible data sources in 

order to comprehend the situations in an intersection so that the framework can 

assist road users to be aware of the threats at the intersection surroundings. This 

can be facilitated by having a framework that is able to learn characteristics of 
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collisions, detect potential collisions, and warn accordingly. Thus, the framework 

must possess learning, detection, and warning components. The approach and 

contribution of this research are discussed in the following subsections. 

1.4.1 Approach 

This thesis approaches the need for a collision avoidance framework from the 

pervasive computing perspective. Due to the rapid development of sensors, 

ubiquitous and mobile devices, and wireless networking, we envision a road 

traffic network and vehicles equipped with devices that are interconnected with 

each other and sharing real-time messages. With this provision in mind, it is 

necessary to view the intersection safety problems from a pervasive computing 

perspective. The following discussion presents a number of pervasive computing 

techniques that can be utilised for advancement of intersection safety. There are 

still many other techniques that are not mentioned in this thesis but yet can be 

found useful in improving road safety or ITS in general. 

 

Learning of collision patterns is performed using data mining techniques. As 

these patterns are extracted from historical collision and near-collision events in 

an intersection, the collision patterns are comprehensive up to the time of 

learning. Therefore, this approach helps to deal with the possibility of 

incompleteness of collision patterns and human error in manual field observation. 

The set of collision patterns that are localised to each intersection can be stored in 

the knowledge base of the intersection safety system as the basis of threat 

detection. A dynamic knowledge base technique for robotic collision avoidance 

[Mani93] can be adapted to road collision avoidance, instead of a static 

knowledge base. A dynamic knowledge base is extensible and adaptable. It 

involves learning to accumulate and refine rules to adapt to situational changes. 

Conversely, no new rules are added to a static knowledge base. Since an 
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intersection safety system should also have the ability to adjust and adapt to any 

intersection’s vicinity, a dynamic knowledge base that keeps all the collision 

patterns that are only relevant to a particular intersection is needed. All possible 

collision patterns in the particular intersection where the system is installed needs 

to be learnt and stored in the dynamic knowledge base. 

 

As collision detection must take place in real time, the methodology for collision 

detection should be simple and optimized. However, a simple collision detection 

algorithm involves kinematics equations to calculate point of collision and time 

to collision between two vehicles [Miller02]. Therefore, in order to optimize 

collision detection, the number of vehicle pairs to be calculated in real time needs 

to be minimised to reduce the computational time. This is because calculating 

each possible pair of vehicles located at an intersection for a potential collision is 

not prudent due to real time considerations. If we need to take into account all 

possible vehicle pairs in an intersection to be calculated for collision detection, 

detection time will take longer than it should. In fact, not all possible vehicle 

pairs will lead to collisions. The number of possible pairs of vehicles that need to 

be calculated for potential collisions should be reduced. A means of filtering the 

vehicle pairs that have the potential of colliding with each other through the 

patterns in the knowledge base needs to be proposed and developed in order to 

reduce the number of collision detection computations. We propose that patterns 

can be used as preselection criteria for finding and matching a pair of vehicles. In 

our framework, only vehicle pairs that match particular collision patterns will be 

calculated for collision detection. We evaluate the performance of the collision 

detection by measuring the speed and accuracy of the detection. As the accuracy 

of collision detection algorithms must be reliable, we propose a method adapted 

from information retrieval techniques to evaluate performance, which are 

precision and recall [Singhal01]. In this thesis, we term recall as coverage as we 

do not actually recall an existing collision, but use it to predict a future collision.  
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The formula to measure the precision and coverage of collision detection are 

proposed in this thesis and used to evaluate the performance of the system. 

 

In order to avoid an imminent collision, the message structure and protocol, and 

avoidance mechanisms should be effective and efficient. The time available 

before a future collision occurs must be known and compared against the time 

available for avoiding the collision. In order to avoid a collision, the time to warn 

drivers of an impending collision must be lesser than the predicted time of 

collision. If there is not enough time to warn the drivers involved, the warning 

message should not be sent to the driver, instead, a direct command message 

needs to be sent to the vehicle system. Depending on the time available to avoid a 

collision, different schemes of warning messages in order to deal with different 

situations are required. A model that describes and calculates the required cost to 

issue a warning must be established, so that we can calculate the feasibility of a 

warning message to reach the intended recipient. As there can be different types 

of warning messages, the cost model should also consider calculation for 

different components involved in each warning type. We also need to have a 

short, straightforward, and simple message structure and protocol in order to 

lessen the message transmission time. 

 

The aim of this research is to facilitate early warnings so that collisions can be 

avoided. Therefore, we actually focus on the early stage of pre-impact. Post-

impact behaviours, actions, or methods that are necessary to alleviate the burden 

of the impact are not the scope of this research. In this research, it is assumed that 

the required sensing technologies and wireless communication are readily 

available on road and in vehicles. We, in this study, assume that the sensor data is 

accurate. This work assumes that the data used in the framework have been 

filtered by other mechanisms proposed in other research or studies. The 

particulars of the sensors assumed in the system are discussed in detail in Chapter 
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3. Network issues such as bandwidth, latency, etc. are not in the scope of this 

research. Also, human factor issues such as driver’s distraction by warnings, user 

acceptance of the technology, and privacy issues are not part of this thesis.  

 

This research is implemented and evaluated on a computer based simulation 

where the road and vehicle sensors used in the implementation are simulated, 

because the resources and licenses to do such extensive experimentation in the 

real world are not feasible without sufficient evidence in a simulated environment 

[Sicking00]. In order to simulate the collision and traffic data, we use computer 

based simulation to generate vehicles and traffic movements that eventually lead 

to collisions. This collision data and also traffic data generated from the 

simulation (representing data that can possibly be captured in the real-world by 

ITS sensors) are recorded into log files for further analysis. Although this 

research uses the notion of pervasive computing, which implies that computing 

resources are everywhere, the cost/benefit analysis to investigate the feasibility of 

real-world deployment of such pervasive framework is not considered in this 

thesis. There are also no empirical data in a small scale that would allow us to 

assess and extrapolate at larger scale on the cost/benefit of such a deployment. 

This thesis focuses solely on the safety aspects. 

 

In particular, this research aspires to investigate an integration of knowledge 

based systems, data mining, and kinematics for a novel context-aware framework 

that is able to: 

• monitor an intersection to learn for patterns of collisions and factors leading 

to a collision using data mining; 

• detect potential hazards in intersections in an efficient manner from 

information communicated by road infrastructures, approaching and passing 

vehicles, and external entities; 

• warn particular threatened vehicles that are at the intersection. 
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1.4.2 Contributions 

The contributions of the thesis are: 

• a generic intersection safety framework that is adaptive to different 

intersection types as the knowledge base is initialised with collision patterns 

learnt from traffic and accident data from that particular intersection; 

• real-time collision detection through reduction of the number of vehicle pairs 

to be calculated; 

• real-time communication protocol for intersection collision avoidance, 

including the communication cost model; 

• performance evaluation methods to calculate the precision and coverage of 

the collision detection. 

 

The central focus of this thesis is the real-time collision detection and warning, 

which are supported by sub-components: design and development of a computer-

based intersection traffic simulation, learning of traffic sensor data, development 

of a knowledge base of collision patterns, development of a pre-selection 

algorithm for efficient collision detection, and design of collision warning 

message structures and protocols. The organisation of the thesis is presented in 

the next section. 

1.5. Thesis Organization 

This thesis is organized into six chapters. Chapter 2 reviews the related work of 

this research in the following areas: existing intersection collision warning 

systems, knowledge based systems in road and transportation, and data mining 

research in Intelligent Transportation Systems.  
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Chapter 3 describes our proposed U&I Aware (Ubiquitous Intersection 

Awareness) Framework to achieve the objectives of this research. The U&I 

Aware Framework consists of three components, which are collision learning, 

collision detection, and collision warning. The collision avoidance process 

through these components is elaborated on further in this chapter. 

 

Subsequently, Chapter 4 discusses knowledge acquisition of intersection data 

using data mining techniques. For the purpose of data generation, the 

implementation of the test bed of the framework, which is a computer based 

simulation of intersections and sensors, is discussed here. The parameters of the 

simulation and the data generated from the simulation are explained. In this 

chapter, we demonstrate the process of pattern acquisition using data mining 

techniques on the data generated from the simulation. Data mining in this 

research is used to acquire collision patterns and traffic patterns.  

 

Chapter 5 presents the existing collision detection algorithms that are currently 

available along with our proposed method to improve the speed of those collision 

detection algorithms. We present the pair wise route contention algorithm. We 

discuss the proposed preselection method that used the knowledge base. 

Preselection is applied to identify potentially colliding vehicles based on the rules 

in the knowledge base. We also discuss how this approach can help reduce 

computation time of collision detection. Finally, we present the evaluation 

methods and results in terms of speed and accuracy of the collision detection 

process. 

 

To conclude, Chapter 6 summarizes the thesis and the future directions of this 

research.  
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CHAPTER 2  

 

Pervasive Computing 

for Intersection Safety 

“The most profound technologies are those that disappear. They 

weave themselves into the fabric of everyday life until they are 

indistinguishable from it.”
2
 

 

Pervasive (or ubiquitous) computing suggests that computing devices and 

applications are seamlessly connected “anytime, anywhere” [Weiser91]. This has 

become a reality since computing devices can now be found everywhere, in 

mobile phones, Personal Digital Assistants (PDA), and everyday appliances 

embedded with tiny chips and sensors. Pervasive computing research, which has 

been developing rapidly in recent years, has introduced the notion of bringing 

computation out to the physical world where activities happen, yielding sub-areas 

such as context-awareness and the use of artificial intelligence techniques 

(including multiagent technology). Branches of artificial intelligence such as 

intelligent agents, machine learning, and data mining have been found useful in 

ITS, because they can take into account the social aspect of computer systems, 

including human-computer interaction, distributed problem solving, and 

                                                 
 
 
2 Weiser, M., “The Computer for the 21st Century,” Scientific American, Sept., 1991, pp. 94-104; 
reprinted in IEEE Pervasive Computing, Jan.-Mar. 2002, pp. 19-25. 
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simulation of social systems [Schlei02]. This has motivated the application of 

such intelligent systems to emerge in transportation systems. This progression has 

been enabled through the development of state-of-the-art on-the-road and in-

vehicle sensors, wireless networking, and power efficient computing.  

 

In the light of the advances in pervasive computing techniques, this chapter 

discusses how these techniques can potentially address the intersection safety 

issues. This chapter is organised as follows. Firstly, we review the conventional 

methods of analysing intersection collisions and set the background for the 

subsequent sections by presenting the three stages of road safety examination in 

Section 2.1. Section 2.2 discusses the pre-analysis stage of road safety 

examination by presenting various ways of how data are collected to be further 

processed. Section 2.3 discusses the analysis stage and pervasive computing 

techniques that can be used to analyse the collected data. Section 2.4 reviews 

existing intersection collision warning and avoidance systems that are designed, 

developed, and implemented after analysis is done (post-analysis stage). Section 

2.5 presents the desirable properties of an intersection collision warning and 

avoidance systems. Section 2.6 concludes the chapter. 

 

2.1. Intersection Collision Analysis 

The complexity of intersection safety issues, as previously stated, is mainly 

contributed by the variety and variability of intersection characteristics. 

Therefore, each intersection requires a different safety treatment from another. 

Road characteristics and safety analyses are performed at each site to find the 

factors contributing to collisions and solutions to reduce or eliminate them. In this 

section, we focus on discussing the outcomes of research and field study that 

have investigated the cause of intersection collision and the collision patterns 



 
 
 

 28  
 
 

found in those intersections. Research groups and road safety stakeholders 

worldwide have made attempts to analyse collision patterns in intersections in 

order to find the root of collisions and prevent them. However, each group has a 

different set of findings of intersection collision patterns, simply because they 

work on different intersections (or types of intersections). The following 

discussions review their findings with regards to the cause of collisions in 

intersections. 

 

The U.S. Department of Transportation performed an exhaustive analysis of the 

intersection crash problem [Mitre99], [Verid00], [USDOT00]. Four different 

crash scenarios are classified in a four-legged cross intersection type: left turn 

across path, perpendicular path entry with inadequate gap, perpendicular path 

with violation of traffic control, and premature intersection entry with violation 

of traffic control signal [Mitre99]. These crash scenarios are only applicable to 

crash patterns within the specific geometric alignment of a four-legged cross 

intersection. Left turn across path in the U.S. is similar or equivalent to right turn 

across path in Australia. In case of a four-legs cross intersection, an example of 

right turn across path is a turn from lower/south leg of the intersection to the 

right/east leg of intersection across the incoming traffic from the upper/north leg 

of the intersection. Collision can possibly happen between the vehicle from the 

lower/south leg and a vehicle from the upper/north leg when making such a turn. 

Perpendicular path collision involves vehicles that travel from two perpendicular 

legs. For example, a vehicle that travels from the left/west leg of a four-legs cross 

intersection collides with a vehicle that travels from the lower/south leg (see 

Figure 2.1). 

 

The distribution of the crash scenario based on the 1994 U.S. intersection crash 

database are as follows: 23.8 percent occurred when executing left turn across 

path, 30.2 percent happened during perpendicular path entry with inadequate gap, 
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43.9 percent occurred when taking perpendicular path with violation of traffic 

control, and 2.1 percent happened when there was premature intersection entry 

with violation of traffic control signal [Mitre99]. For each of the scenarios, 

particular attributes associated with the traffic control device, driver response, 

intended manoeuvre, and underlying factors were recognised. There are a number 

of factors contributing to a collision: driver did not see obstacles or incoming 

cars, driver attempted to beat incoming vehicles, driver’s vision obstructed or 

impaired, driver inattention, deliberate violation of stop sign, and deliberate 

violation of traffic signal [Mitre99]. The collision scenario that has the highest 

percentage, perpendicular path with violation of traffic control, can be caused by 

either driver inattention or deliberate violation of stop sign/traffic signal. 

 

 

Figure 2.1. Perpendicular Path Collision [Verid00] 

 

The fatal intersection crashes in U.S.A, during 2002, are analysed in two 

categories. If it is categorised by traffic control devices, 37 percent occurs at 

intersections with a stop sign, 32 percent at intersections with traffic signals, 28 

percent at intersections without traffic signals, and 3 percent at intersections with 

other traffic control devices [USDOT04]. If it is categorised by manner of 

collision, the same data is classified into 62 percent side impact collision, 28 

percent single vehicle collision (without another vehicle in motion), 5 percent 

head on collision, and 5 percent rear-end collision [USDOT04]. In this study, 
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issues that are found to be associated with intersection collisions are: traffic 

control misuse (for example: STOP sign that cannot be seen or misinterpreted), 

red light running, pedestrian safety, mature age drivers, accessibility for disabled, 

and human factors corresponding to all drivers. At the intersections with traffic 

signals (signalised intersections), usual driver errors include: indecisive dilemma 

whether to proceed or stop at a yellow-signal indication; miscalculating time to 

reach an intersection; miscalculating time to make a smooth stop; failure to notice 

signal and proper lane assignment; and misinterpreting sign information 

[USDOT04]. At the intersections with no traffic signals (unsignalised 

intersections), usual driver errors include: unsafe gap taking; inaccurate 

estimation of approaching vehicles’ speed; miscalculating time to accelerate after 

making a turn; and failure to give up right-of-way [USDOT04].  

 

The analysis on German accident data by the INVENT research project 

[Lages04] reveals that the types of collisions found are as follows (ordered from 

the highest to the lowest number of fatalities): accidents on curves, accidents on 

straight road, following/rear-end collisions, collisions with pedestrian or animal, 

lane change accidents, orthogonal/perpendicular path collisions, stand alone 

accidents (without a collision partner), and cross path turns. In accordance with 

the INVENT accident analysis, one focus of intersection safety system obviously 

needs to be on the crossing and turning assistance as well as on the right of way 

assistance [Lages04]. 

 

In Australia, research on Queensland’s unsignalised intersections [Arndt03] 

provides evidence that the most frequent vehicle accidents at this type of 

intersections are: angle (right-turn or through-movement from minor leg colliding 

with a vehicle drifting through on the major road), right-turn from major road 

(colliding with an approaching major road vehicle), and rear-end. Single vehicle, 

head-on, sideswipe and left-turn from minor road (colliding with a vehicle 
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drifting through on the major road) are frequent, but not as frequent as the first 

three categories. The main factor that can contribute to crashes at unsignalised 

intersections is the failure to give way to the vehicle on the minor road. This 

typically causes a collision with a vehicle on the major road. The common errors 

of drivers failing to give way can be caused by not seeing the other vehicle, 

miscalculating the speed and position of the other vehicle, not recognising the 

intersection, or not realising the need to give way. A number of failure-to-give-

way accidents are affected by obstructions to vision particularly by other 

vehicles. Other factors that can increase accident rates are an increase in relative 

speed between vehicles, an increase in the number of traffic flows to be observed 

(an increase in driver’s workload), an increase in visibility restrictions, and a 

decrease in the levels of perception of an intersection. 

 

Signalised intersections in Victoria, Australia, have been analysed using 1987 – 

1991 crash data [Ogden94]. There are four main types of crashes at signalised 

intersections in Victoria, which are: right through crashes, rear-end crashes, 

adjacent approach crashes, and pedestrian crashes [Ogden94]. Intersections 

crashes involving pedestrians were the most fatal. Spatial clustering on the 

signalised intersections crash data explained that 86 percent of those crashes 

occurred at 50 percent of all the intersection sites. However, the severity per type 

of crashes in different intersections varies greatly. This signifies how every 

intersection is quite unique and has its own issues. Due to the simpler intersection 

geometry, T-intersections are safer than cross-intersections [Arndt03]. Most 

intersection crashes occurred in clear weather, daytime, on dry roads, and in the 

afternoon peak period. Thirty four percent of daily crashes at intersections 

occurred between 3 to 8 pm. The highest number of crashes at intersections or 

within 100 m of an intersection in an hour occurs between 5 and 6 pm, which is 

the daily rush hour. From drivers of all age groups, genders, and license types, 
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the drivers involved in intersection crashes are mostly young, inexperienced, and 

particularly male drivers. 

 

After reviewing accident types or patterns in different intersections around the 

world, it is obvious that we cannot generalise collision patterns of one 

intersection with another. Table 2.1 portrays different sets of collision patterns 

extracted from various intersections.  

 

As a set of collision patterns is unique to a particular intersection, hazardous site 

analyses is always performed for each intersection by road safety experts 

[Boury00]. The safety examination for a specific road site, which is also referred 

as Road Safety Audit (RSA) [Kwas07], can be categorised into pre-analysis, 

analysis, and post-analysis [Boury00]: 

• pre-analysis: includes data collection; 

• analysis: includes identification of problems, accidents and the characteristics 

of accidents; 

• post-analysis is then executed by implementing the necessary actions to 

prevent accidents.  

The integration of computer systems into RSA is desired to automate those tasks.  

 

Similarly, we review the existing work in collision avoidance systems and related 

ITS technology within those three categories. The next three sections present 

existing research projects and literature in each relevant stage. The conventional 

data collection through collating expert knowledge and sensor data collection is 

discussed further in Section 2.2. The pervasive computing techniques that have 

been used in the road safety and related ITS areas for data analysis are described 

in Section 2.3. Development of collision warning and avoidance systems, which 

is an integral part of post-analysis, is discussed in Section 2.4. 
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Table 2.1. Analysis of Intersection Collision Patterns 

Intersection 

Type, Traffic 

Signal, Location 

Collision Patterns Other Factors that 

Increase Crash Rates 

Four-legged cross 
intersection, 
signalised, U.S. 
[Mitre99], 
[Verid00] 

• left turn across path 

• perpendicular path entry with 
inadequate gap 

• perpendicular path with violation of 
traffic control 

• premature intersection entry with 
violation of traffic control signal 

• obstructed vision 

• driver’s inattention 

• failures to give way 

• deliberate violation 
of stop sign or 
traffic signal  

All intersection 
types, signalised 
and unsignalised, 
U.S. [USDOT04] 

Categorised by manner of collision: 

• 62% side impact collision 

• 28% single vehicle collision  

• 5% head on collision 

• 5% rear-end collision  
Categorised by traffic signal: 

• 37% at intersections with stop sign 

• 32% at intersections with traffic 
signals 

• 28% at intersections without traffic 
signals 

• 3% at intersections with other traffic 
control devices 

• Traffic control 
misuse 

• red light running 

• pedestrian safety 

• mature age drivers 

• accessibility for 
disabled 

• human factors 
corresponding to all 
drivers 

All intersection 
types, signalised 
and unsignalised, 
Germany 
[Lages04] 

• Accident on curves 

• accident on straight road 

• following/rear-end 

• collision with pedestrian or animal 

• lane change accident 

• orthogonal/perpendicular path 
collision 

• stand alone accident (without a 
collision partner) 

• cross path turns 

 

Unsignalised 
intersections, 
Queensland, 
Australia 
[Ogden94] 

• angle (right-turn or through-
movement from minor leg colliding 
with a vehicle on the major road) 

• right-turn from major road  

• rear-end 

• single vehicle 

• head-on 

• sideswipe 

• left-turn from minor road 

• intersection’s 
geometry  

• weather 

• dry road  

• peak period 

• daily rush hour 

• age-gender group  

 

 

The next section describes the existing techniques used and the desired 

improvements in pre-analysis stage. 
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2.2. Pre-Analysis: Data Collection 

Before we can proceed to analyse intersection data, we need to first collect 

information. The main information source is from examining domain-related 

documents [Boury00], such as: 

• textbooks on human factors to establish the integration of the three stages of 

driver information process (perception, cognition, and action) with safety 

consideration [Kwas07]; 

• publications on safety facts and figures to recognise potential collision 

patterns, e.g. categorised by crash type, time of crash, type of participants 

[Kwas07]; 

• guidelines and manuals for RSA [Kwas07]; 

• observations of road safety specialists [Kwas07]. 

Another information source is from road safety experts, thus, interview with road 

safety experts can be conducted in order to collect information and validate 

findings, new theories, and methodology [Boury00]. 

 

However, due to the flood of data available through sensor technology installed 

on the road and in vehicles, we should also collect and utilise data we gather from 

sensors collectively. The availability of real-world sensor data helps reducing the 

need for examining data contained mostly in paper-based documents, which 

requires meticulous efforts to access and exploit them. Therefore, the sensors that 

are available on the road and the kinds of data that can be retrieved from such 

sensors should be examined.  

 

As discussed in Chapter 1, there are a range of different sensors now available on 

the road and in-vehicle. We need to decide whether to collect data that we need 

for intersection site analyses from roadside sensors or in-vehicle sensors. The 

selection of sensor data sources depends on the existence and availability of in-
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vehicle sensors, roadside sensors, and communication infrastructure. Table 2.2 

lists possible sensors that can be used to detect the required information for 

collision detection.  

 

Table 2.2. List of Sensors Used to Capture Traffic Data 

Data  In-vehicle sensors Roadside sensors 

Speed Speedometer, Global 
Positioning System (GPS) 

Camera, Inductive loop 
detector, Traffic-Dot 

Vehicle Size Built-in information Traffic-Dot 

Travel Direction Camera, Compass, GPS Camera 

Current Position GPS, GIS Camera, Inductive loop 
detector, Traffic-Dot 

Angle Camera, Steering Wheel, 
GPS 

Camera, Inductive loop 
detector, Traffic-Dot 

Vehicle Registration 
Number 

Built-in information Camera, ANPR 

Vehicle Manoeuvre Eye and Gaze Sensors, 
GPS 

N/A 

 

The accuracy of the information detected by the sensor depends on the sensor 

itself, not on the sensor location (roadside or in vehicles). Each sensor type has 

different sensor products that in turn have a different level of accuracy. However, 

roadside sensors require a longer time to process the data that is pertinent to a 

particular vehicle rather than the sensors in the vehicle itself. The data listed in 

Table 2.2 is pertinent to a specific vehicle. For example, vehicle size and 

registration number can be recorded into the vehicle computer system as built-in 

information; therefore retrieving these data from the vehicle can be done 

speedily. On the other hand, retrieving data of vehicle size and registration 

number can also be done by roadside sensors with a longer processing time using 

Automatic Number Plate Recognition (ANPR) [Wiki07a], which is a recent 

technology that has been installed on roads, especially in the United Kingdom, to 

detect the number plate of a vehicle using Optical Character Recognition (OCR) 

on captured images. As of the year 2006, ANPR is able to scan number plates 

around 1 vehicle per second on vehicles moving up to 100 mph (160 km/h) 

[Wiki07a]. Similarly, the speed of a vehicle can be retrieved using Global 
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Positioning System (GPS) in a vehicle or a speed camera (a traffic rule 

enforcement control) on the road. Retrieving vehicle speed from GPS is instant. 

Conversely, most of the installed speed cameras on the roads are the conventional 

speed cameras that capture still images, which need to be interpreted by human 

operators. Only the most recent speed cameras have ANPR capabilities. 

Furthermore, there are still many issues to deal with vision sensors. Vision 

sensors’ capability to detect object (e.g. vehicle, pedestrian, etc) during low light 

period (night, dawn, dusk) and in the presence of obstacles and shadows is still 

being developed and improved. 

 

In terms of availability, many roadside sensors listed in Table 2.2 are already 

installed on the roads. Equally, many of the in-vehicle sensors listed in Table 2.2 

are readily available in all vehicles, e.g. speedometer, compass, and GPS, which 

are the main component of driver’s navigation systems and a common feature of 

today’s mobile phones. GPS service is already installed in today’s vehicles, 

including sedans, taxis, and trucks. GPS has been used widely in navigation, map 

creation, land surveying [Wiki07b], and also tracking vehicle manoeuvres (for 

example, lane change manoeuvre detection [Xuan06]). GPS helps to provide 

awareness to driver of the current location, speed, direction, and angle of the 

vehicle. These data are useful when collected and analysed for the purpose of 

improving safety. Nevertheless, collection of sensor data would depend on 

availability of sensors. Therefore, one must first choose the sensors that are 

required (and whether additional sensors are required to be installed for the 

purpose of data collection) in order to obtain the necessary data before preceding 

any analysis. 

 

Once sensor data are collected, the right techniques are required to analyse the 

data and extract interesting patterns and useful information about the intersection 

to assist in collision detection, warning, and avoidance. This can be achieved 
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through the existing pervasive computing technology and intelligent systems, 

which are discussed in the next section. Section 2.3 reviews methods in pervasive 

computing techniques, such as knowledge based systems, data mining, and 

context awareness, in ITS that can be used to analyse the acquired intersection 

data. 

2.3.  Analysis 

The next stage after pre-analysis (data collection) in the Road Safety Audit 

(RSA) is the analysis stage. In this stage, traffic, intersection, and crash data are 

analysed to identify the root causes of crashes and the possible avoidance or 

mitigation techniques. This section aims to review different approaches in 

intelligent pervasive computing that are used to enhance data analyses in road 

safety and also in wider ITS application areas, such as in traffic optimisation and 

automation. 

 

Successful research projects using hybrid and cross disciplinary techniques of 

artificial intelligence, traffic, and transportation technologies have been seen 

since 1980s – e.g., expert systems, such as those built for traffic light controllers 

[Bazzan05]. However, since traffic and transportation systems are becoming 

more complex, both individual choices and global conditions of traffic and 

transportation systems must be better understood for greater efficiency and 

safety. Therefore, transportation systems are now being viewed and analysed at 

both the individual (micro) and the societal (macro) levels [Bazzan05]. To 

facilitate the analysis of the micro and macro view of intersection’s vicinity, 

sensor data inputs must be analysed with tools and techniques from the pervasive 

computing paradigm. 
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We focus on the paradigms of knowledge base systems, data mining and context-

awareness as we recognise that they have been widely used in ITS. Since the 

progression of sensor networks in ITS, these techniques are becoming 

increasingly relevant as they take into account sensor data and each has the 

capability to process this data efficiently for various purposes. Knowledge based 

systems consume all the given information sources, analyse them, and store them 

efficiently to be used to solve a specific problem. The application of knowledge 

based systems has existed for Road Safety Analyses (RSA), decision support in 

transportation systems, highway safety monitoring, and driver monitoring. Data 

mining is used for semi-automatic discovery of patterns, associations, changes, 

anomalies and significant structures from data [Gross98]. Data mining has a 

considerable value since it has the potential to process large amounts of sensor 

data to yield interesting, understandable, and applicable information for traffic 

efficiency and road safety. Context is “any information that can be used to 

characterize the situation of an entity. An entity is a person, place, or object that 

is considered relevant to the interaction between a user and an application, 

including the user and applications themselves” [Dey99]. The context awareness 

paradigm is useful to define the awareness of any computing application to its 

context, which can be the driving context, temporal, location, environment, 

vehicle, or driver. When an application is aware of its contexts, it is able to self-

adjust accordingly.  

 

Since each of those paradigms offer different capability and contribution to ITS, 

as can be seen from the discussion in the following subsections, it is observed 

that the right amalgamation and integration of those techniques are able to 

promote safety and efficiency in traffic and transportation systems.  We note that 

the combination of those paradigms enables cooperative and adaptive distributed 

situation awareness of the physical world so that appropriate measures or actions 

can be taken autonomously:  
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• distributed in the sense that a system can be made concurrently aware of 

multiple points or places in the physical world; 

• cooperative in the sense that information from nodes at different locations are 

integrated to form an overall picture; 

• adaptive in the sense that a system can adapt to the situational changes and 

varying conditions in the physical world.  

 

We review each of these paradigms and its data processing capabilities in the 

following subsections. Subsection 2.3.1 describes the notion of context-

awareness and how context has been used in ITS. Subsection 2.3.2 reviews 

existing research in knowledge based systems in ITS. Subsection 2.3.3 presents 

the definition and usage of data mining as a widely accepted data analysis 

technique. Subsection 2.3.4 concludes section 2.3. 

2.3.1 Context-Awareness  

The notion of context-awareness has been adopted in ITS, since a context-aware 

application has the capability to adapt to situation changes informed by the 

sensors. The availability of context information may influence the behaviours of 

the application or device [Chen00], [Moran01]. There are three important 

features of context: where you are, who you are with, and what resources are 

close by [Schil94]. The most important types of context are identity, location, 

time, and activity. Therefore, context-aware applications observe the “who’s, 

where’s, when’s, and what’s” of entities and use this information to find out why 

the situation is happening [Dey99]. Therefore, context is reclassified into four 

categories, which are computing context (such as communication bandwidth, 

connectivity, nearby resources e.g. printer), user context (such as user’s activity, 

profile, location, nearby entity), physical context (such as lighting, traffic, 

weather), and time context (such as day, hour, season) [Chen00]. An application 
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can then use available context information to adapt to environment changes. 

Hence, context awareness is useful in ubiquitous and mobile computing to 

provide fault-tolerance and an adaptive computing infrastructure [Chen00].  

 

Given the advances of sensors networks and ubiquitous computing devices that 

are found in vehicles and road infrastructures, it is apparent that computing 

applications have the potential to adapt to the changes in the environment. In any 

ITS applications, contextual information about vehicle dynamics, environments, 

and driver behaviours should be integrated to improve accuracy and gain better 

assessment of the current situation [Gruyer05]. According to [Vidal02], 

observing environmental conditions and driver behaviours in steering, braking, 

accelerating makes early detection and warning of dangerous driving situations 

possible. Also, recognizing driving behavioural patterns is necessary for many 

ITS applications, such as for vehicle navigation and driver’s monitoring, because 

it provides better situation awareness [Oliver00], [Mitro05]. There are a number 

of areas where context-awareness is applicable in Intelligent Transportation 

Systems: driver’s behaviour recognition, cooperative and autonomous vehicle 

navigation, traffic modelling and monitoring, and environment map and 

monitoring.  

 

It is essential to incorporate knowledge about context to properly make decisions 

in complex dynamic environments such as in driving [Oliver00] or in analysing 

intersection safety [Salim05]. For example, in the intersection and highway 

scenarios described in [Julien02], resource-aware and location-aware concepts 

are employed, since the presence of other computing entities, the availability of 

resources associated with them, the connectivity, and their particular location or 

movement are the traits that can influence the behaviour of the application. In the 

following discussions, we review various applications of context-awareness in 

ITS and the data analysis of each application. 
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A context-aware route profiling application was presented in [Harr04] to evaluate 

the performance of road networks in the Republic of Ireland. The sensor data 

sources were traffic flow data, meteorological data, and road event data, from 

which the following contexts were extracted: time, weather, and road usage 

context [Harr04]. The proposed system merely detected and reported traffic 

condition. It is desirable for such system to have reasoning capability to improve 

traffic throughput efficiency, such as by recommending better alternative routes 

when incidents or road blocks are detected to be present. Those desired features 

can be met by applying data mining techniques, such as in [Gross05], which is 

discussed in 2.3.3. 

 

The CORTEXT project [Verís02] proposed a model for collections of sentient 

objects, which were mobile intelligent software components that accepted input 

from different sensors that sense the environment before the system decided how 

to react. The scenarios for context-aware cooperating autonomous cars in the 

CORTEXT project were: cooperative behaviour without human control and 

autonomous vehicle navigation from a starting place to the predetermined 

destination [Verís02]. The next generation cars [Sivaha04] designed by 

CORTEXT were able to publish events (such as emergency braking) to other 

relevant vehicles (such as cars following within a certain distance). Sentient 

objects within other cars could ask to obtain the braking event and when notified 

could do their own correct braking action, which was then followed by publishing 

their own braking events. Context-awareness was achieved by consuming events 

from different sensors and event channels, combining those events to higher-level 

contexts (using Gaussian modelling, one of machine learning techniques, and 

Bayesian networks), and reasoning about those contexts using expert logic 

[Sivaha04]. In summary, the CORTEXT project created a system to sense and 

react to environmental changes. However, it did not incorporate analysis and 
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learning of data from sensors or mechanisms for reasoning about dangerous 

driving behaviours and predicting imminent threats. This can be achieved by 

applying data mining techniques. 

 

Application of data mining techniques in a context-aware application can yield 

enormous context information that helps the application to be more context-

aware. This was demonstrated in [Oliver00]. In order to recognise driver 

behaviour and manoeuvres in various driving scenarios, it is important to know 

the driver and vehicle context, such as the driver's gaze, position, speed and 

direction of the traffic [Oliver00]. Therefore, real-time context information, such 

as the car physical state (speed, brake, acceleration throttle, steering wheel angle, 

and gear), road state (road geometry, exit information), traffic state (relative 

speeds and positions of neighbouring cars), and driver’s state (driver’s face and 

gaze position and driver’s viewpoint) were used in [Oliver00]. This project, using 

the above context information, was able to accurately recognize a driver’s driving 

manoeuvres (stopping, turning, passing, changing lane left, changing lane right, 

turning left, turning right, starting) one second before the actual vehicle signals 

take place. The results concluded from the experiments were as follows 

[Oliver00]: 

• although some driving manoeuvres could be recognized by using car 

information only, passing and changing lane manoeuvres require external 

context information for more accurate results; 

• the usage of context was necessary for recognising certain manoeuvres such 

as passing and changing lanes; 

• driver’s gaze, as it was strongly correlated with driver’s mental states, was a 

significant attribute in detecting lane changes, passing, and turnings; 

• each manoeuvre could be predicted on average one second before any car 

signals or obvious changes in the car occur. 
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The details of the data mining techniques used and the learning results are further 

discussed in Section 2.3.3. 

  

For further improvement of context-aware applications, information about the 

contexts of an application can be stored in a knowledge base, as the existence of 

knowledge-base helps decision making. The next section discusses the benefits of 

knowledge based systems in ITS. 

2.3.2 Knowledge Based Systems 

The first generation of knowledge based systems (also known as expert systems) 

was designed to fully automate human’s reasoning and decision making process. 

However, the systems were only able to deal with easy problems and limited in 

the knowledge representation, reasoning and justification capabilities. Therefore, 

the second generation of expert systems was developed not for fully automation, 

but to assist users in decision making by providing advice through better 

knowledge representation and justification capabilities [Boury00].  

 

In ITS, knowledge based systems have been applied for road safety and traffic 

management, such as in SICAS (System with Intelligent and Cooperative 

functions to help in the Analysis of Sites) [Boury00] and RSIT (Road-Site 

Investigation Tool) [Kwas07]. SICAS was developed to accommodate 

incremental collection and representation of knowledge from analysts and experts 

through a computer based interface, electronic database and knowledge base 

(contains case based scenarios or patterns); whereas RSIT was developed to 

guide high-crash rate site investigation by analysing and associating roadway 

characteristics, driver behaviours, and traffic controls with crash patterns, which 

would result in a set of proposals for road and traffic control improvements in the 

high-crash site [Kwas07]. 
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Data analyses in knowledge based systems involve processing incoming data and 

store them electronically for basis of decision making. In SICAS [Boury00],  

result of analyses were stored in forms of databases (useful for obtaining detailed 

historical facts), electronic documents (useful for formalisation of guides, 

manuals, or descriptions), domain ontology (useful for defining and illustrating a 

concept or a word in order to remove ambiguity), task models (useful for 

organising task hierarchies), knowledge bases (store expert knowledge, rules and 

norms, and patterns), and case bases (store a set of solved case studies) 

[Boury00]. In RSIT (Road-Site Investigation Tool) [Kwas07], in order to help 

automating decision making process, the acquired knowledge was represented in 

a decision tree structure.  

 

The implementation of RSIT focused on two-way stop-controlled intersections. 

The main research components in this project consisted of three steps: knowledge 

acquisition, knowledge representation and knowledge implementation. The 

knowledge acquisition included information from manuscripts on driver 

information process (perception, cognition and action), publications on safety 

facts and crash patterns, guidelines and manuals for road safety, final reports for 

road safety audits, and observation of specialists [Kwas07].  The knowledge was 

converted into rules through natural language programming as in expert systems. 

The knowledge representation imitated the decision-making process during site 

investigation. It started with identifying all applicable crash patterns, which were 

determined by crash type, time of collision, weather condition, pedestrian/bicycle 

crash, and the visibility of the intersection and the traffic signals). As for the 

knowledge implementation, a graphical user interface was developed to guide the 

users through the investigation by: capturing the user-defined knowledge base, 

displaying the questions, stating the selected answers, prompting possible 

subsequent question after a selected answer, receiving written comments from the 
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investigator, and summarizing the investigation in a report. However, we found 

that the knowledge acquisition in RSIT was done manually with a historical data. 

It did not utilise computing techniques that could help finding new knowledge 

from sensor data. Nevertheless, the instalment of RSIT has helped reducing 

investigation time needed from the checklist-based manual investigation 

[Kwas07]. 

 

Similarly, a knowledge-based system was required in Greece [Chass05] to assist 

in making priority lists of road maintenance, given the high rates of accidents and 

fatality. Safety has become a primary factor to identify whether a particular 

vicinity becomes a priority for maintenance. Hence, in order to assist in arranging 

the right priorities of rural highways that require maintenance, the knowledge-

based decision support system has been designed and developed. It consists of a 

database, analysis tools, and a knowledge base. There are three sources of the 

knowledge base: road and accident data, results from past research, and expert 

opinions [Chass05]. The combination of different sources can increase the quality 

of the knowledge base and overcome the limitation of a single source. The 

database includes information about accident features, road geometry, pavement 

condition, traffic, operating and environmental situations, other characteristics of 

the environment, and maintenance history. The next steps are priority setting and 

feasible treatment assessment. The arrangement of priority is based on rates of 

collision, fatality, and repeating accident types. Then, a set of rules is used as a 

basis to determine a course of actions. Finally, heuristics, priority list, and 

resource budget were used to decide the safety improvement projects and 

resource allocation. Nevertheless, this system only focuses on the road repair 

work or maintenance in order to increase road safety. On-site prevention 

techniques that can be applied by utilising the knowledge base are not considered. 
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An adaptive knowledge-based driver monitoring and warning system, DAISY 

[Onken94], developed to work on German motorways, could generate warning 

messages based on the driving situations and adapted to the style of driving of 

each driver. It was based on situation awareness models, which consisted of 

driving situational model (e.g. lane change, overtake another vehicle), danger 

model, driver target speed model and model of the actual driver. However, only 

three types of danger model (collision patterns) that were modelled to capture 

potential accidents: collision with a vehicle ahead due to inadequate deceleration 

behaviour, violation of lane boundaries due to inadequate steering behaviour, and 

violation road boundary lines in curves because of inadequate velocity 

[Onken94]. The model of the actual driver was adaptive as it was learned through 

neural nets, on the driver’s speed profile on different types of road geometry (i.e. 

straight, left curve, right curve). The experiments that were executed by test 

drivers yield a positive result in terms of increasing driver’s safety although the 

warnings can be unnecessary and cause significant distractions to the driver 

[Onken94]. It would be better if the neural net learning that was applied on the 

driver model could also be applied on the danger model. This is because different 

road sites have different road characteristics (e.g. no curves or fixed lane 

boundaries); hence, those three types of danger models will not be applicable.  

 

Existing knowledge-based systems mostly have a static knowledge base that does 

not update itself to changes in the environment. However, variations in 

intersection characteristics and environments require new generation knowledge-

based systems that are flexible and extensible through exploiting real-time 

information sources. The advances in sensor technology and wireless 

communication have opened the opportunities for nearly seamless capability for 

knowledge sharing and collaboration. The requirement for adaptive intersection 

safety systems can be achieved by developing a knowledge-based system that 

implements a dynamic knowledge base. When an intersection safety system is to 



 
 
 

 47  
 
 

be built to suit a particular intersection, it should have a knowledge base that 

stores collision patterns of that intersection. As the knowledge base in a system 

needs to be populated dynamically, we explore existing intelligent computing 

techniques, such as data mining, that have been used in ITS to gain new or 

interesting knowledge and patterns. Data mining is stated as a future work or 

suggestion of how interesting knowledge can be obtained after data collection in 

knowledge based systems [Boury00]. Therefore, the next discussion reviews data 

mining concept and its implementation in ITS. 

2.3.3 Data Mining 

Apart from the distributed aspects of the traffic and transportation systems, there 

is a considerable amount of data from in-vehicles and roadside sensors. Hence, it 

is essential to understand sensor data and act accordingly. Given the huge amount 

of data, a question arises whether computer systems can learn and improve 

automatically from past experience. There are many success stories of machine 

learning and data mining in producing knowledge bases. Algorithms have been 

formulated for certain types of learning such as classification, clustering, and 

association rules [Mitch97]. Effective algorithms would be those that are able to 

facilitate better understanding of data, better ways for tasks to be executed, or 

performance improvement through experience [Mitch97].   

 

Machine learning has been implemented widely in Intelligent Transportation 

System, such as to train a computer-controlled vehicle to manoeuvre correctly 

when driving on a variety of road types [Mitch97]. The ALVINN system, as cited 

in [Mitch97], applied machine learning to drive unaided at 70 miles per hour for 

the distance of 90 miles on public highways among other vehicles. In [Moriar98], 

supervised machine learning and reinforcement learning have been used for 

cooperative lane selection in highways. Performance improvement was aimed to 
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be achieved by applying learning and generating rules in each car by coordinating 

lane changes. An example of a common lane change operation is when a car 

ahead has a slower speed, the car should move to an open lane on the left or the 

right side. The rules that were employed in this system were used for optimising 

lane usage. Slower vehicles had to move to the slower speed lane and give way 

for faster vehicles to pass. SANE (Symbiotic, Adaptive Neuro-Evolution), a form 

of reinforcement learning, consists of neural networks that represent the rules that 

map sensory input to decision output. The input and output layers are fixed in 

SANE, but the connections and the middle layers can evolve. During training, the 

supervised learning was performed with an existing knowledge base and SANE 

algorithm. The intelligent lane selection was able to improve traffic performance 

as shown in the simulation. However, the only input data that were simulated 

were velocity, position, acceleration, and car size. As the actual behavioural data 

of the driver, environment, and vehicle were not taken into account, the actual 

effectiveness of the algorithm was unknown.  

 

With the huge amount of data available at present in databases, spreadsheets, data 

from sensors, and many other organizational data, data mining has become 

popular over the last decade. Data mining is the development of methods and 

techniques for making sense of data by pattern discovery and extraction 

[Fayyad96]. Data analysis techniques have the potential to facilitate better 

understanding of the vehicle, the driver, and the road environment for different 

purposes. Hence, information about the vehicles, infrastructures, and 

environment (road, traffic) extracted from sensors and further data analysis of 

sensor data, can potentially be utilized for better situation recognition and 

management. Furthermore, this is also supported by the advancing wireless 

technology (see Table 1.3), which facilitates communication among vehicles, 

road infrastructures, and traffic authorities. As data has become easily available 

and accessible, new knowledge and interesting patterns can be extracted and 
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learnt, for example, collision patterns, driver behaviours, vehicle conditions, best 

travel route, and so on. Such information can enable safer and more efficient 

transportation. There have been a number of research projects on data mining in 

the area of ITS, such as for driver’s behaviour recognition, traffic optimization, 

and incident detection. We review these applications in following discussions. 

 

Oliver and Pentland [Oliver00], as mentioned in Section 2.3.1 applied learning on 

sensor information to predict driver behaviours or manoeuvres. Hidden Markov 

Models (HMM), a set of discrete states and probabilities of transitions between 

them [Rabin89], was considered inadequate to characterize multiple interacting 

processes [Oliver00], as the basic HMM only has a single state variable. It is 

necessary to model real-time systems that have the temporal and spatial states. 

However, to represent it in HMM is intractable.  Therefore, a new algorithm 

named Coupled Hidden Markov Models (CHMMs) has been proposed for 

modelling multiple interacting processes. Coupled Hidden Markov Models 

(CHMM) was utilized to: (i) learn driver behaviours that are captured by in-

vehicle sensors such as video camera, face and gaze movement trackers, and the 

car’s internal state (speed, acceleration, steering wheel angle, gear, and brake), 

and (ii) predict the next intended manoeuvre accurately [Oliver00]. The limitation 

of this system was in the data source. The data used in this system was originated 

from instrumented commands in a driving simulator, while the data used in 

[Mitro05], the next project discussed, was obtained from sensors in a real vehicle 

in normal driving situations.  

 

A similar project that used contextual information from sensors to recognize 

driving patterns was proposed in [Mitro05]. This project considered actual 

responses from vehicle and the environment as data were collected from vehicle 

sensors. The model of the current situation for a driver, vehicle, and environment 

was made up of a patterns history and the currently detected driving event. In 
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[Mitro05], HMM was implemented to recognize driving patterns. In HMM, the 

changes in states of a Markov process could only be viewed by observables, but 

were hidden from the outside users. The pattern recognition in HMM consists of 

training and evaluation. Seven HMM models have been developed in [Mitro05], 

each to recognize one of seven most common driving events according to their 

experience, which are: driving along left and right curves, turning left and right 

on intersections (with and without roundabouts), and driving straight across an 

intersection with a roundabout. The training of each model used training set for 

each event type, which was about 30% of the complete set. The evaluation used 

the complete set. Although the processing power required for real-time 

recognition in current CPUs was low, the training of the HMMs real-time 

environment was said to be demanding due to its iterative character [Mitro05].  

 

In [Chan04], data mining was used to analyse driver behaviours in an 

intersection. To facilitate understanding of driver behaviours for uses in safety 

applications, simply relying on raw conventional sensor data, such as from 

ground loop sensors installed on the road, is insufficient, as data analysis 

techniques is necessary to extract significant traffic parameters, such as time gap 

estimation in crossing paths [Chan04]. For example, in implementing intersection 

safety solutions, monitoring the speed, location, and movement of each vehicle is 

essential. For data collection in this study, which was performed in California, 

USA, a set of video cameras and radar were set up at an intersection to determine 

distance to intersection and speed of each vehicle at up to seven targets. The data 

was used to estimate time to reach the intersection, which was then mined 

together with distance to reach the intersection data to produce interesting 

knowledge [Chan04]. Two scenarios were analysed in mining the data: firstly, 

left turn across path subject vehicles versus other vehicles from opposite 

direction; secondly, red light running and dilemma zone [Chan04]. In the case of 

the second scenario, to detect potential violators of traffic signal early in real-
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time, it was essential to determine the dilemma zone in a particular intersection. 

A dilemma zone is where and when the drivers are indecisive as to slow down or 

to speed up on the yellow light. It was found through mining the traffic data in 

the field observation of this study that a dilemma zone is located within about 10 

– 30 meters from the intersection. At this site, the average speed of normal traffic 

is approximately 10 m/sec; hence, the dilemma zone corresponds to 1 – 3 seconds 

before a vehicle arrives at the stop line. To effectively detect a potential violator, 

the ranges of the dilemma zone should be monitored precisely [Chan04]. In this 

project report, the types of data mining algorithms, techniques, and evaluation 

methods used are not specified. 

 

Apart from driver behaviours learning [Oliver00], [Mitro05], [Chan04], as 

previously discussed, data mining can also be applied to learn traffic and collision 

patterns [Gross05], [Chong04] and factors and conditions attributed to collisions 

[Abdel05], [Singh03]. 

 

The Pantheon Gateway Project [Gross05] records real time highway data from 

more than 830 traffic sensors installed in Chicago highways every six minutes, 

which accumulates to 173,000 sensor readings every day being added to the 

database. The purpose of this research is to detect real time changes in traffic 

conditions (speed, volume, occupancy). Using a tree-based classifier, the 

condition change is further analysed to detect the cause of it, which can either be 

weather related, accident, special events, or road construction [Gross05]. 

Therefore, traffic condition changes, present accidents, and special events that 

affect the traffic can be detected in real-time based on the learnt traffic patterns. 

This study signifies that from the enormous amount of live sensor data collected 

from highways, data mining can learn and deliver useful patterns of traffic which 

can be associated with various incidents on highways. These patterns are used to 

predict traffic incidents. Therefore, it can be deduced that such an approach can 
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also be applicable for learning collision patterns at intersections for collision 

avoidance.  

 

In another study, automobile accident data was analysed using a hybrid approach 

of machine learning, which involves neural network, decision tree, support vector 

machines, and a hybrid decision tree for the purpose of building models to predict 

the severity of accident injuries [Chong04].  Based on the manner in which the 

collision occurs, the data was classified into seven categories: not collision, rear-

end, head-on, rear-to-rear, angle, sideswipe same direction, and sideswipe 

opposite direction. The output classes that were learnt by the machine learning 

algorithms were categorized into no-injury, possible injury, non-incapacitating 

injury, incapacitating injury, and fatal injury. The test results revealed that it was 

best to use neural networks to classify non-incapacitating injury, incapacitating 

injury, and fatal injury, because of its accuracy. However, for the non-injury and 

possible injury classes, it was better to use decision trees [Chong04]. 

 

A road safety project in Florida conducted experiments and implementations to 

identify collision-prone conditions in freeways in order to predict freeway 

crashes in Advanced Traffic Management and Information Systems (ATMIS) 

environment [Abdel06]. Traffic flow information from traffic loop detectors, 

historical crash data and rain data has been collected for this study. Using online 

loop and rain data, identification of high risk situations in freeways can be done 

in real time. Learning algorithms that were utilized to build the crash-prediction 

model were Principal Component Analysis (PCA) and Logistic Regression (LR). 

The early result of this study displayed the association between turbulence and 

rainfall index with hazard levels for freeways. The higher the turbulence and 

rainfall index, the higher was the potential for crashes to happen [Abdel06]. 

However, implementation details such as the warning time and response time 
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required, and the right timing of warning messages so that crash can be avoided 

were not specified in [Abdel06].  

 

Based on the databases accumulated by the U. S. National Highway Traffic 

Safety Administration (NHTSA), data mining tools have been applied to find 

patterns in drivers and vehicles that contribute to highway crashes [Singh03]. 

Driver characteristics that were analysed included driver attributes such as age 

and gender and driver-related crash attributes such as involvement of alcohol, 

distraction, speeding, wrong manoeuvres, and corrective action. Vehicle 

characteristics that were examined include vehicle body type, vehicle stability, 

vehicle path, and vehicle contributing factors such as steering, brakes, 

suspension, power train system, and wheels [Singh03]. These characteristics were 

examined with a data mining technique, Principal Component Analysis (PCA). 

PCA is able to deal with a large number of correlated variables. The study used 

PCA to compare sets of crash variables to produce maximum discrimination 

among groups (of drivers derived from age and gender, and of vehicles derived 

from body type) with regards to the original crash variables. There were a 

number of interesting correlations derived from the study, such as that the 

involvement of teenage drivers in highway crashes were highly related to 

speeding, while young drivers were highly related to drinking [Singh03]. Those 

kinds of findings are useful for further study. For example, young drivers should 

be the focus in monitoring for speed limit violation. 

 

Data mining can also be used to improve traffic performance and throughput. In 

[Zhang05], data mining is used to detect incidents that can cause delay traffic. 

The data mining implementation in [Nakata04] is intended for travel time 

prediction. These projects are discussed next. 
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Congestion problems often occur in highways because of the presence of 

incidents [Zhang05]. The TSC Algorithm is a Bayesian Network (BN) model for 

freeway incident detection [Zhang05]. The BN includes two traffic events, which 

are incident and congestion, and seven traffic variables, which are traffic volume 

upstream and downstream, speed upstream and downstream, occupancies 

upstream and downstream, and occupancy difference between upstream and 

downstream. Expert knowledge of incident and incident-free traffic patterns are 

saved in the Conditional Probability Tables (CPT) of the BN. For testing, the 

CPT was firstly initialized with general traffic patterns, and then adjusted by data 

generated from a traffic simulation, since comprehensive real incident data were 

difficult to find. The algorithm was then adapted to different freeways by 

modifying the BN. There are two ways to modify the BN. Firstly, by updating 

entries of CPT by an expert, for example, by modifying the thresholds of traffic 

parameters, such as the lane volume. Secondly, by adapting incident data to the 

CPTs. However, only high quality data can be adapted, as noise in data can 

eliminate the generality of the knowledge base. The algorithm was evaluated by 

measuring the detection rate and false alarm rate. The algorithm was said to be 

effective as it had a high detection rate and a low false alarm rate in the 

evaluation, even when the algorithm was adapted to various freeway situations. 

 

Travel time prediction has been implemented based on real-time data from probe 

cars (i.e., moving vehicles that are used to collect actual traffic information) in 

[Nakata04]. This approach aims to improve the usual way of travel time 

prediction by using a predefined travel timetable. The travel time data collected 

by each trip is regarded as a time series data. For the purpose of time series 

modelling, Auto Regression (AR) model and state space models were used. AR 

models used spatial and temporal data from locality to execute prediction at a 

certain location. State space models were used to characterize various time series 

models and deal with non-stationary time series data comprising AR models, 
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seasonal components, and trend components [Nakata04]. As a result, the AR 

model that was used with travel timetable has a much higher accuracy than a state 

space model, and the AR model was said to be more effective than the usage of 

timetable alone. However, the stability and reliability of data from probe cars 

were questionable as results from two different models vary greatly [Nakata04]. 

 

Data mining is proven to be effective for extracting patterns and trends in traffic. 

Data mining has been effectively used for extracting useful knowledge from 

persistent or stored data. The advances in sensor technology have resulted in very 

large amount of sensor data being generated making it infeasible for storage and 

consequent processing. Sensor data needs to typically be analysed, understood, 

and applied in real-time.  

 

According to [Hsu02], Ubiquitous Data Stream Mining is one of the current 

trends in data mining. As stated by Gaber [Gaber04a], Ubiquitous Data Mining 

(UDM) is the analysis of data streams to discover useful knowledge such as 

patterns and association rules on mobile, embedded, and ubiquitous devices. 

There are only a limited number of research projects that have applied ubiquitous 

data mining for traffic and transportation systems, which include monitoring of 

drunk-driving behaviours [Horo06], vehicle health monitoring, and driving 

pattern recognition [Kargup04]. 

 

The Vehicle Data Stream Mining System (VEDAS) was proposed for analyzing 

onboard streams of vehicle data [Kargup04].  Data from sensors in moving 

vehicles was analysed in real-time for monitoring vehicle’s health and 

recognising driving patterns. VEDAS used Principal Component Analysis (PCA), 

Fourier transformation, and online linear transformations to perform onboard pre-

processing of sensor data by decreasing the dimensionality of data. The onboard 

system was connected to a central server that performs the following functions: 
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visualizations for global and local models, central controllers for onboard data 

mining operations, an event management service to notify users of unusual 

events, and map retrievals by connecting to a Geographical Information System. 

VEDAS only implemented online unsupervised learning, or clustering, for 

detecting new patterns. It has not applied any supervised and predictive learning 

techniques. In terms of performance, supervised learning/classification was a 

better approach as it performed better in detecting new or unusual patterns in 

real-time [Kargup04]. The basic models to be used for detecting unusual events 

can be developed offline. The models learnt offline can then be used as a basis 

for classifying new events.  

 

Algorithms to identify drunk driving behaviours in real-time were proposed in 

[Horo06]. Two stages of ubiquitous data mining were applied, which is data 

synopsis, or clustering, and classification of driver behaviours. The clustering 

process used Lightweight Clustering (LWC) algorithm, introduced by Gaber 

[Gaber04b]. The major challenge was in linking the results of clustering models 

with the existing expert knowledge in the road safety field. Therefore, a fuzzy 

logic approach was implemented for labelling of clusters and determining 

probabilistic degree of membership of each driver to a particular behaviour 

group. Sensor data for the evaluation was generated using simulation based on an 

expert study, which categorised drunk driving behaviour into sober, borderline, 

drunk, and very drunk. The result of an online clustering and offline labelling was 

three clusters of drunk driving behaviours’, from least drunk to most drunk, 

although originally the generated data is sourced from four different categories. 

This was because of very little distinction between the borderline and the drunk 

category. The offline labelled model was then used in real-time to classify data 

into one of the three clusters. The classification rules consisted of the following 

variables: number of correct responses, number of collisions, time over speed 

limit, reaction time, speed deviation, and lane deviation [Horo06]. The last step 
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of the process was to determine the degree of membership to each drink driving 

behavioural cluster. This LWC and fuzzy logic approach has been effective in 

identifying patterns in one-dimensional numerical data.  

 

SAWUR (Situation-Awareness With Ubiquitous data mining for Road safety) is 

an ADAS that is based on Ubiquitous Data Mining and Context Awareness 

[Krish05]. SAWUR integrates contextual information of three main components 

of driving situations: the driver, the vehicle, and the environment. Driver 

behaviours and profiles, vehicle dynamics, and environmental situations are 

continually analysed on real-time for threat detection and effective delivery of 

warning. SAWUR contains an onboard system and a central server. The central 

server has a historical database, on which data is mined to build event 

classification models that is kept in the server and also injected into the onboard 

system. The onboard system uses pre-built models for event detection based on 

classification algorithms. When a potential threat is detected, the event is sent to a 

black box recorder that registers threats and also to an action or communication 

module that responds to the event either by issuing warnings to drivers or sending 

a message to other vehicles. The data that are kept in the black box recorder are 

sent periodically to the central server in order to update the database. An online 

data synopsis, created using a Lightweight Clustering (LWC) algorithm 

introduced in [Gaber04b] is used for building the online clustering models of 

driving behaviours. This approach eliminates the needs for frequent transmission 

of huge amounts of data [Krish05]. 

 

It is clearly shown that machine learning and data mining on ITS have made 

substantial contributions to improving safety on the road by finding new patterns 

that add to previous knowledge, such as characteristics of accidents or dangerous 

driving behaviours.  
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2.3.4 Discussion 

We have reviewed the existing research in Intelligent Transportation Systems 

(ITS) that utilise pervasive computing techniques, such as knowledge-based 

systems, data mining, and context awareness, for improving safety, efficiency, 

and autonomy. Such pervasive computing techniques have been applied in ITS in 

order to accommodate cooperative and adaptive distributed situation awareness in 

a road environment. Road safety applications that have used knowledge-based 

systems, data mining, or context awareness has improved the analysis stage of the 

Road Safety Analyses (RSA) as the ability to learn and analyse data based on a 

given situation is incorporated. Therefore, it is necessary to incorporate these 

techniques to an intersection collision avoidance system. 

 

None of the context-aware applications in the area of ITS has addressed the issue 

of intersection safety. The incorporation of context-awareness techniques 

facilitates adaptability of an application to the given situation. In other words, an 

application becomes aware of its situations/surroundings. Most existing context-

aware projects use predefined context models. In a context-aware application, an 

event with a certain condition must be responded to in a certain fixed way. This 

event-condition-action is most likely predefined in the system. However, it is 

quite possible that a system changes after a period of time, or it must be adapted 

to a new environment. Hence, integrating learning into context-aware 

applications will be useful in order to discover new and interesting situations or 

additional contextual information that a safety system can employ. Data mining 

can be used to discover new contexts, which can be stored in a knowledge base 

for better decision making. 

 

Knowledge-based systems in ITS have also been reviewed. Most of the existing 

knowledge-based systems only deal with road and intersection site maintenance 
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issues. None of the existing knowledge-based systems have dealt with the issue 

of intersection collisions and collision avoidance. Since each intersection has 

different and varying characteristics, it is necessary to have an intersection 

collision avoidance system that possesses a knowledge-base that contains 

knowledge and rules that are specific to a particular intersection, but can remain 

generic at the application level, with the intention that the same collision 

avoidance system can be adapted to other intersections with different contents in 

the knowledge base.  Unfortunately, the knowledge acquisition in the existing 

systems still relies on traditional methods of manual observation and raw data 

collection and analysis. Furthermore, existing knowledge-based systems employ 

a static knowledge base, hence, no new rules or information can be added to it. 

Due to the varying conditions of an intersection, it is essential that those changes 

should be recorded in a dynamic knowledge base of an intersection safety system. 

Data mining can assist in adaptation of a dynamic knowledge base and 

automating the task of acquiring knowledge (which is to be stored in a knowledge 

base of any ITS system). 

 

Data mining (including machine learning) enables new, interesting, and useful 

patterns to be extracted from data. The combination of variety and alternating 

attributes of intersection types can lead to various collision patterns. In order to 

increase situational awareness of an intersection collision avoidance system, it is 

necessary to learn and extract collision patterns in each intersection. None of the 

existing ITS applications that utilise data mining have addressed the need for 

collision pattern learning at intersections. Furthermore, learning of dangerous 

driver behaviour in an intersection is essential. The project that utilises data 

mining for driver behaviour learning applies it only for dilemma zone and red 

light running violation behaviours [Chan04]. Therefore, in order to have a 

holistic, automated, and adaptive intersection collision avoidance system, it is 

necessary to incorporate data mining techniques. 
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Given the ubiquity of small computing and mobile devices today, it is essential to 

explore the possibility of processing data in such devices. Nevertheless, mining 

real-time data on a resource-constrained mobile device is not possible due to the 

high cost of processing power of traditional data mining techniques. Also, 

transferring real-time data back and forth to a central server for further processing 

is not appropriate because of the high communication costs involved (sensor data 

that are accumulated daily may reach the size of hundreds of Megabytes, e.g. 

Pantheon Gateway Project [Gross05]). The information delivered to the systems 

will be from a myriad of sensors that continuously and rapidly stream data to the 

systems. Given this context, it is evident that Ubiquitous Data Mining (UDM) 

technique is a suitable option and one that can facilitate incremental learning. 

UDM does not merely correspond to applying data mining algorithms on 

resource-constrained devices, but focuses on dealing with the requirements of 

ubiquitous devices, such as providing time-critical data analysis in a mobile 

context [Krish05]. UDM is very appropriate for analysing data streams anywhere, 

anytime, in a resource-constrained device. The ITS projects that apply UDM for 

discovering new knowledge from streams of data have also been reviewed. As for 

processing efficiency in mobile and resource-constrained devices, UDM has 

shown its usefulness when compared to traditional data mining and machine 

learning techniques. However, as this is a new research area in knowledge 

discovery, there are only a few number of UDM algorithms when compared with 

machine learning and traditional data mining techniques. There are a number of 

challenges in applying UDM on ITS applications, which are as follows:  

• The absence of contextual models of road environments that can help better 

situation recognition.  

• The current shortage of real-world data (though sensors can be massively 

deployed to obtain this), which is preferred than simulation generated data, as 

real-world data is more comprehensive and accurate. 
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• Although ITS applications must scale to a great number of vehicles and 

infrastructures, the availability and bandwidth power of wireless networks are 

limited and the cost of data transmission is high. Therefore, the amount of 

data to be transferred should be reduced by transferring only processed data 

in forms of simple patterns or models, rather than transferring all the data 

[Horo06], [Kargup04]. 

 

Table 2.3 summarizes what has been done and our discussions in the earlier 

sections, in the area of improving efficiency, safety and autonomy in ITS, where 

knowledge-based systems, context-awareness, and data mining have played their 

parts.  

 

From the review, we contend that work in the disparate fields of knowledge-

based systems, context-aware computing, and data mining can complement each 

other in dealing with ubiquitous computing environments with mobile entities. 

The integration of all the paradigms (and their related technologies) is a powerful 

combination to achieve the purpose of efficiency, autonomy, and safety in road 

transportation systems. We deduce that context awareness is useful when traffic 

or driver conditions must be known or monitored. Data mining is a powerful 

complement to both knowledge-based systems and context awareness notion, as 

it improves the knowledge of the overall system by analysing historical data or 

data stream to achieve its purpose. It is also evident from the review that 

knowledge base systems, context awareness, and data mining are useful 

particularly for collision pattern analysis, collision detection, and collision 

warning for intersection safety applications, which are the focus of this thesis. 

However, many existing intersection collision warning and avoidance systems, 

which are discussed in Section 2.4, do not utilise these techniques. As a result, 

many of these systems are limited in many ways. These are discussed in the next 

section. 
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Table 2.3. Application of Knowledge Base, Context Awareness, and Data 

Mining in Various ITS areas 

Project Knowledge 

Base 

Context 

Awareness 

Data 

Mining 

Application Areas 

[Harr04]  �  Traffic route profiling 

[Chan04]   � Traffic monitoring 

[Zhang05]   � Traffic optimization and 
control 

Pantheon Gateway 
Project [Gross05] 

  � Incident detection 

[Nakata04]   � Travel time prediction 

CORTEXT [Verís02]  �  Automated driving 

[Mitch97]   � Automated driving 

[Moriar98]   �  Automated driving 

[Weev03]   � Driving instructor 

[Gruyer05]  �  Vigilance monitoring 

VEDAS [Kargup04]   � Vehicle, driver, and 
environment monitoring  

[Gruyer05]  �  Vehicle, driver, and 
environment monitoring 

[Vidal02]  �  Environment monitoring 

[Oliver00]  � �  Driving manoeuvre 
learning and prediction 

[Mitro05]   �  Driving manoeuvre 
learning and prediction 

[Chan04]   �  Driving behaviour 
learning in intersection 

DAISY [Onken94] �   Collision Detection and 
Warning 

[Horo06]   � Drunk driving 
monitoring 

SICAS [Boury00] �   Road Site Analysis 

RSIT [Kwas07] �   Road Site Analysis 

[Chass05] �   Road maintenance 

ATMIS [Abdel06]   � Post-collision data 
analysis 

[Singh03]   � Post-collision data 
analysis 

[Chong04]    � Post-collision data 
learning to predict 
severity of injuries 

 

2.4. Post Analysis 

Due to the fatality rates of intersection crashes, it is necessary to develop an 

intersection safety system that can assist drivers to navigate through intersections 

well. Once analysis of crashes are performed, a suitable intersection collision 
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warning and avoidance systems that can provide mitigation strategies for 

potential crashes needs to be developed. The following are the features and 

various intersection data that are desirable for intersection collision warning and 

avoidance systems [Stubbs03]: 

• must incorporate and coordinate temporal traffic information from a variety 

of sensors; 

• must process this information, identify collisions or near-misses, and deliver 

countermeasures in real-time; 

• should give an explanation for different trajectories of the vehicles; 

• must elucidate various vehicle speeds and acceleration/deceleration in the 

area of the intersection; 

• should be able to adapt to different traffic volumes and average traffic speeds 

(e.g.  at urban / suburban intersections, there are larger numbers of vehicles 

and they move relatively slower when compared to when they are at rural 

intersections); 

• ought to differentiate different types of vehicles (e.g., buses are longer than 

cars, hence, they make wider and slower turns, consequently, bigger risk of 

collision); 

• should comprise pedestrians and cyclists crossing at the intersection; 

• must have effective means for issuing countermeasures; 

• must consider traffic signals and vehicles’ signals; 

• must consider the shape of the intersection; 

• must consider external factors such as weather conditions; 

• must consider driver distraction issue in relation to countermeasures issued. 

The above list requires information from sensors on the road and in-vehicle to be 

processed and analysed to determine comprehensive knowledge about the 

intersection and its locality. There have been a number of initiatives in 

developing intersection collision warning systems and/or avoidance systems. 
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Currently, no existing intersection collision warning and avoidance systems can 

tackle intersection collision problems entirely. 

 

Intersection collision warning and avoidance systems can be categorized as either 

vehicle-based, infrastructure-only or as infrastructure-vehicle cooperative 

[Ferlis01]. 

• Infrastructure-only systems utilise roadside sensors, warning devices, vehicle-

to-infrastructure communication, other roadside informational or warning 

devices, and traffic signals to provide driving assistance to road users 

[Ferlis01]. Infrastructure-only systems rely only on roadside warning devices 

to inform drivers. 

• Vehicle-based systems rely only on in-vehicle sensors, processors, and 

interface to detect threats and produce warnings. There is no communication 

means existed in these systems. 

• Cooperative systems communicate information straight to vehicles and 

drivers. The main advantage of cooperative systems rests in their potential to 

improve the interface to the driver, and thus to almost guarantee that a 

warning is received. Another potential of such a system is that it can apply 

control over the vehicle, at least in situations where the system can be 

recognised as trustworthy and the driver cannot be expected to take 

appropriate actions given the imminent danger and short response time. 

Cooperative systems include vehicle to vehicle communication and also 

infrastructure to vehicle communication. 

2.4.1 Infrastructure-Only Systems 

The U.S. Department of Transportation has successfully deployed an Intersection 

Collision Warning System (ICWS) for unsignalised intersections [USDOT99]. 

This system has demonstrated a significant impact on driver’s behaviour that it 
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has reduced the degree of collision risk at the intersection installed with ICWS. 

The effectiveness of ICWS installed on unsignalised intersections is measured 

by: (1) the increase of sign response speed, (2) acceptable intersection arrival 

speed, (3) first speed reduction, (4) second speed reduction, (5) overall speed 

reduction, and (6) the increase of Projected Times to Collision (PTC) which 

allows accident-avoidance manoeuvres [USDOT99]. In spite of the effectiveness 

of the system, sensors and visual warnings are given only from roadside 

infrastructure, which does not guarantee that warnings are attended by 

approaching drivers. 

 

The Intelligent Vehicle Initiative of the U.S. Department of Transportation 

proposed initial concepts for intersection collision avoidance systems [Ferlis01], 

which include: traffic signal violation warning, stop sign violation warning, 

traffic signal left turn assistance, and stop sign movement assistance. They aimed 

to install sensors on the roadside to detect speed, acceleration rate, deceleration 

rate, stopping, and movement of each vehicle approaching the intersection from 

all directions. Warnings are issued to drivers as violations or potential conflicts 

are detected. Warnings are given by: (1) activating warning lights to notify a need 

for caution and possibly to point out the source of the conflict; (2) activating 

intelligent rumble strips to notify the other motorist to slow down and advance 

carefully at the intersection; (3) using a Variable Message Sign (VMS) or graphic 

display sign to notify drivers of the potential conflict with the signal violator. 

These systems are still categorised into infrastructure-only systems, because there 

is no direct infrastructure-to-vehicle communication. As warning messages are 

given from the roadside, warning can be distractive and less effective.  

 

Three different Intersection Decision Support (IDS) systems, which have been 

installed in three different U. S. states in June 2003, are being tested for 

acceptance [Funder04]. These systems are designed to significantly reduce the 
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number of intersection crashes in the intelligent intersection sites. However, this 

is yet another infrastructure version of intersection collision warning system, as 

warnings are issued by illuminating a LED stop sign (Figure 2.2 [Funder04]) and 

activating an intelligent rumble strip [Chan03], [Werner03], [Funder04]. In the 

near future, vehicles will also be equipped to receive intersection collision 

warnings from a driver-interface with the development of in-vehicle sensor and 

communication technologies [Funder04]. 

 

 

Figure 2.2. PATH’s IDS Uses Illuminated Stop Sign [Funder04] 

 

A vision-based sensing system for monitoring an intersection and predicting 

vehicle collisions is currently under development [Stubbs03], [Veera02]. It uses a 

single camera arbitrarily positioned at an intersection to observe the traffic flows. 

The system classifies moving objects (such as vehicles and pedestrians), tracks 

each of their movements [Veera02] and collects traffic data such as vehicle 

speeds, positions, routes, accelerations/decelerations, vehicle sizes, and signal 

status [Veera02]. The proposed system is also able to compute promptly the 

potential collisions and near-misses by applying algorithms that analyse the 

speeds and routes of the moving objects being studied. However, the proposed 
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system still has unsolved issues, such as obstructions of the image (such as trees) 

and shadows in the vehicle image. In addition, vehicles that are not moving 

cannot be tracked by this vision based system [Stubbs03].  

 

In summary, existing intersection collision warning systems are still 

infrastructure-only systems, and are limited in certain aspects [Salim05], such as:  

• In delivery of a warning message, it is distractive and less effective as 

warnings are only displayed on the roadside. There is no guarantee that a 

message is received by the intended recipient. Warning displays from the 

roadside may also somehow distract other drivers who do not need to receive 

the message (see Figure 2.1 and Figure 2.2). 

• There is no means for communication that exists between road infrastructure 

and vehicles, and therefore, there is no exchange of useful information 

between them. 

• Information about the intersection might not be comprehensive as the only 

data source is roadside sensors. 

• The systems are mostly reactive. Reactive behaviour is required for such a 

real-time solution; however, deliberative reasoning can supplement and 

enhance these systems. 

• Each system is built for a particular intersection and cannot be generalised for 

other types of intersections, and therefore, each application requires a field 

study on that intersection. As previously discussed, this is due to the different 

characteristics of each intersection that requires a different treatment for its 

safety. 

 

The next section discusses research in the vehicle-based intersection collision 

warning and/or avoidance systems. 



 
 
 

 68  
 
 

2.4.2 Vehicle-based Intersection Collision Warning and 

Avoidance Systems 

Safety countermeasures for a single car have been developed by the National 

Highway Traffic Safety Administration (part of U.S. Department of 

Transportation) [Verid00] to cope with four different cross intersection crash 

scenarios. Nonetheless, the system does not include any means of communication 

between the infrastructure and the vehicle. However, communication between 

infrastructure and vehicles is being considered for implementation as it will 

improve the effectiveness of a vehicle-based intersection collision warning 

system.  

 

Most ongoing research for in-vehicle collision warning systems (e.g. forward 

collision, rear-end collision, and side collision warning system) enable the system 

to work in all road types, either in rural or urban areas, on highways or small 

streets, and also at intersections. These vehicle-based collision warning systems 

are fairly effective for a single vehicle. However, in an intersection, a potential 

danger normally impacts more than one vehicle and it is important that other 

possible affected vehicles are also warned about the impending collisions. 

 

A multiagent system for intersection collision warning system has been proposed 

by Miller and Huang [Miller02]. According to Wooldridge, an agent is 

autonomous intelligent program acting on behalf of the user [Woold02]. A 

societal group of intelligent agents, which are interacting with each other for 

common goals, can therefore be regarded as a multiagent system. Multiagent 

technology is very fitting for coordination of entities on the road. The abstraction 

of independent and autonomous entities, which are able to communicate with 

other entities and make independent decisions, maps suitably to the situation of 

an on-road scenario, where each entity, such as a vehicle, or a traffic light, can be 
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represented by an intelligent agent [Salim05]. This project uses a peer-to-peer 

concept where information and messages are communicated between a pair of 

vehicles. Threat detection relies on location, velocity, and acceleration 

information shared by other vehicles that use the system. Their proposed collision 

detection algorithms consist of algorithm to detect a potential collision point, 

detect collision time, and issue timely warnings. However, their collision 

detection algorithm is based on the conventional speed formula, and it requires 

calculation for each possible pair of vehicles at the intersection. In addition, since 

it is a peer-to-peer vehicle based collision warning and avoidance system, each 

vehicle needs to know the status of every other vehicle. Thus, each time the 

vehicle moves, all other vehicles should be informed. This incurs high 

communication cost. The algorithms are further discussed in Chapter 5. It is also 

suggested that based on the available time to reach the predicted collision point, 

either a collision warning message is sent to the driver or a command message is 

directly issued to the vehicle. A multiagent system approach is implemented for 

the intersection collision warning system. Each vehicle has a multi-agent-based 

software architecture and hardware architecture installed to detect potential 

dangers. The software architecture consists of three layers [Miller02]: 

• sensory agents (i.e. Global Positioning System agent, brake sensor agent); 

• decision / control agents (i.e. collision warning system agent); 

• presentation agents (e.g. speaker agents) that deliver warnings to driver. 

However, this system has some limitations [Salim07a]. Firstly, the agent 

architecture is reactive, without learning new knowledge, such as driving 

behaviours and crash patterns of the intersection, which can enhance the system 

to react better. Secondly, the algorithm for collision prediction used in this 

project is not efficient since every possible pair at the intersection is required to 

be computed for collision prediction. Finally, useful information about the 

infrastructure and environment are not incorporated here as there is no 

communication between infrastructure and vehicles, and between vehicles and 
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external parties. This makes this system categorised into vehicle-based collision 

system. 

 

Both infrastructure to vehicle communication (and vice versa) and vehicle to 

vehicle communication are desirable in a collision warning and avoidance 

system. Therefore, there have been new initiatives to develop cooperative 

intersection collision warning systems, as discussed in the next section.  

2.4.3 Cooperative Intersection Collision Warning and 

Avoidance Systems 

Research projects on cooperative intersection warning and/or collision avoidance 

systems have been initiated to improve intersection safety. One of the recent 

initiatives for developing cooperative safety system for intersection is the 

Cooperative Intersection Collision Avoidance Systems (CICAS) [USDOT07] by 

the U. S. Department of Transportation, which seeks to develop vehicle-based 

systems, infrastructure-only systems, and finally, infrastructure-vehicle 

cooperative systems. Vehicle-based systems include sensors, processors and 

interfaces for driver inside each vehicle. Infrastructure-only systems depend on 

roadside sensors and processors to identify vehicles and threats and then generate 

signals through messaging signs to warn motorists of potential collisions. 

Infrastructure-only operations typically necessitate data processing techniques, an 

essential evolutionary move towards deployment of subsequent cooperative 

systems. Infrastructure-vehicle cooperative systems use infrastructure-only 

systems, and also utilise a communications system, i.e. Dedicated Short Range 

Communications (DSRC) to exchange warnings and data directly with drivers in 

vehicles capable of accepting and displaying the warnings within the vehicle. It 

has been stated that data processing and analysis techniques are required to assess 

situations in such contexts [USDOT07]. 
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The other initiative in progress is based in Europe, which is the INTERSAFE 

project, part of the Integrated Project PReVENT [Fuers05], which aims to 

develop an intersection safety system to improve safety and reduce collisions. 

The INTERSAFE project develops an onboard system that utilises a combination 

of sensors to identify crossing traffic and all other objects on the intersection, in 

addition to sensors for locating the host vehicle position in the adjacent 

intersection. A communication transmitter between the host vehicle and the 

infrastructure is used to exchange additional information such as weather, traffic, 

and road conditions [Fuers05]. The INTERSAFE project employs two different 

methods in parallel [Fuers05]. The first method is to develop the Basic 

Intersection Safety System that is implemented on a Volkswagen test vehicle 

with two laser scanners for object detection, one video camera for road marking 

detection and vehicle-to-infrastructure communication. Communication units are 

to be installed at selected intersections to enable communication between the 

vehicle and traffic lights. A static world model is constructed from object 

detection, road marking detection, landmark navigation, GPS, and map 

[Fuers05]. The second method is to develop an Advanced Intersection Safety 

System that is implemented on a BMW driving simulator. This driving simulator 

examines dangerous states beyond the limitation of sensors in detecting the 

environment. In this second method, a dynamic risk assessment is executed based 

on object tracking and classification, communication with traffic management, 

and driver intention. Hence, potential threats to other road users and conflicts 

with traffic controls can be detected. As a result, the system by INTERSAFE is 

able to provide stop sign assistance, traffic light assistance, turning assistance, 

and right of way assistance [Fuers05]. INTERSAFE also identifies the need for 

analysing the situation and collision risks at an intersection, but specifics of how 

to learn and what techniques are appropriate have not been investigated or 

addressed.  
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There is also ongoing research to develop Cooperative Adaptive Cruise Control 

(CACC), which will use inter-vehicle communication [Bruin04] in order to 

maintain a safe distance from one another. CACC is the improvement from the 

Adaptive Cruise Control (ACC), as has been mentioned in Section 1.1. However, 

ACC, which is used to maintain a steady forward vehicle speed when driving in 

sparsely populated roads, is only intended for a single vehicle. CACC that utilises 

inter-vehicle communication allows vehicle to cooperate together, so that 

collision can be avoided. Moreover, a traffic flow study involving CACC has 

suggested that CACC will improve traffic flow performance [Arem06]. 

 

In summary, research initiatives in developing cooperative systems for 

intersection safety such as INTERSAFE [Fuers05] and Cooperative Intersection 

Collision Avoidance Systems (CICAS) [USDOT07] have recently commenced. 

To our knowledge, these projects are still in their early stages, and do not 

mention techniques to discover crash patterns and pre-crash behaviour 

associations, which are essential to detecting and reacting to potential threats. A 

generic framework that can automatically adapt to different intersections is 

required for efficient deployment; however, these projects have not addressed this 

issue [Salim05]. 

 

Existing intersection collision warning and avoidance systems, including the 

infrastructure-only and vehicle-based systems are still limited in many ways, 

which are restated as follows: 

• The systems are mostly built to suit a particular intersection and therefore 

lack the capabilities to adapt to different types of intersections and to detect 

various collisions. Furthermore, while the systems can react to potential 

threats or collisions, however, there is no learning from past history, 

experiences, or traffic data for better situational awareness. 
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• The data sources that are used in existing intersection collision warning and 

avoidance systems to feed and trigger the collision detection comes only from 

one type of source, which is either roadside sensors or in-vehicle sensors, not 

both. Both roadside and vehicle sources should be considered to help broaden 

the view and information about the intersection, vehicles and drivers that pass 

through the intersection. It is necessary to choose the most appropriate 

sensors that can provide real-time data source for real-time collision detection 

and warning. 

• The performance and scalability of the existing system are questionable 

[Miller02] since the collision detection computation requires every possible 

pair at the intersection to be calculated for the possibility of collision 

detection. 

• There are no existing communication means used between road 

infrastructures and vehicles (as the cooperative systems are still under 

development). Hence, no existing real-time communication protocols 

established between vehicles and road infrastructures. Such communication 

means are useful for status update and warning messages. 

• Effective and contextual means of delivering warning based on the available 

time before collision are required, but only [Miller02] presents such an 

argument.  

Thus the issues of adaptability, learning, leveraging multiple data sources, and 

real-time communication are the major challenges that need to be considered in 

designing intersection collision warning and avoidance system. These are 

elements that constitute the desirable properties of an intersection collision 

warning and avoidance systems. We discuss the necessity of those elements in 

the next section. 
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2.5. The need for a Real-Time, Generic, Adaptive, and 

Cooperative Intersection Safety Framework 

When it comes to modelling an intersection safety framework that can be used as 

a basis for developing an intersection collision warning and avoidance system, 

there are a number of issues and challenges to consider and draw our assumptions 

from: consideration of variety of data sources, performance and scalability, the 

issue of adaptability and learning, formalising/specifying communication cost 

models, and relationships between collision detection and warning. Pervasive 

computing techniques, as discussed in Section 2.3, have the potential to meet the 

desired properties. These are discussed in the following subsections with our 

recommendations on each issue. 

2.5.1 Consideration of a Variety of Real-Time Sensor Data 

Sources 

The information required in real-time to detect a collision based on the 

conventional speed formula are speed, vehicle size, travel direction, current 

position, and angle. Additionally, the vehicle registration number is required to 

identify each dataset uniquely. Vehicle manoeuvre data is also necessary for 

faster collision detection calculation (this is further explained in Chapter 5). 

Those data can be retrieved either from sensors on the road or in vehicles (See 

Table 2.2). All those data required to calculate possibility of collision are about 

individual vehicles. Therefore, it is important to decide whether those data are 

collected using roadside sensors or vehicle (on-board) sensors, and whether 

vehicle-to-infrastructure or vehicle-to-vehicle communication is required to 

communicate those sensor data to the location where collision detection 

algorithm is computed and warning messages are to be generated. 
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As stated in 2.4, the existing intersection collision warning and avoidance 

systems merely employ data from roadside sensors. The existing vehicle-based 

intersection collision warning and avoidance systems do not employ cooperative 

coordination between vehicle and infrastructure components. This causes a 

number of issues, such as partial information for collision warning and avoidance 

purposes and non real-time data sources. Hence, there is a need for real-time data 

sources to be supplied from both vehicle and roadside sensors. 

 

The assumption on data source and availability leads us to ponder on where the 

collision detection should be performed. We discuss this further in the next 

subsection that analyse the location of computation and efficiency of the collision 

detection algorithm in terms of performance and scalability. 

2.5.2 Performance and Scalability of Collision Detection 

The performance of the collision detection algorithm should be optimised in 

order to achieve real-time collision warning and avoidance. Moreover, due to the 

growing number of vehicles that use an intersection, the collision detection 

algorithm should also be scalable, in order to accommodate all the vehicles in the 

vicinity. There are few facets to this issue: firstly, where the collision detection 

should be computed; secondly, how are we going to compute the collision 

detection.  

 

The choice of the location of computation should not only be based on 

information availability, but also the efficiency of the method. In general, there 

are two ways of calculating collision detection based on the location of 

computations: 

• centralised, where calculations are done at the intersection’s vicinity (the 

algorithm running on some situated stationary computer server); 
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• distributed, where computations are done in each vehicle. 

 

When the centralised approach is adopted and no information is required from 

vehicles (by simply relying on roadside sensors), the only communication is 

sending warning messages to relevant vehicles from the central intersection 

server. However, if centralised approach is adopted and certain information from 

vehicles is required, communication must be established in a robust way. 

Information from the car, such as current position and angle, must always be 

transmitted to the central server every few milliseconds for accurate collision 

detection.  

 

When the computation is done locally on each vehicle (distributed approach), the 

intersection collision warning and avoidance system should be installed on every 

vehicle at the intersection. The system should rely on availability of in-vehicle 

sensor data retrieved from the each vehicle, and each local system should notify 

each other of its existence and status overtime as each system should identify and 

communicate with every other vehicle in the vicinity (peer-to-peer 

communication), such as the case in the Miller and Huang’s peer-to-peer 

collision detection system. If the number of vehicle at the intersection grows, 

each vehicle should notify all other vehicles at the intersection of its status 

change, and each vehicle should also process a number of different status 

messages from different vehicles in every split-second. Sending and deciphering 

multiple messages on a small computer system in a vehicle can cause a 

performance bottleneck. On the other hand, when data from roadside sensors are 

necessary, data from those roadside sensors must be sent to all vehicles at the 

intersection so that the most recent data are captured for collision detection 

calculation in each vehicle. The transmission of such messages from roadside 

sensors to passing vehicles is not trivial. 
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Therefore, it is necessary to consider where computations and learning are going 

to be performed. Note that it is essential to have a bird’s eye view of the whole 

intersection at a time so that the status of all vehicles at the intersection can be 

known and incoming collisions can be foreseen.  

 

Apart from the location of computation, performance issues also arise from how 

the collision detection is computed. Conventionally, the method of collision 

detection computation is pair-wise [Miller02], as discussed in Section 2.3.4. 

Every possible pair of vehicles at the intersection should be computed for 

collision possibility. Therefore, we need to consider which pairs of vehicles the 

algorithm should be applied to; otherwise, it would be applied to each vehicle 

pair at the intersection. In our view, there are two approaches for choosing which 

vehicles in the vicinity the collision detection algorithm should be applied to:  

• brute force: perform collision detection for each car, between the car and with 

every other car at the intersection; 

• preselection: perform collision detection only for the cars that have the 

possibility of collisions based on the known intersection collision patterns. 

 

In order to reduce computational time of collision detection, it is important to 

reduce the number of vehicle pairs to be calculated for collision possibility. 

Consider a four leg intersection with 60 vehicles in the vicinity: 10 in the left leg, 

25 in the right leg, 10 in the upper leg, and 15 in the bottom leg. Each leg has 6 

lanes; 3 for vehicles approaching the intersection; another 3 for outgoing 

vehicles. Collision detection is performed for the vehicle that is currently in the 

left leg and doing a right turn. With the brute force approach, calculation of 

possible conflicting pairs must be done 59 times for every other car within each 

calculation period. With the preselection criteria, the only colliding possibilities 

for the current vehicle are with vehicles in the bottom leg that are approaching 

the intersection with a straight manoeuvre, and only 10 vehicles satisfy such 
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criteria; thus, the calculation will be performed only 10 times within each 

calculation period. The existing intersection collision warning and avoidance 

systems employ brute force approach, which is not scalable when the number of 

vehicles at the intersection increases. Therefore, it is necessary to reduce 

computational time through well-established heuristics. Those heuristics can be 

stored in the knowledge base of the system for an intersection collision warning 

and avoidance system that is adaptive and able to learn dynamically. This is 

further discussed in the next section 2.5.3. 

2.5.3 Adaptability and Learning 

Currently, collision warning systems that have been installed are mostly reactive 

as they only focus on responding to events of collision detection, as illustrated in 

Figure 2.3. Data from each vehicle is used to calculate collision point with data 

from every other vehicle at the intersection. When the point of collision found, 

then time to collision is calculated. And if a collision is predicted, warning is 

issued, and then it does not take into consideration whether or not the predicted 

collision has actually happened. The information is discarded straightaway. This 

is mainly because the conventional collision detection algorithms [Miller02] are 

merely reactive.  

 

Nevertheless, it is also important for intersection collision warning and avoidance 

systems to be deliberative as well as reactive. This is because there is a need for 

systems that are generic (i.e. applicable to various types of intersections) and 

adaptive (i.e. capable of making adjustments to specific traits and patterns of 

collisions in a particular intersection). When an intersection collision warning and 

avoidance system has learning capabilities, it becomes generic and adaptive 

because the overall system is generic but the results of learning are knowledge 

specific to the particular intersection. Learning also helps to improve the 
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performance of collision detection. This is because the collision patterns learnt 

from the historical and real-time collision data are stored in the knowledge base, 

which is to be used for the basis of the preselection approach. In addition, ad-hoc 

changes at the intersection environment can also be learnt to further knowledge 

and awareness of the system about the intersection.  

 

 

Figure 2.3. Reactive Intersection Safety System 

 

Therefore, a learning component should be included as part of an intersection 

collision warning and avoidance system (Figure 2.4). By learning from historical 

collision and real-time data, automatic adaptations, better detection, and 

improved reactive behaviour can be achieved. None of the existing intersection 

collision warning and avoidance systems have incorporated learning for generic 

and adaptive collision detection, warning, and avoidance at various and varying 

intersections.  
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Figure 2.4. Reactive & Deliberative Intersection Safety System 

 

Apart from reliable collision learning and detection, an effective collision 

warning component is required. When a collision is detected and warning needs 

to be issued, we need to consider a timely warning. We need to avoid issuing 

warnings too frequently such that it becomes an annoyance to the drivers. 

Conversely, we need to issue warning in time before a potential collision actually 

takes place. Therefore, the relationship between collision detection is an 

important factor to be considered as well in developing an intersection collision 

warning and avoidance system. 

2.5.4 Relationship between Collision Detection and Warning 

Collision detection misses should be avoided; however the number of alarms 

should also be regulated, as too many false alarms can cause a nuisance to the 

driver [Horst93]. If a collision is detected, it is important to realise whether the 

time and distance needed to respond to the warning and avoid the collision is 

sufficient [Miller02].   
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In general, there are two main temporal dimensions that need to be considered in 

collision warning, which is composed of Time-To-Collision (TTC) and Time-To-

Avoidance (TTA). TTC is the remaining time predicted before a vehicle reaches 

the predicted collision point. TTA is the time available to avoid a collision which 

includes time to issue warning, human reaction time, and vehicle response time.  

 

Time-To-Avoidance (TTA) in Miller and Huang’s peer-to-peer collision warning 

system [Miller02] is computed based on vehicle kinetics, network latency, and 

human response time. If Time-To-Collision (TTC) is much greater than TTA, a 

warning is not issued. However, if TTC is close to TTA and driver is not braking, 

then warning is issued. Otherwise, if TTC is less than TTA, a mitigation unit is 

executed to lessen the collision effect [Miller02]. The best timing to warn drivers 

vary based on driver’s skills and experience, therefore they also proposed a 

parameter γ for tweaking the timing of effective warning [Miller02]. 

  (2.1) 

When γ is large, the algorithm will be more conservative. When it is too 

conservative, it can be a distraction rather than assistance to a driver. Thus γ must 

be adjusted well based on the best probable driver experience. However, 

according to Horst and Hogema [Horst93], the best time to warn driver using 

collision avoidance systems is when TTC is equal to 4 seconds. Nevertheless, 

when there is a fog that reduces visibility range to between 40 and 120 m, the 

most appropriate time for activating collision avoidance systems is between 4.5 

to 5 seconds before collisions. 

 

As TTA is greatly determined by velocity and distance to the collision point, 

sometimes, rather than issuing a warning to the drivers of the affected vehicles, it 

can be more useful to issue a command to the relevant vehicles to so that 
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appropriate action can be taken automatically rather than wait for the user to react 

to a warning message (thereby adding a further delay). For example, if TTC is 

greater than TTA, a warning message will be generated for driver to take an 

action. However, if the TTC is less than TTA, then the system can issue a 

command to change the steering angle or even change lane to avoid collision 

automatically without driver’s intervention. The higher is the velocity; the lower 

is the available time to avoid collision, and a greater chance that a direct 

command message to the machine can be more effective. 

 

Since the communication between all the components involved in the intersection 

collision warning and avoidance system should be efficient and effective, the 

next section reviews various elements involved in communication between the 

central computing infrastructure and the vehicle.  

2.5.5 Communication Model and Protocol 

When considering communication between the components in the intersection 

collision warning system, which include vehicles and the central intersection 

component, we must consider all the possible costs involved and the model of the 

communication. Therefore, we need to know where to host the computations for 

collision detection and generate warnings, as discussed in the subsection 2.5.1 

(centrally or distributed), so that the cost of generating warnings as well as the 

computation cost of collision detection can be reduced.  

 

We also need to consider the message protocol to use, as it is important to 

consider the effectiveness and efficiency of the message. Road Web Mark-up 

Language (RWML) [Kajiya04] is an initiative to setup a web service and its 

protocol for the purpose of exchanging road traffic information. It contains static 

information on environment surrounding the traffic, such as weather, road closure 
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event, etc. RWML is based on XML. It has been an issue that XML web services 

can cause a heavy bottleneck that generates a performance problem. It is suitable 

for the purpose of general road traffic information, but it is not able to serve the 

purpose of exchanging sensor information intensively and issuing collision 

warnings in real time. Therefore, it is necessary to create a lightweight message 

protocol for intersection collision warnings. At this stage, there is no real-time 

messaging protocol that has been proposed for intersection collision warning. The 

next section summarizes the previous discussions and discusses the challenges 

for the future of intelligent software systems in ITS. 

 

2.6. Summary 

In this chapter, we have reviewed road safety analyses that have been conducted 

in various intersections in different countries worldwide. The results of those 

analyses vary from one site to another, due to different and varying 

characteristics of each intersection. Hence, initiatives and efforts in advancing 

intersection safety also vary from one intersection to another. However, 

essentially, road safety analyses are performed in uniform stages in each 

intersection. Road safety analyses consist of three stages, which are pre-analysis 

(data collection), analysis (data investigation that yield knowledge, patterns, etc 

to help decision making), and post-analysis (implementing the solution). Current 

road safety analyses mainly involve manual observation and traditional ways 

(e.g. paper database, survey and interviews, statistic generation, etc). Computing 

techniques can help to automate parts of the analyses’ tasks that are normally 

conducted through manual observation. For example, pre-analysis can involve 

data collection from roadside and vehicle sensors in addition to the domain expert 

knowledge extracted from manual observation. Analysis can take into account 

pervasive computing technologies, such as context awareness, knowledge based 
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systems, intelligent agents, and data mining, to generate, present, and 

communicate interesting knowledge and patterns about intersections. These 

components can then be implemented in post-analysis as a holistic solution to 

intersection safety problems. Thus, these leveraging of automated techniques to 

supplement and enhance analyses tasks have not been extensively performed. 

Such techniques demonstrate clear applicability and benefits for enhancing 

currently prevalent manual approaches. 

 

The current or existing intersection collision warning systems are mainly 

infrastructure and vehicle-based only, and are limited in many ways because 

those systems are mostly built for certain type of intersections, do not have the 

ability to learn from past collisions, have performance and scalability issues, and 

do not explore the availability and potential of sensor data. Communication is not 

developed as part of the systems (hence, there is no real-time communication 

protocol), and some do not define a clear relationship between detection and 

warning.  

 

Consequently, there is a clear need for a cooperative intersection collision 

warning and avoidance system that: 

• incorporates various and real-time data from vehicle and roadside sensors; 

• is generic and adaptive to various intersections; 

• is able to perform real-time detection and warning no matter how busy an 

intersection is; 

• has an established real-time communication protocol; 

• is able to send a warning message effectively and efficiently in order to avoid 

a future immediate collision. 
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Our review has established that current research projects in cooperative 

intersection collision warning and avoidance system are still in progress and do 

not posses the above requisite properties. 

 

Therefore, an intersection safety system that can adapt to all kinds of intersection, 

detect collisions at road intersections, and warn drivers of potential collisions or 

hazards in real time, is required. In designing and developing an intersection 

collision and warning system, there are few issues we need to take into account, 

which includes variety of real-time data sources, performance and scalability, the 

issue of adaptability and learning, communication cost and model, and 

relationships between collision detection and warning. We need to consider 

whether the most appropriate real-time data sources are either from the 

intersection’s infrastructure sensors or in-vehicle sensors. The collision detection 

and warning should be cost-efficient and robust that it is able to accommodate 

any increasing number of vehicles in the vicinity and still able to communicate 

messages and warning in real-time. Learning is an important component of the 

system as it helps in reducing pairs of vehicles at the intersection based on the 

learnt collision patterns, also allows the system to be more flexible. 

Communication cost, model, and its relationship to detection should be part of 

the design of the framework to deliver a cooperative intersection collision 

warning and avoidance system. 

 

Such requirements of a generic, adaptable, real-time, efficient, and cooperative 

intersection collision warning and avoidance system can be satisfied by pervasive 

computing techniques. Integration of knowledge based systems, context 

awareness, and data mining bring powerful facets to the development of an 

intersection collision warning and avoidance system.  The concept of knowledge 

based system shows how knowledge can be acquired and represented for decision 

making in intersection. When a knowledge base is used for intersection safety, 
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the domain expert knowledge and results of analyses from historical and real-

time data of the intersection can be stored and used for collision handling. 

Context awareness helps an intersection collision warning and avoidance system 

to realise the surrounding states that can affect the application behaviour and then 

act accordingly. When an intersection collision warning and avoidance system is 

context-aware, it is able to correspond to the intersection characteristics and the 

current situation in handling collisions. Data mining is used to extract useful and 

interesting patterns from the data collected either manually or from sensor or 

both. Hence, when an intersection safety system is equipped with data mining 

capabilities, it is able to learn collision and traffic patterns that pertain to 

intersection, and thus, enhance the knowledge base of the system. 

 

In Chapter 3, a framework for a cooperative intersection collision warning and 

avoidance system that is underpinned by pervasive computing techniques is 

proposed. The components that make up the framework and how each component 

contributes to the solution are discussed in detail in that chapter. 
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CHAPTER 3  

The Ubiquitous 

Intersection Awareness 

(U&I Aware) Framework 

Due to the high rates of accidents and fatalities worldwide, developing a reliable 

intersection safety system that is able to detect and warn of potential collisions is 

a priority in many countries. Essentially, a fast, accurate, and efficient approach 

is required to detect and avoid potential threats at a road intersection. As 

discussed in the previous chapter, there is a requirement for an intersection 

collision warning and avoidance system that is able to:  

• incorporate various real-time data sources from vehicle sensors and roadside 

sensors;  

• adapt to different intersections; 

• perform real-time detection and warning; 

• send a warning message effectively and efficiently in order to avoid a future 

collision. 

 

In order for a vehicle to effectively avoid an imminent collision, the time needed 

to avoid a collision (i.e. Time-To-Avoidance or TTA) should be less than the 

time left before a potential collision is predicted to occur (i.e. Time-To-Collision 

or TTC). Therefore, it is essential to increase the speed of detection (thus 

increasing the TTC value) and reduce the communication costs (thus decreasing 
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TTA value). After reviewing the desirable properties of an intersection collision 

warning and avoidance system addressed in Section 2.5, in order to achieve a 

real-time intersection safety system, it is evident that we need to address the 

following issues. 

 

To speed up collision detection (increase TTC), we need to reduce the number of 

vehicle pairs for which collision detection needs to be computed. Thus, there 

needs to be a mechanism for a preselection or filtering process to reduce the total 

computation time. In this thesis, we propose that using data mining from a variety 

of historical/real-time sources has the potential to provide collision patterns that 

are intersection specific. These patterns, which can then be made readily 

available and accessible through a knowledge base, can form the basis for 

preselection. 

 

Furthermore, to reduce the time needed to avoid collision (reducing TTA), we 

need accurate cost models of the Time-To-Avoidance (TTA) to assess timely 

warning or command messages and a communication protocol that can operate in 

an efficient and real-time manner. 

 

Thus, there is a need to incorporate pervasive computing techniques to analyse 

collision and traffic data as well as perform efficient collision detection. A real-

time communication protocol that is able to send warning message only to 

potentially affected drivers is also required. Furthermore, due to the variety and 

varying characteristics of intersections, a framework that is generic and adaptive 

to different types of intersections is necessary. Learning of intersection 

characteristics and dangerous driver behaviours should be an integral part of such 

a framework. Techniques, such as data mining, can be used to support generality 

and adaptability of the framework by learning collision patterns that are pertinent 

to a specific intersection. 
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The term framework in this thesis is used to refer to a chain of multiple software 

processes that collaborate together to achieve a goal. This framework is flexible, 

generic, and can be used to generate and represent various intersection collision 

warning and avoidance systems. Hence, the desirable properties of intersection 

collision warning and avoidance systems should be part of this framework. 

 

We aspire to design and develop a framework that is generic, adaptable and 

performs situation recognition at road intersections through learning and 

detecting potential threats and generating warnings to relevant road users at an 

intersection. This chapter discusses our generic, adaptive, and real-time safety 

framework for road intersections. The work presented in this chapter has been 

previously published in [Salim06], [Salim07a], [Salim07c], [Salim08a].The 

framework is introduced in 3.1. Sections 3.2 through 3.6 elucidate how the facets 

of the framework satisfy the requirements of a safety framework laid out in the 

previous chapter (in particular, Section 2.5.). Section 3.7 concludes the chapter. 

 

3.1. U&I Aware Framework 

In this thesis, we propose the Ubiquitous Intersection Awareness (U&I Aware) 

framework to achieve situation recognition and real-time collision detection and 

warning at road intersections. The components of the U&I Aware Framework are 

portrayed in subsection 3.1.1. In 3.1.2, novel traits of the U&I Aware Framework 

are discussed. Lastly, in 3.1.3, the mapping of the framework to agents is 

presented. 
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3.1.1 Components of the U&I Aware Framework 

The U&I Aware Framework is the basis of a cooperative intersection collision 

warning and avoidance systems. Figure 3.1 illustrates the framework’s 

components, which consist of learning, detection, and warning of collisions at an 

intersection. It also demonstrates the elements in each of the components in the 

U&I Aware Framework and the iterative operational process among the 

components. This figure is based on ANSI/ISO flowchart standards [ISO85]. The 

aim of the diagram is to conceptualise the components of the proposed 

framework in terms of their functionality at an abstract level.  

 

 

Figure 3.1. Collision Detection, Learning, and Warning Components in 

the U&I Aware Framework 

 

Each of the components is described as follows: 
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• Collision Learning. This component belongs to the pre-analysis and analysis 

phase of the Road Safety Analyses (RSA). The collision learning component 

consists of the following elements: 

i. Data collection. Historical collisions as well as online real-time vehicular 

and traffic data from the intersection’s vicinity are collected to be 

analysed. Since collision data are rare, “near collision” or “near miss” 

events [Hayw72] are also captured to support data collection. The U&I 

Aware Framework only consumes sensor data, it does not perform any 

sensor data fusion or processing of raw sensor data from a particular 

sensor or a sensor network. Learning can start as soon as data is collected. 

A minimum quantity of data required is not specified since patterns (such 

as collision patterns) can be extracted once there is data. However, as a 

general rule of thumb, the more data is acquired, the higher is the support 

and confidence of the patterns and rules extracted from it.  

ii. Data mining. Due to the need for a generic intersection collision warning 

and avoidance system, learning of specific collision patterns that are 

relevant for each particular intersection needs to be performed using data 

mining techniques. Once data are collected, data mining is applied on the 

collected data.  

iii.  Knowledge Base Integration. The results of learning that are relevant only 

for that particular intersection are integrated into the knowledge base of 

the framework for that intersection. Hence, the knowledge base is specific 

to an intersection and the situations that occur at the intersection. The 

knowledge base is used as the basis for preselection, which is an algorithm 

to match the vehicles that pass through the intersection with the collision 

patterns in the knowledge base. This is the key to reducing TTC. 

• Collision Detection. This component belongs to the post-analysis stage of the 

RSA. In this thesis, the term “collision detection” and “collision prediction” 

are used interchangeably as both refer to recognising potential collisions (i.e. 
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future threats). These terms do not refer to identifying past or existing 

collision events. The collision detection component contains the following 

elements: 

i. Preselection. Based on the status data of a vehicle and key collision 

patterns in the knowledge base of the intersection, the preselection 

algorithm identifies vehicle pair combinations that have possibilities to 

collide.  

ii. Calculate future collision point. The potentially colliding vehicles provide 

data to the collision detection algorithm. Each vehicle pair selected by 

preselection is assessed to see if a future collision point exists.  

iii. Calculate TTC. If a future collision point is detected, then the TTC of each 

vehicle in the pair to the future collision point is calculated and compared. 

When the TTC of both vehicles are almost equivalent, then a future 

collision is imminent. 

• Collision Warning. This component also belongs to the post-analysis stage of 

the RSA. The elements of the collision warning component are as listed 

below: 

i. Calculate TTA. TTA of both vehicles are calculated using the TTA cost 

model. We present our proposed TTA cost model in this chapter that 

addresses the need for a real-time communication protocol.  

ii. Issue warning or command. Depending on the TTA of each vehicle, either 

warning messages are issued to drivers of the relevant vehicles or 

command messages are generated and sent directly to the vehicle systems 

to avoid or minimise impact of an impending collision. 

 

Within each component of the U&I Aware Framework, the processes are 

performed sequentially, because each of these processes is executed 

interdependently of each other. However, the component itself is executed 

continuously. Firstly, the collision data are monitored at all times and the results 
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of collision learning are incrementally added to the knowledge base. Secondly, 

the collision detection component continually monitors the status data of passing 

vehicles. Thirdly, the collision warning component is performed whenever it 

receives a new future collision event prediction. Thus, the U&I Aware 

Framework is a parallel and continual process of learning, detection, and warning 

of collisions, which are highly correlated to each other. Next, we discuss the traits 

of the U&I Aware Framework that distinguish it from existing collision warning 

and avoidance systems. 

3.1.2 Novelty of the U&I Aware Framework 

Currently, existing collision warning and avoidance systems only have detection 

and warning components (such as in a reactive intersection safety system – 

Figure 2.3). Consequently, they can merely react and respond to certain events as 

pre-programmed. However, since the U&I Aware Framework incorporates the 

learning component (such as in a reactive and deliberative intersection safety 

system – Figure 2.4), which does not exist in other collision avoidance systems, it 

carries two major positive contributions. Firstly, adaptability, as the framework is 

able to adapt to different and varying intersection characteristics that are learnt 

over a period of time. Secondly, improvement in performance and scalability of 

collision detection at intersections, as given the collision patterns learnt in the 

intersection, not all pairs of vehicles need to be computed for collision 

possibility.  

 

The novelty of collision learning enables new intersection collision warning and 

avoidance systems (that can suit to various intersections) to be developed on the 

basis of the U&I Aware Framework as the governing principle. This is because 

the adaptation of new knowledge and information gained from mining of sensor 

and historical data at the intersection are performed as an integral part of the 



 
 
 

 94  
 
 

framework. By learning from historical data of collision and near-collision 

events, improved detection and reactive behaviour can be achieved since the 

knowledge base of the intersection continues to evolve. Thus, the system can 

operate in any intersection where it is installed and learns of collisions that are 

specific to that intersection. 

 

The U&I Aware Framework, as a basis for a cooperative and generic intersection 

collision warning and avoidance system that works on various intersections, is 

inspired by the notion of context-awareness, since a context-aware application is 

capable of being conscious of the changes in its environment and adjusting its 

behaviour accordingly. A context-aware application consists of a set of context 

attributes that become the basis for recognising a situation, adjusting the 

behaviour of the application, and issuing a specific response.  

 

As the U&I Aware framework is generic and adaptable to different locations, it 

can be considered as a context-aware application (or to be more specific a 

location-aware application). The framework can be aware of changes in the 

location context and able to use the context information (e.g. collision patterns, 

traffic patterns, road user behaviours) as stored in the knowledge base to adapt to 

location changes by learning from sensor data. This knowledge base has the 

ability to grow over a period of time if incremental learning from current events 

is incorporated into the system. In fact, collision patterns are the main context 

attributes that are used in the U&I Aware Framework that makes it a context-

aware application. There are multiple context attributes that can determine the 

behaviour of the application, which are applicable to this application domain. 

Examples of context attributes that can be used in an intersection safety system 

might be: speed profile of a driver, acceleration behaviour of a driver, speed limit 

of the intersection, traffic patterns during different times of the day or different 

days of the week etc. In this thesis, collision patterns are the context attributes 
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that determine the circumstances in which collision detection is performed. These 

patterns are explained further in Chapter 4. Collision detection is only performed 

when matching vehicle status data with the context attributes (i.e. collision 

patterns) are found.  

 

The key to the context-awareness of the U&I Aware Framework lies in the 

integration of data mining techniques and a knowledge base to facilitate the 

framework to learn from its environment (and accumulate context attributes of a 

specific intersection location), be aware of the occurrence of learnt events or 

incoming threats in the environment (monitor the intersection for events that can 

be identified with the context attributes), and respond to the incoming threats 

contextually (based on a given context attribute, the system yields a certain 

action, e.g. issuing a specific warning to the relevant drivers). 

 

The next subsection presents the mapping of the U&I Aware Framework to an 

implementation driven by software agents at the intersection’s vicinity.  

3.1.3 Implementation Map and Scope 

For implementation, the U&I Aware Framework is mapped to agents in 

intersections and vehicles. The notion of an agent is used to signify a piece of 

software that can act autonomously on behalf of the user. Ideally, each agent 

needs to be capable of learning from sensory and historical data, detecting 

threats, and issuing warning to one another. Learning needs to be enabled in each 

agent depending on the context. For example, an intersection agent can learn 

patterns of collisions and traffic at the intersection’s vicinity. A vehicle agent can 

learn driver behavioural patterns in driving context as well as dangerous driving 

behaviours (such as drink driving and drowsiness). Threat detection can also be 

enabled in every vehicle and intersection agent based on the patterns learnt on the 
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agent. For example, a vehicle agent is able to detect drink driving behaviour and 

threats that are faced by the driver when such behaviours are learnt. However, 

collision detection based on collision patterns can only be done by the 

intersection agent, since collision patterns are learnt by each respective 

intersection agent and not by vehicle agents. When a threat is detected, the agent 

can then issue warning messages to other agents that may be impacted.  

 

The communication between the intersection agent and vehicle agents in the U&I 

Aware Framework is regulated inside the administration zone (Figure 3.2). An 

administration zone is the spatial domain that determines the region of authority 

of an intersection agent to coordinate vehicle agents in the approaching and 

passing vehicles. A wireless infrastructure is required for the administration zone 

and messaging of U&I Aware Framework to operate. A wireless network router 

can be installed in each intersection centre. Each vehicle needs to be equipped 

with a wireless device, or at least with Bluetooth. The size of an administration 

zone is dependent on the effective wireless signal strength. The maximum radius 

of an administration zone is 100 meters from the intersection centre. This is 

because both wireless network and Bluetooth can cover the range of 100 meters 

well. 

 

Figure 3.2. Intersection Administration Zone 
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Figure 3.3 portrays the relationships among vehicle agents and the intersection 

agent. Status messages, which are used to communicate real-time sensory 

information of each vehicle, are broadcasted by each vehicle agent to all other 

agents continuously. A registration message is initiated by the intersection agent 

and sent to the vehicle agent that enters the intersection’s administration zone. A 

registration message is used by the intersection agent to retrieve specific 

information about the vehicles that are relevant for collision detection. Warning 

messages can be sent by any agent at the intersection to other relevant agents. 

Figure 3.3 displays a full scale implementation of the U&I Aware Framework 

since learning, detection, and warning components are implemented in both 

vehicle agents and intersection agent. However, based on the given scenario, a 

full scale implementation may not be necessary. In this thesis, learning, detection, 

and warning components are only implemented on intersection agent.  

 

 

Figure 3.3. Mapping the U&I Aware Framework to Agent 

Implementations 

                          Registration message 
                          Status message (broadcast) 

                          Warning message 

Vehicle Agent 
Learning, detection, warning 

Vehicle Agent 
Learning, detection, warning 

Vehicle Agent 
Learning, detection, warning 

Vehicle Agent 
Learning, detection, warning 

Intersection Agent 
Learning, detection, warning 
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As mentioned in Section 1.4, the aim of this thesis is to establish a generic 

framework that assists in collision detection and avoidance at road intersections. 

We propose learning of collision patterns to add to pair-wise collision detection 

for higher efficiency in terms of TTC. The implementation and messaging 

scenario adapted in this thesis is depicted in Figure 3.4. An intersection agent acts 

as a central traffic authority to learn collision patterns, detect threats and warn 

possibly affected vehicles of incoming hazards. The vehicle agent of each car at 

the intersection should always report to the intersection agent of its entry into and 

exit from a designated area in the vicinity of the intersection and also send its 

status periodically. Vehicle information and driver’s behaviour information, such 

as driving manoeuvres are retrieved from in-vehicle sensors. An intersection 

agent manages the tasks of communication, learning, detection, and warning. The 

protocol of the communication is described further in section 3.6. 

 

 

Figure 3.4. Agent Implementation and Messaging Protocol 

 

Since collision patterns of an intersection are appropriately learnt by intersection 

agent and not vehicle agents (as discussed further in section 3.3), we do not 

implement learning, detection, and warning capabilities in vehicle agents in this 
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thesis. Collision learning and collision detection components are evaluated in this 

research and discussed further in Chapter 4 and 5. The cost model and functional 

evaluation of collision warning component are discussed in section 3.5 and 

section 3.6 respectively, but the field evaluation of collision warning is beyond 

the scope of this research.  Furthermore, new model or applications for road 

safety or ITS in general require evaluations to be conducted in a simulation first 

before real-world evaluations [Sicking00]. Therefore, computer based 

simulations are developed to evaluate this research. 

 

As mentioned previously in section 2.5, there are a number of desirable 

properties for an intersection collision warning and avoidance system based on: 

integration of a variety of real-time data sources for collision detection, 

performance and scalability, the issue of adaptability and learning, 

communication cost and model, and relationships between collision detection and 

warning. How the U&I Aware Framework meets each of the desirable properties 

is discussed in the following subsections 3.2 to 3.6. 

 

3.2. Consideration about Variety of Data Sources 

As discussed in section 2.5.1, in order to detect collisions efficiently, real-time 

data sources are required. The system needs to be aware of the current status of 

each vehicle travelling at the intersection. It is mentioned in section 2.2 that in 

terms of retrieving data that is pertinent to a particular vehicle, the speed of 

processing data from sensors in the vehicle itself is faster than roadside sensors. 

We can get reliable real-time data from vehicle sensors, but information from 

roadside sensors cannot be obtained in real-time. Hence, it can be more efficient 

if every vehicle can provide and transmit the data directly over a wireless 

communication link to other entities that require them, than purely relying on 
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infrastructure sensors. This bypasses the need for complex data fusion of roadside 

sensors. For example, the current speed of a particular vehicle can be measured 

by the speedometer in the vehicle and registration number information can be 

built-in or saved in the vehicle’s profile. This approach is simpler and faster than 

using roadside sensors, such as a camera, to measure the speed of the vehicle and 

detect the registration number of the relevant vehicle. It has been tested that 

performance of a system using both on-board sensors and inter-vehicle 

communications is better than that of the system using merely on-board sensors 

or merely inter-vehicle communications [Satake07]. Therefore, we suggest 

utilising in-vehicle sensors as a useful data source rather than roadside sensors to 

retrieve information about a vehicle.  

 

Nevertheless, there is information about the intersection that can only be 

provided by roadside sensors. For example, to know the traffic light rules and 

operation at the intersection, the traffic control sensors must be incorporated into 

the system. Fundamentally, both roadside and vehicle sensors are needed for a 

global comprehensive view of an intersection. However, the selection of sensors 

to be used for certain data should be decided based on the accuracy of the data 

and the speed with which it is available and accessible. 

 

As suggested in section 2.5.1, the usage of vehicle sensors for data collection 

about each vehicle and roadside traffic control for traffic rules information is 

recommended. Vehicle manoeuvre, which is also required for collision detection, 

can be detected from GPS data (e.g. lane change manoeuvre detection [Xuan06]), 

face and gaze sensor data, or video cameras data with CHMM implementation 

[Oliver00]. Predicting intended driving manoeuvres can be done one second 

before the actual manoeuvre takes place. Hence, the best scenario of sensors to be 

used and applied for collision detection based on accuracy and performance are:  
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• vehicle sensors: GPS (to detect vehicle speed, angle, direction and position), 

GPS or face and gaze sensor (for manoeuvre detection), built-in profile 

information of a vehicle (vehicle size, registration number); 

• roadside traffic light sensors (if the intersection has traffic light controllers). 

 

Next, in Section 3.3, the facets of the U&I Aware Framework that ensures 

performance and scalability of collision detection are presented. 

 

3.3. Performance and Scalability of Collision Detection 

Performance and scalability of the collision detection component is affected by 

two factors (see Section 2.5.2): (i) the location where data analysis, data 

processing, and collision detection are performed, which are either centralised 

(where calculations are done centrally at the intersection’s vicinity) or distributed 

(where calculations are done locally in each vehicle), and (ii), the method of 

filtering the vehicles that have a likelihood of being involved in a collision, which 

is either brute-force (no filtering as collision detection is computed for every 

possible pair at the intersection) or using some mechanism for filtering or 

preselecting certain vehicles (collision detection is performed only on vehicles 

that match the known collision patterns). 

 

The centralised computation has a greater advantage of having the bird’s eye 

view of the whole intersection at a time, since the central component knows the 

status of all vehicles at the intersection. Hence, in order to have a global bird’s 

eye view of the intersection and reduce the overhead of vehicle-to-vehicle 

communication (which is the case if the distributed approach is adopted), it is 

recommended to have a central component where computations and learning of 

collision patterns are going to be performed. With a centralised computation 
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method, the matter of the sensor location is not that significant in comparison to a 

distributed computation method.  In this thesis, we investigate a centralised 

computation strategy. Thus, to facilitate the centralised computation, the U&I 

Aware Framework uses an intersection agent that is located at the intersection’s 

vicinity. This section only covers discussion on collision detection. The other 

tasks of the intersection agent are presented in subsequent sections. 

 

In order to improve performance of collision detection, we need to revisit the 

conventional way of computing collision detection, which must be performed 

each time a car moves from its current position [Miller02], as mentioned in 

Section 2.3.4. The peer-to-peer collision detection system by Miller and Huang 

[Miller02] implies a brute force approach as computation is done locally in each 

vehicle against every other vehicle at the intersection. Figure 3.5 presents the 

pseudocode of the conventional pair-wise collision detection algorithm used in 

[Miller02].  

 

for each vehicle at the intersection 

V1 = current vehicle 

for each other vehicle at the intersection 

  V2 = other vehicle 

  calculate point of collision (X) 

  if point of collision found then 

    calculate Time-To-Collision of V1 to X (TTC1) 

    calculate Time-To-Collision of V2 to X (TTC2) 

    if (TTC1 +- (V1 size/speed)) = (TTC2 +- (V2 size/speed))   

   collision is predicted between V1 and V2 

    else 

   no collision is predicted between V1 and V2 

Figure 3.5. Pair-Wise Collision Detection Algorithm [Miller02] 
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Each time a vehicle moves, it must know about possible collisions with any other 

vehicle in the vicinity. However, vehicles that move in a non-discrete time must 

send its information in a series of discrete intervals. The collision detection 

algorithm in Miller and Huang’s approach is computed whenever new 

information is received, which is at 10 Hz, i.e. 10 signals sent per second 

[Miller02]. If there are 10 vehicles in the vicinity, each of the 10 cars will send 9 

signals, one to every other vehicle that is in the vicinity per second. In total, there 

will be 90 signals broadcast every second by all other cars which will need to be 

processed by each car. When the number of vehicles in the vicinity increases 

(such as during peak hours); the computation cost for brute-force also increases 

exponentially. Therefore, when the brute-force method is applied, the issue of 

performance and scalability becomes prominent.  

 

Given that the brute-force method implies collision detection computation to be 

applied on every possible pair of vehicles at the intersection, it is not efficient to 

do so in real-time, especially when there is an increasing number of vehicles at 

the intersection. Consequently, to enable real-time collision detection, we need to 

reduce the number of vehicle pairs for which collision detection computation is 

performed. Therefore, we propose that before the collision detection computation 

is performed, we need to “preselect” the vehicles that are most are most likely to 

collide based on the collision patterns learnt at the intersection. Preselection 

requires a holistic or global view of the intersection. Therefore, it needs to be 

performed centrally by the intersection agent. This is yet another underpinning 

factor for the design decision of the U&I Aware Framework, having a centralised 

rather than distributed mode of operation. Thus, the intersection agent needs to 

store the useful and related information of that particular intersection to enhance 

the performance and scalability of the collision detection. An example of such 

information is the most common collision pattern in the intersection that involves 

certain manoeuvres and driving directions. When such a pattern is found as being 
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relevant or applicable to passing vehicles, collision detection computation must 

be performed. 

Since the real-time considerations clearly imply that preselection is more 

advantageous and preferable to the brute-force approach. The U&I Aware 

Framework proposes and develops novel strategies for performing preselection. 

We also evaluate the performance impact and benefit of preselection in 

comparison with the brute force approach. To improve the efficiency of a 

collision detection algorithm, the preselection method is applied in the U&I 

Aware Framework, so that collision detection is only performed on pairs of cars 

that have the possibility of collisions based on known intersection collision 

patterns.  

 

We propose that data mining can be used to learn patterns of collisions in an 

intersection. These patterns can form the basis for performing preselection, since 

these patterns demonstrate the combinations of vehicle pair’ characteristics (i.e. 

direction, manoeuvre, angle, intersection leg position) that have the high 

likelihood to collide. By choosing only the vehicles that exhibit behaviours, or 

are in specific relative locations, or are involved in driving manoeuvres that 

match specific collision patterns in the knowledge base for collision detection 

calculation, the performance of detection can be improved, while still 

maintaining the accuracy. This is because the number of vehicle pairs at the 

intersection that need to be computed for collision detection is reduced. As stated 

earlier, preselection is performed by the intersection agent, as this agent given its 

centralised operation knows the status of all vehicles in the vicinity. Hence, 

mining collision patterns is also performed in the intersection agent. 

 

For example, given a cross intersection where the knowledge base contains a 

collision pattern “perpendicular straight”, which implies to collisions that 

happens between vehicles that have a straight manoeuvre movement when 
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entering the intersection and their conflicting paths intersecting at an angle of 

around 90 degrees. If a car enters the intersection from the south leg of the cross 

intersection detection with a straight manoeuvre movement, collision detection 

will be performed on this car against every other car that is currently located on 

perpendicular paths (i.e., west and east legs of the intersection), or moving 

straight towards the intersection. Therefore, performance can be improved and 

the cost of collision detection computation can be more efficient by not needing 

to check every vehicle pair at the intersection for collision detection computation. 

Although there is also an additional cost involved for preselecting the pair of 

vehicles at the intersection in addition to the cost of collision detection 

computation of the preselected vehicle pairs, it is relatively less expensive in 

comparison with the reduction of the cost of computing the pair-wise collision 

detection algorithm. The cost of computing the pair-wise collision detection with 

preselection can be considerably more efficient than without preselection, 

particularly when there are more vehicles at the intersection. However, there are 

cases when there are only a very small number of vehicles that pass through the 

intersection and mere application of pair-wise collision detection without 

preselection could serve the same efficiency.  

 

The graph in Figure 3.6 displays the comparison of algorithm counts (i.e. the 

number of times the collision detection algorithm is executed to calculate 

possibilities of collisions in an intersection at a given time and the number of 

vehicles in an intersection) between brute force (merely conventional collision 

detection algorithm) and having preselection within each computation interval 

(which is 5 miliseconds in our simulation). Data is sampled from our simulation. 

The figure reveals that preselection performs better than brute force. The 

preselection method reduces the algorithm count greatly. At times, although the 

number of vehicles increases, when there is no vehicle that fulfils the preselection 
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criteria, the algorithm count is zero. However, with the brute force approach, an 

algorithm is executed at all times. 

 

However, when the preselection approach is to be applied, the knowledge base 

should have a set of collision patterns that pertain to the intersection. Otherwise, 

the system may miss detecting a potential collision that is not stored as a known 

pattern in the knowledge base. Hence, collision patterns that become the 

heuristics for preselection kept in the knowledge base need to be learnt over a 

period of time to accommodate new changes at the intersection. The issue of 

adaptability and learning are further discussed in the following subsection. 

 

 

Figure 3.6. Performance Comparison between Brute Force and 

Preselection Method 

 

3.4. Adaptability and Learning 

As has been previously discussed in Chapter 1, it is desirable to have a generic 

intersection safety system that is adaptable to different types of intersections. As 

stated in Section 2.5.3, an intersection collision warning and avoidance system 
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should be generic (i.e. applicable to various types of intersections) and adaptable 

(i.e. capable of making adjustments to specific traits and patterns of collisions at a 

particular intersection).  We propose that appropriate data mining techniques can 

be applied to sensor data (from vehicles and road infrastructure). We also suggest 

that the learning results obtained can be maintained in an enduring and dynamic 

knowledge base. The knowledge base can first be populated with collision 

patterns obtained from expert knowledge, while learning is performed. However, 

once collision data of the intersection is accumulated, the collision patterns can 

be learnt and maintained along with or on top of the existing knowledge. When 

learning is integrated into the intersection agent, its knowledge will improve, and 

the system can evolve and adapt to changes at the intersection over a period of 

time. 

 

The key element of a generic intersection collision warning and avoidance system 

is the knowledge base, where specialised information that is only applicable and 

useful for that particular intersection is stored. The other elements of the 

intersection safety system can still be generic, thereby, allowing the system to be 

adaptable to different types of intersections. Each intersection has a different 

knowledge base that is specifically initialised with the characteristics of that 

particular intersection and possible collision patterns that may occur. With the 

inclusion of a specialised knowledge base for each intersection, a generic and 

adaptive intersection safety framework is made possible. 

 

Therefore, it is necessary to learn from a history of events at the intersection 

(such as collision and near collision events) and real-time traffic data in order for 

the system to adapt to a specific intersection or new changes at the intersection. 

Learning of historical data in the U&I Aware Framework is performed to 

enhance the knowledge base of the intersection agent for better collision 

detection. Learning is performed through computational data analysis, rather than 
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manual field observation as the typical modus operandi for such systems. We 

propose the use of data mining for learning patterns and trends of a particular 

intersection, as data mining is very appropriate to extract knowledge and patterns 

and it has been widely used for learning traffic safety and trends in highways (as 

discussed in Chapter 2, Section 2.3.3). With advances of data mining (such as the 

recent ubiquitous data stream mining) as discussed in Chapter 2, learning also can 

be done onboard the vehicle utilising driver’s profile and vehicle sensor data, thus 

making the vehicle agent that sits in the vehicle to be aware of the vehicle and the 

driver’s behavioural contexts. As a result, the intersection collision warning 

system can be more informed when a driver exhibits dangerous driving 

behaviours. For example, when a vehicle that enters the intersection’s vicinity 

exhibits drunk or tired driving behaviours (that is detected from drink driving 

patterns that are previously learnt) [Horo06], other vehicles at the intersection 

that are possibly affected would be warned about this vehicle. In this case, drink 

driving behaviours can be learnt and detected [Horo06] using a vehicle agent in 

each vehicle system so that the vehicle agent can inform the intersection agent to 

warn other vehicle agents in the vicinity of such threatening behaviours. 

 

Integrating knowledge about an intersection from data mining results into the 

knowledge base helps road users to understand and be aware of threats at the 

particular intersection. Having a comprehensive set of collision patterns of an 

intersection assists in faster collision detection, as all passing vehicles can be 

initially matched with patterns in the intersection using the preselection approach. 

Hence, the knowledge base of the U&I Aware Framework may have different 

collision patterns when it is moved from one intersection to another, because 

every intersection is unique and will typically have different collision patterns 

(because of varying intersection characteristics). The crash pattern knowledge 

base, which is the basis for preselection, is filled with crash patterns and each 
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crash pattern consists of a name, a manoeuvre, a direction, an intersection leg 

location, and a function to find conflicting direction and manoeuvres. 

 

As the results of collision learning become the basis for preselection that is 

designed to improve the efficiency of the collision detection, it is also necessary 

to improve the method and protocol of the collision warning in order to achieve a 

timely warning for relevant drivers of potentially affected vehicles about 

predicted collisions. The next section discusses the relationship between collision 

detection and warning. 

 

3.5. Relationship between Collision Detection and 

Warning 

As discussed in 2.5.4, the two main temporal dimensions that need to be 

considered in collision warning, which are the Time-To-Avoidance (TTA) and 

Time-To-Collision (TTC), should be taken into account in modelling the 

relationship between collision detection and warning. In order to avoid a 

collision, TTA must be lesser than TTC. However, warnings should not be issued 

in a manner whereby TTC is substantially greater than TTA. In such case, 

warning may not be necessary, as a potential collision might have been spotted 

by the driver or avoided in a due time. A warning that is too early can become an 

annoyance to the driver.   

 

The value of TTC is determined by the collision detection computation, which is 

the time of a vehicle to reach the predicted future collision point. The value of 

TTA is computed based on the cost model of TTA, which needs to consider 

various factors such as the time to generate warning messages, network latency 

time, human response time, and vehicle response time. This section presents our 
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proposed cost model of computing TTA, which improves the two existing cost 

models proposed by Miller and Huang [Miller02] and INTERSAFE [INTER05] 

by combining the two models and adding finer abstraction details.  

 

The formula to calculate Time-To-Avoidance (TTA) proposed by Miller and 

Huang [Miller02] is: 

      (3.1)                                               
where tr is the response time of the driver, β is the speed reduction factor (its 

range is from 0 to 1 that indicates the level of brake), v is the current speed, µ is 

the anticipated tire-road friction coefficient, and g is the acceleration of gravity.  

 

However, there are different factors that can be considered in calculating TTA as 

proposed by INTERSAFE [INTER05]. The minimum warning distance required 

to inform a driver in order to stop in front of the intersection or behind the stop 

line [INTER05], is: 

  (3.2) 

where Vo is the velocity of the vehicle, a is the vehicle braking deceleration, tdriver 

is the driver’s response time to brake, tmachine is the combination of braking 

system and warning system response time, and tinformation is the constant 

information time, which is a time determined by the assistance system to allow 

the driver to react and prepare the driver to stop. Similarly, the formula 3.2 can be 

used to calculate TTA by adding tdriver, tmachine, and tinformation with the current 

vehicle speed divided by deceleration rate.  

 

The tr factor in Miller and Huang’s algorithm [Miller02] is the same as tdriver in 

INTERSAFE’s formula [INTER05]. The main differences between the 

INTERSAFE formula and Miller and Huang’s proposal are that Miller and 
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Huang do not consider tinformation, which is necessary in a warning system, and 

secondly, tmachine in INTERSAFE is more comprehensive by including warning 

system response time. The time components in INTERSAFE’s TTA formula 

have been evaluated on real-world tests and can be used as a point of reference in 

our system. Nevertheless, none of the two models for TTA consider 

communication or messaging cost with external systems such as a traffic control 

entity or a central component (such as an intersection agent). Although Miller and 

Huang’s system is a vehicle-based warning system and in INTERSAFE, a central 

intersection computer system is assumed, both must consider communication cost 

and network latency in the cost model of TTA. 

 

In the U&I Aware Framework, it is important that we only send messages to 

affected vehicles when a potential collision is detected. For collision warning, 

point-to-point messaging should be used between vehicle and intersection agents 

instead of broadcasting. As there is a need for real-time warning, the messages 

sent should be short, and thus, would only require short processing time. 

However, as discussed in Section 2.5.4, when TTA is not enough to issue a 

warning to notify the driver, it is more appropriate to send a command message to 

the vehicle agent directly to brake (in this thesis, we do not consider turning, 

increasing speed, or other avoidance methods and see these as future directions 

for this research). Therefore, we propose two types of avoidance messages with 

two types of TTA accordingly: 

• warning message, intended for the driver, measured by TTAwarning; 

• command message, intended for the vehicle braking system, measured by 

TTAcommand. 

These are described in Figure 3.7. So, to decide when a warning or command 

message should be generated, the rule of thumb to follow is: 

• if TTC > TTAwarning, send collision warning message; else 



 
 
 

 112  
 
 

• if TTC <= TTAwarning, send command message. 

 

Figure 3.7 portrays the cost model of collision avoidance, which is as follows: 

• If a collision warning message is generated:  

o the message should be sent to the vehicle computer (the cost variable is 

tmessage); 

o the vehicle computer alerts the driver (the cost variable is treceive) by means 

of audio warning; 

o the driver reacts to the warning message by applying the brake (the cost 

variable is tresponse);  

o and the brake system is slowing down the vehicle until it stops (the cost 

variable is tbrake and v/a).  

• But if a command message is issued, the message is sent to the vehicle 

computer (the cost variable is tmessage) and the vehicle computer directly 

applies brake to the vehicle to slow down the vehicle until it stops (the cost 

variable is tbrake and v/a), thereby passing delays due to the driver’s reaction 

time. 

 

 

Figure 3.7. TTA Cost Model Diagram 
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When the intersection agent detects a collision, firstly it calculates the TTAwarning 

using the following formula (3.3). If the TTAwarning is less than the TTC, the 

intersection agent sends a warning message to the vehicle agent. When the 

vehicle agent receives the message, it generates an audio warning to warn the 

driver to stop the vehicle.   

 

The cost model for TTAwarning (driver initiates the avoidance) is: 

  (3.3)  

where tmessage is the required time to generate, transmit and read a warning 

message by the software, treceive is the time for a driver to receive the message, 

tresponse is the response time for a driver to take an action, tbrake is the response 

time of braking system, and v/a is the time to full stop (v is velocity and a is 

acceleration). 

 

Nevertheless, if the TTAwarning is larger than or equal to TTC, there is not enough 

time to inform the driver to avoid the collision. Therefore, a command message is 

going to be sent directly to the vehicle agent, and then the Brake Control Unit 

(i.e. the system that controls the brake automation) in the vehicle initiates the 

brake action to stop the vehicle directly without driver’s interruption. The cost 

model for TTAcommand (Brake Control Unit initiates the avoidance) is: 

  (3.4) 

where tcontrol is the response time of the Brake Control Unit.  

 

The cost of issuing, transmitting, and reading a warning (in time units), tmessage, 

after notification of new information or event is computed by: 

  (3.5) 

where tgenerate is time for the intersection agent to generate the message, ttransmit is 

time for message transmission from the intersection agent to the vehicle agent, 

readtransmitgeneratemessage t+t+t=t

a

v
+t+t+t+t=TTA brakeresponsereceivemessagewarning

a

v
+t+t+t=TTA brakecontrolmessagecommand
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and tread is time for the vehicle’s computer to read the message. The message 

transmission time, ttransmit can be calculated by: 

  (3.6) 

where message_size is the size of the message in bits, bandwith is the capacity of 

the communication channel in bits per second, and latency is the delay time in the 

communication channel that can be contributed by various factors such as 

bottleneck, queuing, message propagation, etc. 

 

Besides tmessage, the values of other components of TTAwarning (treceive, tresponse, and 

tbrake) are beyond our control and are not affected by the design and protocol of 

the communication. We cannot manipulate treceive and tresponse since the reasoning 

and reaction time of the driver are parts of human factors. The only way we can 

improve treceive is by ensuring effective warning delivery (however, human-

computer interaction is outside the scope of this thesis). The value of tbrake also 

varies from one vehicle to another. Since the only component of TTAwarning that 

we can improve and manipulate is tmessage, we aim to reduce tmessage as much as 

possible. Therefore, it is necessary to: 

• generate the warning message rapidly; 

• construct a short message to achieve a short transmission time; 

• read and decipher the message promptly. 

Clearly, high network bandwidth with low latency is also required. The real-

world deployment of the U&I Aware Framework implies such networking 

infrastructure to be in place. The next section presents the model and protocol of 

communication between the intersection agent and the vehicle agent.  

 

latency
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sizemessage
=ttransmit +
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3.6. Communication Model and Protocol 

This section discusses the communication model and protocol that are transmitted 

within the intersection agent’s administration zone (Figure 3.2). As the 

intersection agent needs to work together with all vehicles in vicinity, there are at 

least three different types of messaging required between vehicle agents and the 

intersection agent (Figure 3.4), which are as follows: 

• First, status messages need to be sent periodically from vehicles to 

intersection agent to keep the intersection agent up to date of vehicle’s data 

for collision detection computation. As the status message is sent 

periodically, we need to also consider if the message is initiated by the 

vehicle agent (push method) or the intersection agent (pull method). In real-

time terms, it is better to employ push method, as the status request message 

from the intersection agent is eliminated, thereby reducing communication 

cost.  

• The second message type is the registration message. The presence of each 

vehicle needs to be known to the intersection agent.  

• The third message type is warning message from the intersection agent sent to 

vehicle agents. At this point, there are two options of message delivery: point-

to-point or broadcast. As false warning or alarms need to be avoided as much 

as possible, broadcast is not an option for collision warning. Point-to-point 

message delivery can ensure that only affected vehicles will be warned. 

However, if there is a general warning (e.g. weather warning or speed limit 

warning) that needs to be issued then a broadcast can be used.  

 

We also need to consider the message protocol to use, as it is important to 

consider the effectiveness and efficiency of the message. Clearly, this solution is 

based on assumptions that communication network may fail. It is possible that 

communication is not reliable on wireless medium, however other works have 
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addressed solutions, e.g. [Huang04]. We propose a lightweight (i.e. concise and 

compact) message protocol for intersection collision warnings, since there is no 

real-time messaging protocol that has been designed specifically for intersection 

collision warning. We propose three types of messages transmitted within the 

administration zone (Figure 3.5), which are: status report, registration, and 

warning report. These are discussed in the following subsections 3.6.1 – 3.6.3. 

The evaluation is presented in 3.6.4. 

3.6.1 Status Report 

The purpose of status message is to report the existence of a vehicle travelling in 

the intersection’s administration zone and to inform about the vehicle’s dynamic 

information so that the intersection agent can track the vehicle’s position 

correctly and use the information to predict collision. When a vehicle enters the 

intersection’s administration zone, the vehicle agent (VA) detects the wireless 

signal from the intersection agent (IA) that signifies an intersection’s 

administration zone is in place. The VA then commences to send status message 

to the IA repeatedly (Figure 3.8).  

 

Figure 3.8. Status Message 

 

This message includes the vehicle’s dynamic information, such as vehicle ID, 

speed, position, angle, and manoeuvre. This information is retrieved from the 

vehicle’s sensors, such as described in 3.2. The message structure is: 

status | <vehicle_ID> | <x> | <y> | <speed> | <acceleration> | <direction> | 

<angle> | < manoeuvre > 
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The word “status” is to indicate the message type. The vehicle_ID is the 

registration number of the vehicle, e.g. “VICABC001”. The x, y values are the 

coordinate values of the vehicle’s position, e.g. 213, 320. The speed is the 

velocity of the vehicle, e.g. 16.666. The measurement used for speed is 

meter/second. The acceleration is the acceleration of the vehicle, e.g. 1.471, 

which is measured in meter/second2. The direction is the travel direction of the 

vehicle. The value of direction could include 0.00 (if the vehicle travels towards 

north), 90.00 (if the vehicle travels towards east), 180.00 (if the vehicle travels 

towards south), 270.00 (if the vehicle travels towards west). The angle is the 

steering angle of the vehicle, e.g. 0.00 for going straight. If the vehicle turns 5 

degree to the left, the value is -5.00. If it turns 5 degree to the right, the value is 

5.00. The manoeuvre is the intended driving manoeuvre that is predicted by in-

vehicle devices. Typically it has been shown that such manoeuvres can be 

predicted one second before it occurs [Oliver00]. The value of manoeuvre could 

include Passing, TurnLeft, TurnRight, ChangeLaneLeft, ChangeLaneRight, 

Starting, and Stopping. Each parameter in the message is separated by a vertical 

bar “|”. 

 

Existing research suggest various figures for the interval time of reporting the 

vehicle’s status. Miller and Huang [Miller02] suggested the interval time as one 

second. Kosch and Strassberger from BMW Group Research and Technology 

suggested that the interval time is around 100ms [Farkas06]. In our proposed 

communication protocol, we suggest a variable interval time. The interval time 

should depend on how far a vehicle has moved. We propose a variable interval 

time because the speed of vehicles at the intersection varies. When a vehicle 

travels at a higher speed, the position of the vehicle then changes more rapidly. 

Hence, it is necessary for a VA to report its status to be more frequent. Therefore, 

the variable interval time should be determined by the vehicle’s travelling 

distance. After a vehicle moves a certain distance, e.g. 0.5 metre, it is required to 
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report its status. If a vehicle travels at a high speed such as 60km/hr or 80km/hr, 

the interval time should be shorter, e.g. 30ms or 23ms. If there is a traffic jam, the 

interval time can be longer since vehicles are travelling slower. Another reason to 

employ a variable interval time is to prevent network congestion. Consider a 

scenario where there is a traffic jam at an intersection and there are a large 

number of vehicles at the intersection. If a constant short interval time is 

employed in such condition, network congestion may occur. For these reasons, 

we introduce the variability of interval time, which is determined by the 

travelling distance of each vehicle.  

 

Given that another purpose of status message is to indicate whether a vehicle is 

still existent in the administration zone, we also propose a maximum interval time 

threshold, which is one second. Therefore, although a vehicle is not moving on 

the road (e.g. the vehicle is parked), it still needs to report its status at least every 

one second. 

 

After a vehicle has passed through the intersection and is outside of the 

administration zone, the VA no longer receives the wireless signal from the IA. 

The VA stops sending status message to this particular IA. 

3.6.2 Registration Message 

There is static information about a vehicle that is necessary to be included in 

collision detection computation, such as vehicle size. However, since such 

information does not change over time, it is not necessary to be included in the 

status message and sent periodically. Therefore, we propose that a registration 

message is used to communicate vehicle’s static information (Figure 3.9). The 

registration message is sent only once and the content of the registration message 

needs to be maintained by the IA as long as the respective vehicle exists in the 
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administration zone. After the IA receives a status message from the VA, the IA 

should check for the existence of the vehicle’s static information, such as the 

vehicle’s registration number and the size of the vehicle. If the IA does not have 

this information in its database, the IA sends a Register Request message to the 

vehicle. When a VA receives it, it replies the IA with a Register message.  

 

 

Figure 3.9. Registration Message 

 

The content of the Register Request Message is very simple. Its structure is: 

regreq | <vehicle ID> 

 

The word “regreq” is to indicate the message type. 

 

The Register Message includes the vehicle’s static information, such as vehicle 

ID and size. The message structure is: 

regist | <vehicle ID> | <length> | <width> 

 

The word “regist” indicates the message type. The length is the length of the 

vehicle in meter. The width is the width of the vehicle in meter. 

 

After the IA receives the register message, it should store the static information 

of the vehicle. When the IA receives another status message from the VA, as long 

as the IA has the static information of this particular vehicle, it should not send a 

register request to this vehicle agent. If the VA has exited the intersection’s 

administration zone, the IA should no longer receive the status message from the 

VA. After a period not receiving any status message (e.g. 3 seconds), the static 
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information of the particular vehicle should be removed from the IA. The 

vehicle’s final status message, which includes the vehicle’s last position, speed 

and travel direction, can be used to determine whether the vehicle has actually 

exited the administration zone. 

3.6.3 Warning Report 

After status data is received, IA performs collision detection computation. When 

an imminent collision is predicted, a warning message is issued (Figure 3.10).  

 

There are two types of warning messages. Firstly, General Warning message, 

which is broadcast to all vehicles including information for speed limit and 

dangerous behaviour warning, such as drink driving. The message structure can 

be one of the following type: 

• spdlmt | <value>, e.g.  “spdlmt|60.000” means that speed limit is 60 

kilometers per hour 

• drkdrv | <vehicle ID> | <x value> | <y value>,  e.g. “drkdrv 

|VICPAD123|221|578” means that a drunk driver is driving vehicle “PAD-

123” at the position (221, 578). 

 

 

Figure 3.10. Warning Message 

 

Secondly, Collision Avoidance message, which can either be a Collision Warning 

or Command message. If an intersection system detects that a collision will 

happen, its IA send Collision Warning to notify the driver of the pair of involved 
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vehicles. This message includes data: vehicle ID, Time-To-Collision (TTC), 

collision position, and collision type.  

 

The message structure is: 

collwn |<vehicle ID> | <TTC> | <x> | <y> | <type> 

 

The word “collwn” is used to indicate the message type. The TTC is the time to 

collision for the particular vehicle. The x, y are the position of the collision point 

in our simulated environment. The type is the collision type, e.g. Side or 

RearEnd. The vehicle agent receives it, processes it, and warns the driver. 

 

However, if the TTA is less than the TTC, the IA sends a Command message to 

the VA so that the vehicle takes an action automatically without the driver’s 

intervention. This message includes data: vehicle ID and action. The message 

structure is: 

commnd | <vehicle ID> | <acceleration> 

 

The word “commnd” indicates the message type. If acceleration is negative, the 

vehicle needs to slow down. Otherwise, the vehicle needs to speed up.  

 

The next section presents the evaluation performed on the protocol. 

3.6.4 Evaluation 

This section presents the evaluation of our proposed communication protocols 

and its cost borne to the overall TTA cost model. There are four contributing 

factors to TTAwarning, which are tmessage, treceive, tresponse, and tbrake, and three factors 

contributing to TTAcommand, which are tmessage, tcontrol, and tbrake. As previously 

discussed in 3.5, the value of treceive, tresponse, tbrake, and tcontrol are beyond our 
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control. Only tmessage can be evaluated by prototyping the IA – VA 

communication model.  

 

According to the INTERSAFE project [INTER05], based on real-world 

experimentations, the value range for tresponse, tbrake and 1/a (gravity acceleration) 

are as displayed in the Table 3.1 [INTER05]. The treceive value is 1.1 seconds, 

since that is the average reaction time for elderly [Green00]. The value of treceive 

of drivers from other age groups should be smaller than 1.1 seconds. Therefore 

we consider 1.1 seconds as the maximum treceive. 

 

Table 3.1. TTA Components Value Range  

 Min. Value Max. Value 

treceive 1.1 seconds (average reaction time for elderly) 

tresponse 0.8 second 2 second 

tbrake 0.3 second 0.5 second 

A 0.31 g =  3.038 m/s2 0.7 g = 6.86 m/s2 

1/a 1/(6.86 m/s2) = 0.1458 s2/m 1/(3.038 m/s2) = 0.329 s2/m 

 

In order to evaluate the communication cost, the protocols are implemented on a 

simulated intersection agent and vehicle agent. The implementation prototype is 

described as follows: 

• The IA is simulated on a powerful computer or server. Since the IA is 

stationary and needs to perform learning, predict collision, communicate with 

numerous vehicle agents, and calculate the TTA, it needs to run on a powerful 

and stable machine. The IA is implemented on Java Virtual Machine (see 

Figure 3.11). It is developed by using NetBeans 5.5.1 and Java 2 Standard 

Edition 1.6.0.02. 

• The VA is simulated on a small device. Since this agent only needs to 

communicate with one intersection agent, it does not need much computing 

power. Furthermore, because the device needs to sit in a vehicle, it is easier if 

the VA is installed on a small device rather than a huge full size computer. 
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The VA is implemented on Java Kilobyte Virtual Machine (see Figure 3.12). 

It is developed by using NetBeans 5.5.1 with the Connected Limited Device 

Configuration (CLDC) 1.1 and the Mobile Information Device Profile 

(MIDP) 2.0, which together provides a standard Java runtime environment for 

mobile device such as cell phones and Personal Digital Assistants (PDA) 

[Sun07]. It is important to note that a VA does not have to run on cell phone 

or PDA. Although it is implemented with a cell phone interface, it 

demonstrates that VA can run on a small device. 

• Since our proposed communication protocol is an application layer protocol 

in the ISO-OSI Reference Model, it needs to work with the protocols in the 

lower layer. In our implemented prototype, we employ TCP and UDP for the 

transmission layer protocol, IP for the network layer protocol, and IEEE 

802.3 for the data-link layer and physical layer protocol. The status message 

should be sent through the UDP/IP protocol. Although UDP is not reliable 

protocol, it is faster than TCP. Since status message is sent frequently, 

transmission speed is more important than the reliability of the connection 

protocol. Other message types should be sent through the TCP/IP protocol 

because TCP provides a reliable connection. 

 

 

Collision Warning Message 

 

 

 

 

Command Message 

Figure 3.11. Simulation of an Intersection Agent 
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Figure 3.12. Simulation of a Vehicle Agent 

 

The proposed communication model and protocol is comprehensively evaluated 

on their functionality. However, there is a limitation on the evaluation since it is 

implemented on a single machine. Bandwidth and latency are not yet taken into 

account into this evaluation, since we only perform the evaluation on a computer 

simulation. Furthermore, the standardisation of the wireless network protocol, 

which is IEEE 802.11p (Wireless Access for the Vehicular Environment, 

WAVE), is underway [Kerry08]. The wireless band or frequency of 5.9 GHz is 

licensed to be used by Intelligent Transportation Systems (ITS) [Kerry08] but 

there is no further details given about the available bandwidth and possible 

latency. 

 

Based on the IA-VA prototype, we measure the value of tmessage in our 

implementation based on the formula (3.5) and (3.6). tmessage is the total of tgenerate, 

ttransmit, and tread. As seen in Figure 3.11 and Figure 3.12, the time for IA to 

generate the collision warning or command message and the time for VA to read 

the message are both 0ms, hence tgenerate and tread are negligible. ttransmit is the 

division of message size by the available bandwidth. The size of a collision 

warning message can be calculated based on its structure, which is described in 

section 3.6.3. This message consists of approximately 40 characters. Since we use 
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UTF-8 for encoding, each character can be encoded using one byte. Therefore, 

the size of the collision warning message is approximately 40 bytes. If the 

bandwidth is 10Mbit per second, the ttransmit of a collision warning message will 

be 0.032 milliseconds. Considering the extra wrapper size from the TCP / IPv6 

and other lower layer protocol, the value of ttransmit is around 0.11 milliseconds.  

This demonstrates the efficiency of our proposed messaging protocol.  

 

Hence, given the current speed is 60km/h (16.67 m/s), the minimum value of 

TTAwarning is 4.630 seconds and the maximum value of TTAwarning is 9.083 

seconds. We assume the tcontrol to be far less than tbrake and v/a, hence tcontrol is 

negligible. Given the current speed of 60 km/h, the minimum value of TTAcommand 

is 2.73 seconds and the maximum value of TTAcommand is 5.983 seconds. Most 

intersections would have speed limit below 50 km/h, hence, the TTAwarning and 

TTAcommand are smaller (see Table 3.2 and Figure 3.13). The smaller the TTAwarning 

and TTAcommand, the higher is the chance for the collision to be avoided. 

 

Table 3.2. TTAwarning and TTAcommand Range for Various Velocity 

Velocity 
(km/h) 

min TTAwarning 

(secs) 

max TTAwarning 

(secs) 

min TTAcommand 
(secs) 

max TTAcommand 
(secs) 

10 2.605 4.514 0.705 1.414 

15 2.808 4.971 0.908 1.871 

20 3.010 5.428 1.110 2.328 

25 3.213 5.885 1.313 2.785 

30 3.415 6.342 1.515 3.242 

35 3.618 6.799 1.718 3.699 

40 3.820 7.256 1.920 4.156 

45 4.023 7.713 2.123 4.613 

50 4.225 8.169 2.325 5.069 

55 4.428 8.626 2.528 5.526 

60 4.630 9.083 2.730 5.983 

65 4.833 9.540 2.933 6.440 

70 5.035 9.997 3.135 6.897 
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Figure 3.13 portrays the relationships between speed and TTA for TTAwarning and 

TTAcommand. When factors contributing to TTAcommand are at minimum, TTAcommand 

is always less than TTAwarning, hence it is more efficient to avoid an imminent 

collision when a command message is issued. However, it is interesting to note 

that when factors contributing to TTAcommand are at maximum, the speed of the 

vehicle is above 30 km/h, and factors contributing to TTAcommand are at minimum, 

it is better to issue a warning message. This phenomenon might be displayed 

because a vehicle requires a larger response time for it to stop when at a faster 

travelling speed. 
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Figure 3.13. TTAwarning and TTAcommand Range 

 

3.7. Summary 

In this chapter, we have proposed the Ubiquitous Intersection Awareness (U&I 

Aware) framework, which is a generic and real-time context-aware framework 
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for collision detection and warning at road intersections. The distinguishing 

feature of the U&I Aware Framework in comparison with existing intersection 

collision warning and avoidance systems is the presence of the learning 

component, whereas other systems typically include detection and warning 

components. This is because the U&I Aware framework is designed to meet the 

following desirable properties of an intersection collision warning and avoidance 

system, which are: usage of a variety of real-time data sources, performance and 

scalability, learning and adaptability, relationship between collision detection and 

warning, and real-time communication model and protocol. In order to have real-

time collision avoidance, Time-To-Avoid (TTA) should be less than Time-To-

Collision (TTC). Hence, we need to increase TTC by making the collision 

detection process faster and decrease TTA by reducing the communication and 

warning process. 

 

To facilitate this, the U&I Aware Framework uses an intersection agent to 

centralise computations to avoid communication overhead and complexity in 

vehicle based systems. The U&I Aware framework utilises mainly vehicle sensor 

data as real-time data sources for collision learning and detection. The historical 

collision and near-collision data, and real-time traffic data are mined to extract 

collision patterns and other interesting traffic trends from the particular 

intersection. These patterns can help to determine which vehicles are likely to be 

involved in a collision. 

 

The learning of collision patterns in the U&I Aware framework allows the 

framework to be generic yet adaptable to different types of intersections. A 

knowledge base populated with the results of learning from historical traffic data 

and collision events of that particular intersection is proposed. The knowledge 

base acts as a means for tailoring the system to specific intersections. Thus, the 

framework is adaptable and can be used at different intersections. The results of 
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collision patterns learning, which are kept in the knowledge base, are employed 

as a basis for preliminary selection or identification of potential colliding 

vehicles. This filtering enables reducing computation time and increasing TTC.  

 

We have also proposed and developed a communication protocol for real-time 

intersection collision avoidance systems. The cost model for TTA has also been 

formulated and proposed. When a collision is detected, a warning is generated to 

warn the drivers of respective vehicles. However, if there is not enough time to 

avoid the collision through collision warning, a command message is generated, 

bypassing the driver, straight to the vehicle agent to send message to the Brake 

Control unit to stop the vehicle directly. As a result, impending collisions can be 

avoided in real-world situations. 

 

Components of the U&I Aware Framework are developed and evaluated in the 

Chapter 4 and 5. The collision learning component is further discussed in Chapter 

4. The simulation of an intersection that is developed to generate data (simulating 

sensors) is also described. The sample data collected, types of analysis 

performed, learning results, and how they are stored in the knowledge base are 

discussed next. The development and evaluation of the collision detection 

component are presented in Chapter 5. The functionality of collision warning 

component has been presented in this chapter. The performance and real-world 

evaluation of the collision warning is a future work of this research. 
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CHAPTER 4  

 

Collision Learning 

Since the innovation of in-vehicles and roadside sensors, there is a significant 

amount of sensor data that is available. This data is a valuable source from which 

important information can be distilled via data analysis techniques.  Data mining 

is proven to be effective for extracting traffic patterns and trends, such as in the 

Pantheon Gateway Project [Gross05] that monitors traffic conditions and patterns 

at highways (see review in Chapter 2.3.3).  In this research, we focus on learning 

patterns and trends in road intersections, such as collision patterns, as the basis 

for the knowledge base, which is used to perform preselection of vehicles for 

faster collision detection. Therefore, collision learning is an integral element in 

the U & I Aware Framework (Figure 4.1).  

 

Throughout this chapter, when a collision is discussed, the terms Subject Vehicle 

(SV) and Principal Other Vehicle (POV) are used, since the collisions analysed 

in this thesis involve at least two vehicles. The term “collision pattern” used in 

this chapter and throughout the thesis is not the same as “collision type”. A 

collision type refers to a generic classification of collisions, such as rear-end 

collisions, head-on collisions, and side collisions, without specific regards to any 

intersection type. For example: 
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• Rear-end collision [USDOT04], [Lages04] is a type of collision in which two 

or more vehicles that are travelling on the same trajectory (i.e. same direction, 

same manoeuvre, and same angle) in a car-following model (i.e. travelling on 

the same lane) collide.  

• Side collision, or namely perpendicular path in [Verid00] (see Figure 4.2), or 

straight crossing in [Fuers05] (see Figure 4.3), involves two vehicles that 

collide in a perpendicular angle while travelling in a straight path.  

• Left turn collision [Verid00], [Fuers05] is a collision that involves a SV that 

is turning left (in Australia, it is turning right due to the right side driving) 

with a POV that is going straight (see Figure 4.2.a and Figure 4.3.c). This 

collision type encompasses 23.8% of all crash problems in USA. 

In Germany and France, more than 60% of all collisions consist of side collisions 

and left turn collision patterns [Fuers05]. 

 

Figure 4.1. Collision Learning in the U & I Aware Framework 
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(a) Left Turn Across Path [Verid00] 

 

(b) Perpendicular Path – entry with 
inadequate gap (no traffic control) 
[Verid00] 

 

(c) Perpendicular Path – violation of 
traffic control [Verid00] 

 

(d) Premature entry – Perpendicular 
Path – violation of traffic control 
[Verid00] 

 

Figure 4.2. Intersection Crash Scenarios [Verid00] 

 

 

Figure 4.3. The Highest Occurring Scenarios that Encompass More than 

60% of Intersections Collisions [Fuers05] 
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On the other hand, a collision pattern refers to a collision type that occurs in a 

particular intersection, which is affected by the characteristics of the intersection. 

Due to different and varying intersection characteristics, there can be numerous 

collision patterns for a collision type. A collision pattern consists of common 

attributes of a collision type that have occurred repeatedly (see Section 2.1 and 

Table 2.1). A collision pattern is characterised by collision type, manoeuvres, 

direction, location, and angle of the pair of vehicles involved in the collision. An 

example of a collision pattern that may occur in a four-legged cross intersection 

is a side collision that involves a vehicle that is travelling southward straight from 

the north leg with a vehicle that is travelling eastward turning right from the 

south leg. In Figure 4.2, some patterns of side collisions are shown as follows:  

• At an intersection without traffic control (Figure 4.2.b), the SV can collide 

with the POV because of inadequate gap entry. This collision pattern 

comprises 30.2% of all crash problems in USA. 

• At an intersection with traffic controls, a SV can collide with a POV as the 

SV violates the traffic control either by red light running (Figure 4.2.c) or 

premature entry (Figure 4.2.d). The number of side collisions that occur due 

to traffic control violation encompasses 43.9% of all crash problems in USA. 

 

Since each intersection varies, it is necessary to learn collision patterns that 

pertain to the intersection for earlier identification of vehicles that exhibit the 

attributes as described in the collision patterns for that intersection. In order to 

perform learning, we need to have data. There are three stages of collisions, 

which are pre-collision, collision, and post-collision. The first issue we encounter 

is the non-availability of real-world pre-collision and collision data. Collision 

databases in Australia only record factors that are pertinent to post-collision 

events, such as fatalities, number of injuries, day and time, type of vehicle, and so 

on. However, we need real-time data that are recorded within seconds or even 

milliseconds before collisions occur, such as current speed, manoeuvre, intended 
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driving direction, acceleration or deceleration, and so on. This data can be 

collected using existing sensor technology. Due to constraints of resources and 

the nature of this research, performing real data collection is beyond our scope. 

However, we view that computer based simulation is a viable mechanism for 

proof of concept and data collection. Moreover, simulation should precede any 

real-world trial or deployment in road safety field [Sicking00]. Computer based 

simulations, which are accurately modelled based on the real-world scenarios, are 

able to yield accurate results and provide a great amount of information that are 

not available from a full-scale crash test the in the real world [Sicking00]. 

Therefore, we develop an intersection simulation that resembles real-world 

situations to generate traffic and collision data.  

 

This chapter focuses on the Collision Learning component of the U & I Aware 

Framework (as shown by the arrow in the Figure 4.1). The information about 

occurrence of collisions (whether collisions have actually happened) at the 

intersection is archived into the historical collision data files. Learning is then 

performed on collision data and near collision events and traffic trends using data 

mining techniques. The results of learning are stored in the knowledge base. This 

chapter covers a discussion on our intersection simulation through which data 

collection is performed (Section 4.1) and mining that data in various scenarios 

along with the integration of the learning results into the knowledge base (Section 

4.2). This chapter is then concluded in Section 4.3. The work in this chapter has 

been previously published in [Salim07b], [Salim07c], [Salim08a]. 

 

4.1. Intersection Simulation 

Traffic simulators have been developed to replicate real-world traffic situations 

and test various applications before deployment and evaluation in the real world 
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can take place. Simulation models are mathematical/logical representations of 

real-world systems, which are designed to “mimic” the behaviours of complex 

systems and executed on a computer system [Lieb05]. Each simulation model 

consists of multiple components and simultaneous interactions among the 

components that form an abstraction of the real-world [Lieb05]. 

 

According to [Lieb05], traffic simulation models can be classified as: 

• continuous (elements of the system alter their state continuously over time in 

response to a constant stimuli) or discrete (state changes occur at points of 

time, e.g. periodic changes based on intervals, or due to an event, e.g. traffic 

light control changes its signal to yellow); 

• microscopic (system entities and interactions are represented at a high level of 

detail) , mesocopic (most entities are represented at a high level of detail but 

activities and interactions are represented at a lower level of detail), or 

macroscopic (entities, interactions, and activities are represented at a low 

level of detail); 

• deterministic (entities and interactions are defined by exact relationships of 

mathematical, statistical, or logical; hence there is no random variables, only 

constant values are used) or stochastic (probabilities functions are used to 

determine entities and interactions) [Lieb05], [Medina05]. 

 

In [Miller07], the presented list of taxonomy of simulations is more exhaustive. It 

contains the following classifications:  

• platform (which operating system it runs on); 

• source code availability (whether it is open source or closed); 

• cost (whether we need to pay to license it); 

• transportation network (whether it is free-flowing – such as freeways, or 

regulated with traffic controls); 
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• underlying method of use (whether it is a simulator or driving emulator); 

• vehicle model (microscopic – bird’s eye view of the traffic, or macroscopic – 

vehicle’s individual view); 

• data input manner (whether vehicle’s location and speed data are changing 

continuously or being determined in discrete location or time period); 

• data gathering manner (whether vehicle’s data are communicated back from 

each vehicle to the application or the traditional manner where no 

communications are assumed and data about vehicles are sensed using 

roadside sensors, such as loop detectors).  

 

Popular traffic simulators that have widespread use worldwide [Miller07], such 

as CORSIM/TSIS [Owen00], MITSIM [Yang96], Paramics [Camer94], 

RENAISSANCE [Wang06], VATSIM [Redm99], and VISSIM [Fellen94], are 

evaluated in [Miller07] along with their proposed simulation, FreeSim. Many of 

the existing simulators are not free to own and license [Miller07]. Only FreeSim 

and MITSIM are free and have made their source code open to the public. 

MITSIM can only be used on Linux platform, whereas FreeSim can be used on 

any platform [Miller07]. 

 

Apart from the cost, platform, and the source code availability, in order to 

provide vehicle and collision data from vehicle sensors and traffic controls (such 

as mentioned in Section 3.1) for the learning component of the U&I Aware 

Framework, we need an application that can simulate an intersection with the 

following characteristics: 

• Simulate both free-flowing (no traffic light) and regulated traffic (with traffic 

lights). Only CORSIM/TSIS [Owen00], MITSIM [Yang96], Paramics 

[Camer94], VATSIM [Redm99], and VISSIM [Fellen94] have both free-
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flowing and regulated simulations. FreeSim [Miller07] and RENAISSANCE 

[Wang06] only support free-flowing traffic simulation. 

• Model both microscopic (as users and the intersection agent need to see the 

global view of the intersection) and macroscopic (as we should be able to 

track each vehicle’s status). Most of the existing simulations can only 

accommodate either macroscopic or microscopic view. Only FreeSim 

[Miller07] and VISSIM [Fellen94] can represent both views. 

• The simulation must be able to support both continuous and discrete input. 

Vehicle data should be changing continuously, each vehicle should have 

independent behaviours in terms of the speed, acceleration, manoeuvres, etc. 

There can be random number of naughty vehicles that will disobey the rules, 

speed limit, and so on. A certain degree of discrete input needs also to be 

simulated, for example, speed changes when the vehicle is entering the centre 

of the intersection and the traffic light controller is turning to yellow or red. 

Most traffic simulators (CORSIM/TSIS [Owen00], MITSIM [Yang96], 

Paramics [Camer94], RENAISSANCE [Wang06], and VISSIM [Fellen94]) 

cannot simulate dynamic variation of vehicle data continuously. The vehicle 

speed data are inputted at certain discrete location and time in the simulation. 

Only FreeSim [Miller07] and VATSIM [Redm99] can support continuous 

data input. 

• Data should be gathered from individual vehicles via communication, instead 

of adopting the traditional manner (i.e. where there is no communication 

assumed and data are gathered from roadside sensors), since we rely on 

vehicle sensors to gain information about each of the vehicles in the vicinity. 

At this stage, only FreeSim [Miller07] can support the non-traditional data 

gathering manner (directly communicated from vehicles). 

• Both stochastic and deterministic models need to be incorporated in order to 

cater both the regular nature of some intersection components (e.g. traffic 
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light interval changes) and the unpredictability that can occur in an 

intersection (e.g. vehicle speed changes, vehicle congestion, etc.) 

 

There is no existing simulator that fulfils all the combination of the above 

requirements. The only application that can simulate both free flowing and 

regulated traffic can only model the microscopic view and the traditional way of 

data gathering (no communication between vehicles and the central system). 

FreeSim, although it is free and open source, cannot fulfil all the above 

requirements, since it only simulates free-flow traffic and was released in 2007 

(after this research commenced). Therefore, we have developed our own four-leg 

cross intersection simulation, which is further explained in the following 

subsections. 

4.1.1 An Overview of the Simulation Environment 

The purposes of the development of this simulation are as follows: 

i. to generate collision and traffic data that resemble real-world sensor data; 

ii. as a test-bed for collision detection and evaluation of the U&I Aware 

Framework. 

 

Since this chapter mainly focuses on data collection and mining, we are not going 

to discuss how the simulation is instrumented for collision detection as this is 

covered in Chapter 5. This section focuses only on the first objective, which is 

the development of the simulation to generate traffic and collision data.  

 

In order to generate traffic and collision data, it is necessary to design and 

implement a simulation that can meet the requirements stated in Section 4.1: 

• We simulate both free-flowing (no traffic light) and regulated traffic (with 

traffic lights). We have created a simulation with two different scenarios: 



 
 
 

 138  
 
 

intersection with traffic lights (Figure 4.4) and without traffic lights (Figure 

4.5).  

 

Figure 4.4. Intersection Simulation with Traffic Lights 

 

 

Figure 4.5. Intersection Simulation without Traffic Lights 
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• We model each vehicle agent as a separate entity that has attributes of its own 

(i.e. to achieve macroscopic view), yet, a collective global view (microscopic) 

of the whole intersection can also be obtained through the intersection agent.  

• Since each vehicle agent is autonomous, it can change its behaviour 

independently (i.e. speed change, manoeuvre change). Randomly, “naughty” 

vehicles, which have the tendency to violate traffic rules, are created at run 

time.  

• Since data should be gathered from individual vehicles via communication, 

we simulate data being sensed by vehicle sensors, transmitted by vehicle 

agents and deciphered by the intersection agent.  

• Lastly, we consider both stochastic and deterministic properties in modelling 

the simulation. For example, in terms of vehicle generation, the simulation 

should be stochastic as vehicles should be generated at different legs of the 

intersection in various times. However, the frequency of the vehicle 

generation should be deterministic based on the varying peak and off-peak 

hours. The car following model and the speed changes are also both 

stochastic and deterministic. 

 

In real-world situations, an intersection actually consists of a collection of various 

components nested within one another, hence, it is necessary to capture and 

simulate these components in our simulation. An intersection consists of 

intersection legs; each leg consists of leg parts: one is an approach (where 

vehicles are advancing to the intersection centre) and another is outgoing (where 

vehicles are moving away from the intersection centre); each leg part consists of 

multiple lane groups and each lane group may consist of multiple lanes. A lane 

group is a collection of lanes that possess the same rule of manoeuvres and turns 

(e.g. straight lanes, or right turn lanes). Each lane group has different allowable 
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manoeuvres, for example, in one approach leg, there can be three lane groups, 

one for turning right, one for going straight, and the last one for turning left. At a 

regulated intersection leg, when there are more than one lane groups, there can be 

multiple traffic controls, one for each lane group. 

 

Apart from the intersection, the other main components of the simulation are 

vehicles and traffic controls (only at regulated intersections). Driver was 

considered as part of the simulation when driver behaviours and profiling are to 

be represented and learnt. However, at this stage, we have not fully developed the 

simulation of a driver. Hence, this is part of our future work and will not be 

further discussed here. The next subsection presents the design of the simulation 

model. 

 

4.1.2 Designing the Simulation Model 

Three major steps were taken in designing our simulation models: 

i. classification of the components and their parameters; 

ii. establishing the calibration requirements; 

iii. determining the degree of randomness in the simulation (to obtain both 

stochastic and deterministic natures of the real-world traffic in an 

intersection). 

 

Firstly, we determine the main components of the simulation and their 

parameters, which are as follows: 

• Intersection: intersection type, leg (size, count, angle, lane group), lane group 

(lanes, traffic control),  lane (size, vehicle occupation); 

• Traffic control: signal time, period, timer, rules of execution; 

• Vehicle: speed, acceleration, size, type, position, angle, manoeuvre. 
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The next major step in implementing a traffic simulation is to determine the 

calibration of the model [Lieb05]. The parameters of the simulation components 

have been calibrated to mirror real-world situations so that prediction and 

learning may yield accurate results that reflect real situations. The calibration is 

necessary for measuring length, time, and hence, speed and acceleration. One unit 

in the simulation represents 0.1 metre in the real-world. One second in the 

simulation is the same as in the real-world. Since the simulation is graphical, it 

has a graphic refresh rate set on an interval. Hence, the interval value is 

considered in the calculation of speed, distance travelled, and acceleration of 

vehicles. Each vehicle that is generated has a proportionate width, length, and 

size in comparison to the parameters of the intersection.  

 

Apart from having a proper calibration, in order to resemble real-world situations, 

it is also necessary to determine the degree of randomness of the simulation. The 

combination of the stochastic nature of the simulation (where random variables 

are applied) and the deterministic nature need to be implemented as follows: 

• Vehicle Generation: the density of vehicles generated in the simulation is 

deterministic, but the distribution of the vehicles (the location where 

generated vehicles are placed in the simulation) is stochastic. The simulation 

needs to be able to simulate various vehicle densities based on different time 

of the day and peak or off-peak hours. The density of vehicles is simulated 

deterministically as it is based on four different time schemes: morning, 

afternoon, evening, and dawn that are recorded in our intersection 

configuration file (see Table 4.1). During peak hours, more vehicles should 

be generated in the simulation, and vice versa. Hence, this is simulated by 

varying the interval of the timer used to prompt vehicle generation 

periodically. When more vehicles are to be generated (e.g. during peak 

hours), the interval is set to be smaller (calculated by the modulus of the 
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current timer period counter divided by CarRegenerate, a constant value 

provided in each time scheme recorded in the intersection configuration file). 

If stochastic behaviour is to be incorporated to the interval of the vehicle 

generation, a random number generator generates a number between the 

upper and lower limit of the CarRegenerate value. Based on the selected time 

scheme, the vehicles are randomly generated at a random time period 

(stochastic traffic distribution) with different speeds, manoeuvres, position 

and trajectory at the end of each intersection leg.  

• Car Following: the speed, acceleration, and deceleration of the car following 

model (between a leader-follower pair in the same lane) is stochastic, 

however, the following distance is deterministic. The recommended safe 

following distance and safe stopping distance are three seconds from the 

vehicle ahead, as a general written rule stated in [ATSB06b] and [Auburn05]. 

Hence, those rules are followed in the simulation. The speed of the vehicle 

depends on the current traffic light colour. If it is green, a random number 

between the upper and the lower bounds of the normal speed of the vehicle 

type (e.g. scooter, sedan, truck) is generated. A vehicle can only speed up to 

the speed limit within the safe following distance behind the vehicle ahead, 

except if it is a naughty vehicle (which is generated randomly and has the 

chance to exceed the speed limit of the intersection). When the traffic light is 

yellow, a vehicle can increase its speed (using the random number generator 

to return a speed value higher than the normal speed threshold) in order to 

beat the red light if there is no vehicle ahead within the safe following 

distance; otherwise, smooth braking is applied. When the traffic light is red, a 

vehicle runs in the normal speed until before it reaches the safe stopping 

distance and then smooth braking is applied. 

• Smooth Braking: the deceleration value of smooth braking is stochastic, as it 

uses the random number generator to create a fraction to be calculated against 

the current speed. The smooth braking is applied when a vehicle is reaching 
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the intersection centre, within the safe following distance or the safe stopping 

distance. 

• Traffic Light: the interval of the traffic light is deterministic. It is important 

for traffic light controls in a simulation to follow a specific interval and 

sequence. For example, in our simulation, the green light period is set to a 

constant value of 13 seconds, the yellow light period is 2 seconds, and then 

the traffic light colour changes to red at the same time as the other set of the 

traffic lights change to green. Hence, the red period of a traffic light is 15 

seconds. 

 

Table 4.1. Intersection Configuration File 

Parameter 

Name 

Description Example of values 

Mode indicates the time scheme Morning, Afternoon, 
Evening, Dawn 

Time time period in the simulation 6am-12pm, 12pm- 6pm,  
6 pm-12 am, 12am-6am 

Peak signifies if the intersection is on peak 
or non-peak hours mode 

Yes, No 

CarRegenerate an integer as a division value of the 
timer’s counter; the smaller the 
number, the more vehicles are 
generated, hence the intersection is 
more crowded. 

30 (when modulus of the 
current timer period value 
divided by 30 is 0, new 
vehicles are generated) 

 

The implementation details of the intersection components are further discussed 

in the next subsection 4.1.3. 

 

4.1.3 Implementation of the Intersection Simulation 

The intersection simulation is developed in the Windows environment with 

Microsoft Visual Studio .NET and the C# language. Each intersection object 

itself maintains a number of different hash tables, each for a different object 

collection. We would need to randomly access the object in the collection most of 
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the time rather than sequential access. Hence, hash tables are used for collections 

to speed up the random access to the objects in the collection as opposed to other 

means of collections (e.g. array, linked list, etc), using the key-value pair 

mechanism. The hash tables that are further discussed in this section are: 

LegBuffer, Vehicles, and TrafficLights. 

 

The first hash table is called LegBuffer, which is a collection of all the Leg 

objects within an intersection. The leg object maintains information such as the 

position and size of itself, a textual name attached to it (for example: LEFT), and 

object references to the parts of the leg (namely LegPart): the approach leg 

(where vehicles are entering the intersection or travelling towards the intersection 

centre) and the outgoing leg (where vehicles are leaving the intersection or 

travelling away from the intersection centre). The LegPart object holds 

references to lane groups.  

 

Since we mirror the simulation to the real-world situations as close as possible, 

we follow the calibration rule in our simulation (i.e. 1 unit in the simulation is 

equal to 0.1 metre in the real world). In our cross intersection simulation, the 

length of each intersection leg is 30 meters (300 units in the simulation) and the 

width of each intersection leg is 20 meters, with 15 meters width for each of the 

two leg parts.  

 

The LegBuffer hash table’s keys are the leg’s textual names (e.g. LEFT) and the 

values are inner / nested hash tables (i.e. leg part hash tables), which have keys 

that contain either “Approach” (indicates an approach leg part) or “Outgoing” 

(indicates an outgoing leg part) and values that contain nested hash tables. These 

hash tables inside each of the leg part hash tables store references to the vehicles 

that are currently located in that particular intersection’s approach / outgoing leg 

part. The key of the hash table is vehicle registration number as the key needs to 
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be unique; the value is the object of that vehicle. The structure of this three-tiered 

nested hash tables are illustrated in Figure 4.4. These hash tables are used most of 

the time to track individual vehicle’s movement and overall traffic around the 

intersection. 

 

 

Figure 4.6. Content of LegBuffer Hash Table 

 

Another main hash table is Vehicles, which is similar to the vehicle hash table 

that is nested within the leg part hash table of the leg buffer hash table. Vehicles 

hash table stores all vehicle object references that are currently at the intersection. 

The reason why Vehicles hash table is needed is because a quick retrieval of 

vehicle information is necessary, such as for drawing all the vehicles at the 

intersection at every 5 milliseconds (the graphic refresh rate). Whenever a new 

vehicle is created by the simulation, it is added to the Vehicles hash tables and 

the vehicle hash table nested inside the LegBuffer hash table.  

 

Vehicles are created based on the vehicle configuration file. There are four 

different vehicle types that are recorded in the vehicle configuration file: scooter, 

small sedan, large sedan, and truck. Each of the types has different sizes and 
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range of speed that are scaled to real-world measurements. The parameters of 

each vehicle type in the configuration file are listed in the Table 4.2. 

 

Table 4.2. Vehicle Configuration File 

Parameter 

Name 

Description Example of values 

Type a textual name of a vehicle type Cab, Truck, Sedan 

Position indicates the leg name LEFT, RIGHT, UPPER 

XSize length of the car 25 (equal to 2.5 metres in the 
real world) 

YSize width of the car 15 

Angle angle of the car in relevance to 0o 
straight horizontal line 

90 

Normal 
Speed 

the speed of the car when entering the 
intersection, measured in km/h 

50 

Approaching 
Intersection 

indicates whether the vehicle is in the 
approach leg or outgoing leg 

True, False 

Current 
Intersect 

Name 

refers to the name of the intersection 
where the vehicle is initially created 

CrossIntersection 

Moving 

Direction 

signifies the planned travel direction of 
the vehicle expressed in the series of 
intersection leg names 

BOTTOM|CENTRE|UPPER 

Image the file name of the image to be used 
to draw the vehicle 

cab_from_front.jpg 

 

The vehicles should follow several traffic rules, e.g. the traffic light signals and 

the speed limit. Therefore, in order to generate collision events, we simulate 

“naughty vehicles”. Random “naughty” vehicles are generated in the simulation 

so that its impact on road safety can be analysed and to test the ability of the 

collision detection and learning algorithms. The probability of naughty vehicles 

at the intersection is 1:5. When a naughty vehicle is generated, its speed will be a 

random number up to 40 km/h above the speed limit. Other natural and naughty 

driving behaviours are also simulated at the intersection. For example, when a 

vehicle is located at the front line of the intersection leg and the traffic control 

turns to yellow, the vehicle will attempt to beat the red light. When a vehicle is 

passing the intersection centre during yellow light, it will increase its speed. 
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All the traffic light controllers at an intersection are stored in the TrafficLights 

hash table. A traffic light control does not control the whole approach leg. Instead 

it controls a lane group. Therefore, there can be more than one traffic light in an 

approach leg if there is more than one lane group. Whenever a new traffic light 

controller is created, the reference is added in the TrafficLights hash table and 

also in the relevant lane group object. Each traffic light has a reference to the 

TrafficControlRule object, which holds and manages the TrafficLights hash table. 

Each TrafficLight is run by the TrafficControlRule. When it is the time for a 

traffic light to turn to green, the TrafficControlRule enables the timer of that 

traffic light, and the green period starts, and the timer keeps ticking until the 

green period is over, then the timer is disabled and the traffic light turns to red. 

Just before the traffic light turns to red, it will notify TrafficControlRule, which 

will then execute the other traffic lights that should turn to green, enable their 

timers, and so on.  

 

Using an existing method in the Visual Studio .NET to check if one rectangle 

intersects with another, the simulation is able to identify collisions that exist in 

the intersection simulation. Once a collision is identified, the vehicles involved in 

the collision are disabled, and then removed from the simulation in few 

milliseconds after data about the collision has been recorded.  

 

When the simulation is run (Figure 4.4), data from traffic and collision events 

generated from the simulation are recorded in log files. Vehicle data that consist 

of speed, angle, position, direction, size, and manoeuvre that are required for 

collision detection calculation (see Figure 4.1) can be easily obtained from in-

vehicle sensors (as discussed in Section 3.1).  

 

The following figures (Figure 4.7, 4.8, and 4.9) are samples of data that can be 

generated from our intersection simulation. Each data set is collected for each 
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case of learning analysis. Different combinations of attributes are taken to feed 

the data mining algorithms. For example, whenever there is an event of collision 

at the intersection, it is recorded as shown in Figure 4.8 and Figure 4.9. In Figure 

4.8, speed, distance to intersection, traffic light colour, and collision point data 

are recorded as those attributes may allude to traffic rule violations associated 

with collisions that occur at the intersection. In Figure 4.9, a collision event with 

attributes of manoeuvre, direction, angle, and collision type are recorded as these 

attributes may describe a collision pattern. In addition, apart from collision event 

data, aggregate traffic and collision data (Figure 4.7) are collected periodically. 

At this stage, we have up to six different scenarios where different sets of sensor 

data are simulated and collected every 5 milliseconds in our simulation, which 

produces up to 6.78 MB of data per minute. The frequency of the readings can be 

adjusted; however, we set 5 milliseconds for the purpose of measuring the 

scalability and performance of the system. The log files are in comma separated 

values (.csv) format, which can be used in many data mining applications. The 

data collected in our simulation can be useful for Road Safety Analysis (RSA).  

 

 

Figure 4.7. Periodic Traffic Data  
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SpeedCar

1

Distance

ToInters

Car1 TLColor1

SpeedCar

2

Distance

ToInters

Car2 TLColor2

CollisionP

ointX

CollisionP

ointY

30 -145 0 0 -8 1 436 306

50 -298 0 55 -273 0 568 359

37 -117 0 30 -145 0 415 321

42 -94 0 37 -117 0 387 332

44 -253 0 55 -273 0 543 359

57 -288 0 55 -337 0 212 433

43 -70 0 42 -94 0 364 334

50 -269 0 54 -235 0 430 534

54 -209 0 54 -235 0 433 500  

Figure 4.8. Collision Event Data with Attributes of Speed, Distance, 

Traffic Light Colour, and Collision Point 

 

Veh1_ 
Manoeuvre 

Veh1_ 
Direction 

Veh1_ 
angle 

Veh2_ 
Manoeuvre 

Veh2_ 
Direction 

Veh2_ 
angle Coll_Type 

STRAIGHT DOWN 90 STOPPED LEFT 0 SideCollision 

STRAIGHT DOWN 90 STRAIGHT DOWN 90 RearEndCollision 

STRAIGHT UP 90 STRAIGHT UP 90 RearEndCollision 

STRAIGHT DOWN 90 STRAIGHT DOWN 90 RearEndCollision 

STRAIGHT DOWN 90 STOPPED LEFT 0 SideCollision 

STRAIGHT UP 90 STRAIGHT UP 90 RearEndCollision 

STRAIGHT DOWN 90 STOPPED LEFT 0 SideCollision 

STRAIGHT DOWN 90 STOPPED LEFT 0 SideCollision 

Figure 4.9. Collision Event Data with Attributes of Manoeuvre, Direction, 

Angle, and Type. 

 

We have assumed the implementation of manoeuvre prediction in our simulation 

based on [Oliver00b] by enumerating the manoeuvres that can be predicted by 

[Oliver00b], which include: passing, turning right, turning left, changing lane 

right, changing lane left, starting, and stopping. Since we currently only simulate 

straight vehicle movement on a single lane in each leg (i.e. there is no lane 

change capability incorporated in the simulation yet), only three manoeuvres are 

practically in use: STRAIGHT, STOPPING, STOPPED (Figure 4.9). The values 

of direction generated by the simulation can be: LEFT, RIGHT, UP, and DOWN 

(Figure 4.9). These values exhibit the intersection leg destination of the vehicle. 

In combination with the vehicle manoeuvre data, we can infer the trajectory 

information. LEFT direction with STRAIGHT manoeuvre signifies that a vehicle 

is travelling from right (west) leg of the intersection to the left (east) leg. UP 



 
 
 

 150  
 
 

direction with STRAIGHT manoeuvre signifies that a vehicle is travelling from 

the bottom (south) leg of the intersection to the upper (north) leg of the 

intersection. Consequently, the simulation can only generate rear-end collisions 

and side collisions, which are the only collision types recorded in the collision 

event data (Figure 4.9). Although the collision data generated from the simulation 

denotes the collision types in the intersection, the collision patterns that pertain to 

the intersection (i.e. the combination between intersection characteristics and 

collision types) need to be learnt using data mining. 

 

In order to derive more meaningful information for the knowledge base of the 

U&I Aware Framework and to facilitate collision detection, it is necessary to 

mine for trends and patterns in the intersection, such as follows: 

• As seen in Figure 4.7, the simulation is able to output a periodical traffic data. 

In the sample data, each row is recorded every four seconds (i.e. the average 

traffic volume and average traffic speed is accumulated and calculated every 

four seconds). The average traffic volume and average speed of traffic are 

compared with the total number of collisions and total collisions of each 

collision type. This data is collected from various period (i.e. peak/off-peak 

hours, morning/afternoon/evening/dawn). The data can be more meaningful if 

we can learn the correlation among the varying traffic volume, varying 

average traffic speed, and the increasing or decreasing number of collisions. 

Hence, through this data, we can learn and identify the changes of traffic 

conditions and traffic hazard levels at the intersection. 

• In Figure 4.8, each collision event in the simulation is recorded with attributes 

of speed of each vehicle in the colliding pair, distance to intersection of each 

vehicle in the colliding pair, traffic light colour, and collision point of each 

vehicle in the colliding pair. By analysing this data, we can learn the 

correlation between dangerous driver behaviours and traffic violations that 

may lead to collisions. This particular collision event log files contains data 
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about the current traffic light colour, the current speed of the vehicle before 

collision, the location of the collision, and the distance to intersection centre 

(whether the vehicle is located at the intersection centre, before crossing the 

intersection centre, or after crossing the intersection centre). As those 

attributes may well be related with traffic rules violation, applying mining 

techniques to such data may extract trends of dangerous driver behaviours, 

red light running behaviours, and violation of speed limit. 

• In Figure 4.9, each collision event in the simulation is recorded with attributes 

of manoeuvres, vehicle direction, and angle of each vehicle in the colliding 

pair, and the collision type. It is essential to learn collision patterns from these 

data. By mining this data, the collision patterns learnt at the intersection (that 

include the combination of various manoeuvres, direction, and angle of each 

vehicle in the colliding pair in a particular collision type) can be extracted to 

be used as the basis for collision detection. It is also necessary to learn and 

identify the collision pattern with the highest occurrence. Hence, in the event 

of occurring vehicle pairs that match this pattern, collision detection can take 

precedence. 

 

Note that the frequency of collisions in the simulation does not correspond to the 

frequency of collisions in the real world. In this simulation, the number of 

collisions is much higher in comparison with the real-world situations. This is 

due to simulated (simplified) vehicles, which when in the path of collision, as has 

been previously detected, will eventually collide. This is because our simulation 

is designed to focus on generating collision data at this stage. Note also that, in a 

real-world setting, it is necessary that not only data about actual collisions should 

be used for analysis, but also data about near-misses (i.e. collisions that were 

likely to happen but avoided due to braking or steering action of the drivers) can 

also be included in the analysis to provide indicative trends. There is no 

minimum threshold of data required in order to commence data mining. Once 
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collision or near-miss data exists, mining can commence. Nevertheless, if there is 

more data collected, it may entail higher confidence/support of the rules extracted 

from the mining results. 

 

As such, collisions and near-misses will constitute only a small 

segment/percentage of real-world data. In such cases, outlier analysis (i.e. a data 

mining technique used to focus on exceptions) may also be undertaken. Outlier 

analysis is widely used in applications such as credit card fraud detection, where 

the focus is on a small percentage of fraudulent transactions [Aggarw05]. 

 

We apply data mining techniques to the data collected in the simulation. This is 

presented in Section 4.2, where each learning scenario is discussed further with 

the data set and learning algorithm used. 

 

4.2. Mining Intersection Traffic and Collision Data 

Data mining is a powerful means of extracting valuable patterns from traffic and 

collision data. Given real-time or historical and traffic or collision data of an 

intersection, data mining can be used to characterise information that is pertinent 

to a particular intersection, such as: 

• collision patterns; 

• patterns of intersection’s conditions or behaviours during non-collision-free 

periods (to determine dangerous traffic trends); 

• patterns of driver’s conditions or behaviours during non-collision-free periods 

(to determine dangerous driver behaviours). 

Note that the above list is not exhaustive. It only encompasses the subjects that 

are considered in this thesis. There can be other application areas where data 

mining can be found useful to improve intersection safety. 
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Given the various characteristics and collision patterns in intersections, an 

intersection collision warning and avoidance system that is applicable for all 

types of intersections is required. Since each intersection is unique and has 

different characteristics from other intersections, it also has different sets of 

collision patterns. Understanding collision patterns of an intersection is essential 

in order to identify dangerous situations in an intersection and foresee similar 

situations through the patterns that are already known. Thus, to achieve the goal 

of this research, which is to develop a generic and adaptive intersection collision 

warning and avoidance framework, it is necessary to learn collision patterns of 

the particular intersection where the system is located. It is also essential to 

monitor the occurrences of the collision patterns learnt at the intersection for 

threat detection and safety enhancements. When collision patterns of an 

intersection are identified, those collision patterns are maintained in the 

knowledge base of the particular intersection and such knowledge can be used as 

the basis for threat assessment, collision detection, warning and avoidance, and 

intersection site maintenance. In road safety research, Road Site Analyses (RSA) 

normally includes learning of collision patterns (as discussed in Chapter 2, 

Section 2.1). Collision patterns learning in RSA research is customarily 

performed manually through human observations. Furthermore, although 

research projects that develop intersection collision warning and avoidance 

systems also include learning of collision patterns ([Verid00], [Fuers05]), those 

research projects do not employ automated learning techniques. This section 

discusses how data mining can be used to extract useful information from 

intersection traffic and collision data and how the information can be used in the 

knowledge base. 

 

Traffic data captures information about average speed, average traffic volume, 

total throughput, total number of collisions, etc in a period of time (for example, 
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see Figure 4.7), which are useful for analysing the efficiency and safety of a road 

segment for that period. Collision data captures details about a collision event 

that occurs at a particular road segment. There can be various details recorded, 

such as speed, distance to intersection, traffic light presence, traffic control rule, 

collision point, angle, direction, type, etc, which can be maintained for different 

learning purposes (samples of such data can be seen in Figure 4.8 and Figure 

4.9). Both traffic and collision data can be mined offline using historical data or 

online using online data captured from sensors in real-time [Gaber05]. 

  

By having a knowledge base in the system that maintains the traffic or collision 

patterns of the particular intersection, thus, characteristics that are specific to a 

particular intersection can also be learnt and incorporated into the knowledge 

base of that intersection. Note that data mining is not suggested to replace 

existing procedures. The knowledge base can initially be filled with expert 

knowledge or rules learnt through existing process or manual observation. 

However, the usage of data mining can also supplement and enhance existing 

procedures for learning of collision and traffic patterns. The patterns learnt as a 

result of data mining can be consolidated in the knowledge base. 

 

In  addition, the efficiency of the conventional collision warning system that is 

based on the brute force approach can be improved by utilising collision patterns 

as the criteria for identifying or selecting the vehicle pairs that are candidate for 

potential collision. Collision patterns that contain definitions of possible traffic 

conflicts (a traffic conflict is a relationship between two road users on a collision 

route [Sauni07]) at the intersection are maintained in the knowledge base to be 

used as the basis for preselection. We will present our strategy for preselection 

(i.e. a mechanism that increases the efficiency of collision detection algorithms) 

and its performance implication in Chapter 5.  
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We propose a general methodology for mining traffic and collision data, which is 

as follows: 

i. Identify the nature of the problem and the goal of learning. We need to first 

identify the issues to be addressed as well as the goal of applying data mining 

techniques in each scenario. The expected learning outcome of the scenario 

must first be decided. For example, in the case of traffic data collection, a 

sudden change in the figures of traffic flow and volume may indicate the 

occurrence of a traffic incident. Hence, the expected outcome of such learning 

scenario may be to extract patterns of normal traffic characteristics that can be 

used to detect changes or anomaly. 

ii. Identify the method to be used. It is necessary to establish the correct data 

mining method (e.g. clustering or classification) in dealing with the issues 

depicted in each scenario. If there is no existing class labels attached to the 

data, classification cannot be performed [Witten05]. Therefore, clustering 

should be performed prior to classification in order to view how the data 

spread across various cluster groupings and to extract the appropriate class 

labels for each cluster. Otherwise, classification can be performed directly 

when class labels exist. However, Witten and Frank also suggested that 

clustering can improve the accuracy of classification when there is an existing 

pool of both labelled and unlabelled data [Witten05]. 

iii. Identify the technique to be used. There are many existing data mining 

techniques in each method. However, each technique has various input 

requirements and output models. Therefore, it is necessary to assess the input 

data that can be accepted by the learning algorithm. Some learning algorithms 

can only accept numeric values, some can accept only nominal values, and 

only a few can accept both. The output models can also vary, such as 

probabilistic models (i.e. Bayesian Network), tree structure (i.e. decision tree), 

or formula (i.e. regression techniques). Some techniques also required specific 

input parameters. For example, k-means clustering algorithm requires the 
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number of clusters to be specified. Therefore, it is essential to consider those 

aspects in choosing the most appropriate technique to be used to analyse data 

in a specific case or scenario. 

iv. Identify the technique for validation. Since this research is vital in terms of 

considering its impact on road safety and reducing fatalities, it is necessary to 

identify another technique to validate the outcome of the first learning 

technique. 

v. Identify implementation strategy. Once the previous steps have been 

established, we need to decide on the data mining tools, platform, and devices 

that are to be used and perform implementation.  

vi. Compare, analyse, and evaluate results. The results of data mining need to be 

analysed and interpreted by the users. Consequently, the results need to be 

visualised or presented in a way that can be understood.  

vii. Integrate with the knowledge base. Finally, how the rules or trends (acquired 

through data mining) are represented in the knowledge base needs to be 

decided. Interesting and useful patterns retrieved from the data mining process 

can supplement existing patterns or rules in the knowledge base of the 

intersection.  

 

Each stage of the methodology needs to be dealt specifically for each learning 

scenario. However, in the light of the aim of this thesis, the main purpose of 

applying data mining is for real-time collision detection and the adaptability of 

the U&I Aware Framework to various intersections. In order to facilitate 

generality of the framework to various intersections, a knowledge base is 

employed along with data mining. The knowledge base is utilised as the basis of 

the preselection method (i.e. search mechanism to identify vehicle pairs that have 

the likelihood to collide). For the purpose of preselection, the knowledge base of 

the U&I Aware Framework can be set on two different system modes, which are 

optimistic setting and pessimistic setting. This is described as follows: 
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• If it is set to be pessimistic, it takes into account all the collisions patterns 

stored in the knowledge base, including those with low probability of 

occurrence, and uses them to identify vehicle pairs that are likely to collide; 

• If it is set to be optimistic, it only considers the most frequently occurring 

collision patterns at the intersection and ignores the rest. Thus, the system 

identifies vehicle pairs that are likely to collide based on the collision patterns 

that have high probability of occurrences at the intersection.  

 

Hence, it is essential to retrieve data mining results that can be used to populate 

the knowledge base. Data mining is applied to extract collision patterns that 

pertain to the intersection as well as to identify the most frequently occurring 

collision patterns. There are two categories of collision patterns in the knowledge 

base: generic and specific collision patterns. A specific collision pattern is made 

of a collision pattern name, the manoeuvre, leg position and direction of the first 

vehicle, the manoeuvre, leg position and direction of the second vehicle, and the 

collision type. It is used to signify a unique characteristic (e.g. the most 

frequently occurring collision pattern in the intersection). For example, when 

vehicles located on the left leg with straight manoeuvre and are travelling to the 

right are most likely to collide with vehicles located on the upper leg travelling 

down with straight manoeuvre, but not with vehicles from other directions or 

vehicles that entail other manoeuvres. Hence, a specific collision pattern should 

be created to describe such situation. On the other hand, a generic collision 

pattern is described by the geometry of the conflict path and the manoeuvre of 

each vehicle in the vehicle pair. Since it does not involve a description about a 

particular leg location or direction, the pattern depicts that the conflict path may 

occur anywhere at the intersection. Every pair of vehicles that are travelling with 

the same manoeuvre pair set and form the geometry as portrayed in the generic 

collision pattern is to be identified as potentially conflicting vehicles. A generic 

collision pattern generalises a specific collision pattern by assuming that a 
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particular pattern can generally occur in any leg location with any direction pair 

as long as it has the same manoeuvre pair combination and the same collision 

geometry. A generic collision pattern is not the same as a collision type since a 

collision type only considers the geometry of a collision and does not include any 

manoeuvre combination. 

 

When using collision and traffic data, it is necessary to mine both trends and rules 

that can be consolidated into specific and generic collision patterns for the 

knowledge base. We commence learning by applying unsupervised learning to 

the collision and traffic data. This is particularly useful when there is no expert 

knowledge about existing collision patterns that pertain to the intersection stored 

in the knowledge base. Exploratory analysis is performed using a range of 

techniques. We use existing classification and clustering algorithms that have 

been previously developed. The Weka library of data mining algorithms 

[Witten05] is used for learning from historical data. Since we have only 

performed offline learning of collision patterns and dangerous traffic trends, the 

other scenarios are not addressed in this thesis. The description, motivation, 

algorithms used and results in the following learning scenarios: (i) learning 

collision patterns and trends is discussed in subsection 4.2.1, (ii) learning 

dangerous traffic trends is discussed in subsection 4.2.2, and (iii) learning 

dangerous driving trends is discussed in 4.2.3. 

 

4.2.1 Collision Patterns Learning 

The purpose of learning collision patterns is to extract specific trends of existing 

collision types in a particular intersection. As previously discussed, collision 

patterns vary from one intersection to another due to variations of intersection 

characteristics and collision types (e.g. side collision) that may occur in the 
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intersection. A collision pattern involves data about the collision type and 

attributes of a colliding vehicle pair, such as manoeuvre, direction, and location. 

This data can be obtained from sensors in the real world. For evaluation purposes, 

this data is generated by our traffic and collision simulation. To learn collision 

patterns and trends, the simulated data (Figure 4.9) has seven attributes, which 

are direction, manoeuvre, and angle from each of the colliding vehicle pair (i.e. 

vehicle 1 and vehicle 2), and collision type. Whenever there is a collision or near-

collision event in our intersection simulation, data from the colliding (or near-

colliding) pair of vehicles are collected and mined. Near-collision events are set 

by a threshold value of distance between two vehicles that almost collide with 

each other.  

 

During preselection, each SV is paired up with one or more POV based on the 

current directions and manoeuvres (e.g. straight, stopped, and stopping) of both 

vehicles. When a Subject Vehicle (SV) is travelling from one particular 

intersection leg with a certain direction, manoeuvre and angle, it is necessary to 

assess the pattern that exhibits the directions and leg locations of Principal Other 

Vehicles (POVs) that have the possibility to collide with the SV. When such 

information is known, we can eliminate the process of checking the SV with each 

and every other vehicle at the intersection for possibility of collision. Instead, the 

SV is only compared with the POVs that exhibit the travel direction, location, and 

manoeuvre that collide with SV’s travel direction, location and manoeuvre 

according to existing collision patterns in the knowledge base. 

 

In our exploration to discover patterns from the collision data, we are interested 

to find clusters of collision patterns and observe the distribution of the collision 

data across the clusters. Thus, unsupervised learning needs to be performed to 

find clusters of collision patterns. The collision event data (Figure 4.9) contain 

seven attributes, i.e. direction, manoeuvre, and angle from each vehicle in a 
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colliding pair, and collision type (side collision or rear-end collision). Using 

collision event data, we applied unsupervised clustering algorithms, such as the 

prevalent k-means and EM (Expectation-Maximization). EM is an unsupervised 

clustering algorithm, where the expected class values or the cluster probabilities 

is firstly calculated, which is then followed by the calculation of the distribution 

parameters that maximize the likelihood of the distributions based on the data 

[Witten05]. The unsupervised learning using k-means algorithm only found the 

rear-end collision clusters. However, no side collision clusters are correctly 

shown, since the percentage of side collisions in the training data is much smaller 

than rear-end collisions. And there are also some unique instances do not belong 

to any discovered clusters. The discovery of such instances is not trivial. If k-

means clustering technique is used, such unique instances are merged into the 

closest cluster centres. When EM Clustering technique is used, some of side 

collisions data are inaccurately merged into the closest cluster centres and some 

are merged into a separate cluster of side collisions. Such collision data should be 

considered as outliers or noise due to the uniqueness and small occurrences in the 

training data, however, both k-means and EM cannot deal particularly well with 

outliers or noise.  

 

Therefore, we need to find a suitable unsupervised learning algorithm that can 

handle outliers well. Hence, we use DBScan (Density Based Spatial Clustering of 

Applications with Noise) to find clusters of collision patterns that pertain to the 

intersection from the collision event data since DBScan can recognise noise 

[Ester96]. DBScan performs much better than the K-means and EM algorithms 

implemented in Weka. In Figure 4.10, clusters of intersection collision data are 

visualised in the matrix of vehicle direction pair (veh1_direction and 

veh2_direction). The visualisation of DBScan clustering results shows six 

clusters in total (Figure 4.10) and regards few data items as noise. There are 

seven attributes in each data, which are veh1_manoeuvre (the manoeuvre of SV), 
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veh1_direction (the direction of SV), veh1_angle (the angle of SV), 

veh2_manoeuvre (the manoeuvre of POV), veh2_direction (the direction of 

POV), veh1_angle (the angle of POV), and coll_type (the type of collision).  The 

clusters are listed in Table 4.3.  

 

 

Figure 4.10. Collision Patterns Clustered by DBScan Algorithm with 
Vehicle Direction as Visualisation Category 

 

Table 4.3. Clusters of Collision Event Data as Clustered by DBScan 

Cluster 
No 

Veh1_ 
manoeuvre  

Veh1_ 
direction 

Veh1_ 
angle 

Veh2_ 
manoeuvre  

Veh2_ 
direction 

Veh2_ 
angle 

Coll_ 
Type 

0 STRAIGHT DOWN 90 STOPPED LEFT 0 Side  

1 STRAIGHT DOWN 90 STRAIGHT DOWN 90 Rear-
end 

2 STRAIGHT UP 90 STRAIGHT UP 90 Rear-
end 

3 STRAIGHT RIGHT 0 STRAIGHT RIGHT 0 Rear-
end 

4 STRAIGHT LEFT 0 STRAIGHT LEFT 0 Rear-
end 

5 STOPPING LEFT 0 STOPPING LEFT 0 Rear-
end 

 

Based on table 4.3, we can see a number of specific collision patterns which are 

derived from two collision types and learnt from approximately 120 collision 
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instances that occur in the intersection. It shows a cluster of a side collision with 

STRAIGHT-STOPPED vehicle manoeuvre pair and DOWN-LEFT vehicle 

direction pair. The other five clusters depict collision patterns that are derived 

from rear-end collisions.  

 

As stated in the methodology of mining traffic or collision data, a second mining 

technique needs to be applied for validation of results. A number of issues that 

require validation based on the results are as follows: 

i. Firstly, we need to classify the side collision patterns based on the vehicles’ 

direction pairs. Using this technique, side collision instances are either 

regarded as member of cluster 0 or noise/outliers. This is because side 

collisions occur rarely in this particular intersection. This result by DBScan is 

better compared with k-means or EM that simply disregards side collision 

instances or inaccurately cluster side collision instances together with rear-

end collisions. Thus, it is important to validate these results by performing 

classification on side collision instances. 

ii. Secondly, it is also necessary to learn the probability of occurrences of the 

collision patterns at the intersection. There are collision instances that are less 

frequent (or may only occur once) but still noteworthy to be learnt since a 

potential collision may be derived from learning those instances. However, 

there are also collision patterns that tend to occur more frequently in the 

intersection. When a pair of vehicles travelling in the intersection exhibit 

characteristics of the more frequently occurring collision pattern, the pair of 

potentially colliding vehicles should be prioritised for checking. 

iii. Thirdly, the clustering result also reveals the trends in vehicles’ manoeuvre 

pairs. The common manoeuvre pairs of SV-POV in rear-end collisions are 

STRAIGHT-STRAIGHT and STOPPING-STOPPING. Whereas in side 

collisions, the common manoeuvre pairs of SV-POV are STRAIGHT-

STOPPED and STRAIGHT-STOPPING. This trend needs to be validated by 
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applying classification techniques to find pairs of colliding vehicle’s 

manoeuvres of each collision type. 

Hence, for the purpose of validation, the next steps to be taken are to identify 

appropriate techniques and compare, analyse and evaluate the results. 

 

(i) Classification of side collision patterns based on vehicle directions  

For the purpose of this scenario, which is to learn the classification of side 

collisions, we generate only the side collision data (Figure 4.11) from the 

simulation, which has around approximately 60 side collision records when a 

simulation without traffic control is run for two to three minutes (since the 

intersection has no traffic control and the vehicles are not yet equipped with 

collision avoidance capabilities, there are more collisions expected than normal). 

A side collision involves vehicles that travel in two paths that intersect at a point. 

Hence, we exclude collisions that involve any pair of vehicles that travel in the 

same direction (parallel paths) or rear-end collisions. Six attributes are included 

(direction, manoeuvre, and angle from each vehicle in the colliding pair), as 

collision type attribute is excluded from the data (since all the data are about side 

collisions).  

 

In order to perform classification of side collisions, and the vehicle directions, 

manoeuvres, and angles involved in intersection collisions, we propose that 

decision tree learning is to be applied. A decision tree is to be constructed based 

on the vehicle direction of the SV as the predefined input classes and the vehicle 

direction of the POV as the output values. A decision tree represents a simple 

structure of the input root nodes  that can traverse to different branches (based on 

attribute value groupings) and corresponds to one or more leaf or terminal nodes 

(as output values) [Quinlan86]. The classification rules can be derived from the 

decision tree by traversing the tree nodes from one of the root nodes until a leaf 

node is reached.  This data is used for the decision tree construction.  
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Figure 4.11. Side Collision Event Data with Attributes of Manoeuvre, 
Direction, and Angle of Each Vehicle in a Pair 

 

We have successfully classified types of side collisions or perpendicular crashes 

in a cross intersection using data mining. We applied the C4.5 decision tree 

learning (implemented as J48 classifier in Weka [Witten05]) and the second 

vehicle direction (Veh2_Direction) attribute is nominated as the class label. 

Classification with C4.5 displays the most frequent vehicles’ direction pairs given 

the veh1_direction as the nominated decision attribute.  The implementation 

results (Figure 4.12) show the most common vehicle’s direction pairs that exist 

within the particular intersection where the traffic data was acquired:  

• If veh1_direction (direction of vehicle 1) = LEFT: veh2_direction = UP 

• If veh1_direction = RIGHT: veh2_direction = DOWN 

• If veh1_direction = UP: veh2_direction = RIGHT 

• If veh1_direction = DOWN: veh2_direction = RIGHT.  
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Figure 4.12. Side Collision Patterns Based on Vehicle Direction as 
Classified by C4.5 

 

For example, our results, using randomly seeded data, show that a Subject 

Vehicle (SV) or vehicle 1 that travels with a straight manoeuvre from the right 

leg to the left leg of the intersection (veh1_direction = LEFT) tends to collide 

with a Principal Other Vehicle (POV) or vehicle 2 that travel with a straight 

manoeuvre from the lower leg to the upper leg (veh2_direction = UP). The result 

of this classification technique can be used in the following scenario. An SV is 

travelling on a high speed, hence there is not much time is available to compute 

collision detection. When the SV is to be assessed for collision detection, instead 

of pairing SV with every other vehicle at the intersection for collision detection 

computation, only POVs that exhibit the most common direction that collide with 

SV’s direction are to be paired up with SV and computed for collision detection. 

 

In order to assess the validity and consistency of the C4.5 classification result of 

side collisions, it is necessary to mine the probability distribution table of all the 

occurrences of side collision. A Bayesian network is a probabilistic graphical 

model of a direct acyclic graph form, which represents a joint probability 

distribution over a set of variables [Pearl88]. A Bayesian network includes all the 

possible nodes, variations of dependency between nodes and the probability 

values of each dependency set. Hence, a Bayesian network never excludes any 

possible inference of a node and dependency set. Therefore, it is very appropriate 

to build a Bayesian network in order to learn for all the possible side collision 

patterns and the probability of their occurrences. 
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A Bayesian classifier, BayesNet, an algorithm to learn Bayesian Networks using 

nominal attributes and with no missing values [Witten05], is used to classify the 

same data using vehicle direction as the class category. Bayesian Network yields 

probability estimation for each given instance in each class [Witten05], therefore 

the results of the C4.5 decision tree learning can be compared with the instances 

of the resulting BayesNet learning that possess the highest probability based on 

the class. 

 

In our scenario, we enumerate four possible straight driving directions in a four 

legs cross intersection, which are left, right, up, and down. The classification 

shows the matrix of vehicle’s direction pairs with the probability rate of each 

direction pair (Figure 4.13). The highest probability of a crash pattern in each 

direction is circled in red in Figure 4.13. Out of all the collisions that occur to 

vehicles that travel from the right leg to the left leg (i.e. “LEFT” direction), 

93.1% of the collisions occur with vehicles from the lower leg to the upper leg 

(i.e. “UP” direction). This result conforms to the result of classification with C4.5 

decision tree (Figure 4.12). 

 

 

Figure 4.13. The Probability of Side Collision Patterns Based on Vehicle 
Direction as Classified by Bayesian Network 

 

In conclusion, the most frequently occurring vehicles’ direction pairs as learnt 

with C4.5 and BayesNet classification techniques are listed as follows (format: 

SV_direction–POV_direction):   
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• UP-RIGHT: if an SV travels from the south leg to the north leg (UP 

direction), it will most likely collide with a POV that travels from the west leg 

to the east leg (RIGHT direction). 

• DOWN-RIGHT: if an SV travels from the north leg to the south leg (DOWN 

direction), it will most likely collide with a POV that travels from the west leg 

to the east leg (RIGHT direction). 

• RIGHT-DOWN: if an SV travels from the west leg to the east leg (RIGHT 

direction), it will most likely collide with a POV that travels from the north 

leg to the south leg (DOWN direction). 

• LEFT-UP: if an SV travels from the east leg to the west leg (LEFT direction), 

it will most likely to collide with a POV that travels from the south leg to the 

north leg (UP direction). 

The above results lead to composing the collision patterns that pertain to the 

intersection. Since a collision pattern includes not only the direction pairs of 

vehicles and collision types but also the manoeuvre pairs and optionally the leg 

location pairs, the side collision patterns listed in Table 4.4 are still partial. 

 

Table 4.4. Partial Side Collision Patterns Based on the Direction Pairs 

CollisionType SV Direction POV Direction 

Side UP RIGHT 

Side DOWN RIGHT 

Side RIGHT DOWN 

Side LEFT UP 

 

(ii) Probability Distribution of Collisions  

Since there can be numerous vehicles in the intersection, it is essential to identify 

the vehicles that should be prioritised for preselection. There can also be multiple 

collision types that have previously occurred in an intersection. It is also 

necessary to identify the most common or frequent collision. Hence, in 

monitoring the intersection, the priority should be given to check the potential 

occurrence of such collision that may occur again. For instance, vehicles 
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travelling eastward (i.e. RIGHT direction) from the left leg of the intersection to 

the right leg has the highest probability of side collision. Hence, in checking for 

future side collisions, the vehicles that are located on the left leg of the 

intersection are to be prioritised. 

 

In order to set the right priorities for preselection, it is necessary to learn the 

probability of certain collision types and also the probability of various vehicles’ 

direction pairs. As in the case of learning the probability of side collisions, to 

generate the probability distribution of the patterns of vehicles’ direction pairs of 

any collision types, a Bayesian network classifier is appropriate. This is because 

the learning output of Bayesian classifiers are probability inference of the classes 

of data. BayesNet [Witten05] can be applied to mine the collision event data 

(Figure 4.9). To obtain the probability of collisions that involve vehicle pairs that 

travel either in parallel paths (rear-end collisions) or traversing paths (side 

collisions), we included both data of rear-end collision and side collision events 

that occur in the simulation in the data (Figure 4.9). In this particular intersection, 

when BayesNet is applied with collision type nominated as the class, the 

visualisation of the result shows that rear-end collision occurs much more often 

than side collisions in this particular intersection (Figure 4.14).  Hence, it is 

appropriate to prioritise preselection and performing collision detection of rear 

end collisions over side collisions. 

 

 

Figure 4.14. The Probability of All Collision Patterns Based on Collision 
Types as Classified by Bayesian Network 
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BayesNet is applied on the same data again and the directions of SV and POV are 

nominated as the class labels. The result shown in Figure 4.15 displays the 

probabilistic distribution of each possible direction pair in the intersection. From 

the Figure 4.15, we exclude all the collision patterns with the probability value 

less than or than or equal to 0.022 (e.g. UP-DOWN, LEFT-RIGHT) since these 

vehicle pair combinations do not exist in the collision event data. Hence, collision 

patterns learnt at the intersection based on the direction of the SV 

(Veh1_direction) are listed as follows (format: SV_direction–POV_direction): 

DOWN-DOWN, DOWN-LEFT, UP-UP, RIGHT-RIGHT, RIGHT-DOWN, 

LEFT-LEFT, LEFT-UP, LEFT-DOWN. Based on the results displayed in Figure 

4.14 and Figure 4.15, partial collision patterns that consist of collision types, SV 

direction, and POV direction are constructed as listed in Table 4.5. 

 

 

Figure 4.15. The Probability of All Collision Patterns Based on Vehicle 
Direction as Classified by Bayesian Network 

 

Table 4.5. Partial Collision Patterns Based on the Direction Pairs 

CollisionType SV Direction POV Direction 

RearEnd UP UP 

RearEnd DOWN DOWN 

RearEnd LEFT LEFT 

RearEnd RIGHT RIGHT 

Side UP RIGHT 

Side DOWN RIGHT 

Side DOWN LEFT 

Side RIGHT DOWN 

Side LEFT UP 

Side LEFT DOWN 
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(iii) Classification of collision patterns based on vehicles’ manoeuvres 

There is also a need to learn the variations of vehicle manoeuvre pairs that can 

lead to collisions. For example, an SV travels from the north leg to the south leg 

(DOWN direction) is matched with a POV that travels from the west leg to the 

east leg (LEFT direction) based on the DOWN-LEFT rule learnt previously. 

However, the collision detection computation is executed on the SV-POV pair 

and no future collision is detected. Apparently, the SV and POV are currently 

“stopping” (i.e. it will not collide eventually). Hence, this vehicle pair should not 

be identified as a potential colliding vehicle pair. Therefore, it is necessary to find 

all the clusters of collisions and analyse the correlations between each manoeuvre 

with a collision type in the collision data. 

 

The knowledge base needs the information to pair up SV-POV based on the 

current manoeuvre of SV during preselection process and thus it is necessary to 

perform classification of collision data (Figure 4.9) to extract decision tree rules 

that represents classes of vehicle manoeuvres. Therefore, C4.5 decision tree 

learning (implemented as J48 algorithm in Weka [Witten05]) is applied on the 

collision data. In the first training, vehicle1_manoeuvre is nominated as the class 

label. The decision tree shows the following result: 

• If veh2_manoeuvre = STOPPED: veh1_manoeuvre = STRAIGHT 

• If veh2_manoeuvre = STRAIGHT: veh1_manoeuvre = STRAIGHT 

• If veh2_manoeuvre = STOPPING: veh1_manoeuvre = STOPPING 

In the second training, vehicle2_manouvre is nominated as the class label. The 

decision tree shows the following result: 

• If collision_type = SideCollision: veh2_manoeuvre = STOPPED 

• If collision_type = RearEndCollision and veh1_manoeuvre = STRAIGHT: 

veh2_manoeuvre = STRAIGHT 
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• If collision_type = RearEndCollision and veh1_manoeuvre = STOPPING: 

veh2_manoeuvre = STOPPING 

 

We conclude that in this particular intersection, most side collisions occur when 

one of the vehicle pair is stopped and another one is with straight manoeuvre. 

Furthermore, rear-end collisions happen mostly when vehicles are on the move 

with straight manoeuvre and secondly when vehicles are stopping. The result of 

this learning helps in prioritising the vehicle-pairs selected as possible candidates 

for collisions. For example, when a vehicle’s manoeuvre is stopped, then side 

collision detection algorithm is performed first before rear-end collision 

detection. Table 4.6 displays the partial collision patterns made of collision types, 

manoeuvre of SV, and manoeuvre of POV.  

 

Table 4.6. Partial Collision Patterns Based on the Manoeuvre Pairs 

CollisionType SV Manoeuvre POV Manoeuvre 

RearEnd Straight Straight 

RearEnd Stopping Stopping 

Side Straight Stopped 

 

Note that the collision patterns were learnt simulated data from a specific 

intersection. Applying the same technique to a different intersection (with 

different data) could lead to different likely situations for collisions – the point is 

that applying such learning techniques would enable collision situations specific 

to a particular intersection to be recognized automatically and identified as 

“dangerous” patterns. The results of the collision patterns learning are used to 

update the knowledge base of the collision detection in that particular 

intersection. The above results are beneficial for the preselection process since 

there is no need to apply collision detection computation for every possible pair 

in the intersection to predict for collision, but only to the vehicle pairs that satisfy 

the rules in the knowledge base. Also, the collision patterns with higher 



 
 
 

 172  
 
 

occurrences are placed on a higher priority for checking whenever there are 

situations that lead to such patterns. As a result, the intersection collision warning 

system can detect threats faster, as explained further in Chapter 5. Moreover, this 

knowledge can be submitted to the road traffic authority for further assessment 

and follow up.  

 

The results of collision patterns learning are summarised into fourteen patterns in 

the knowledge base as displayed in Table 4.5. These can be entered as specific 

collision patterns. These patterns are derived from the partial collision patterns 

learnt from the classification. The collision patterns derived from the clustering 

exploration (e.g. Table 4.3) can be used as a comparison against the list of 

specific collision patterns (Table 4.7). Based on our exploration, we found that 

the result of clustering collision data can help in finding initial collision patterns. 

However, further data analysis is necessary since a cluster may actually contain 

several specific collision patterns which are treated as one pattern/cluster by the 

clustering algorithm. Thus, classification techniques are useful to find finer 

details that compose specific collision patterns. 

 

Based on the specific collision patterns in our exploration, we can deduce that 

there are two side generic collision patterns, which are “Perpendicular Left 

Straight Stopped” and “Perpendicular Right Straight Stopped” (Table 4.8). And 

there are two rear-end generic collision patterns, which are “Rear End Straight 

Straight” and “Rear End Stopping Stopping” (Table 4.8). For example, specific 

collision patterns no. 9, 11, 12, and 13 signify a side collision with perpendicular 

collision angle and the POV on the left hand side of the SV. Similarly, specific 

collision patterns no. 10 and 14 signify a side collision with perpendicular 

collision angle and the POV on the right hand side of the SV.  
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Table 4.7. Specific Collision Patterns 

N

o 

Collision

Type 

SV 

Manouvre 

POV 

Manouvre 

SV 

Direction 

POV 

Direction 

SV Leg 

Location 

POV Leg 

Location 

1 RearEnd Straight Straight UP UP Any Any 

2 RearEnd Straight Straight DOWN DOWN Any Any 

3 RearEnd Straight Straight LEFT LEFT Any Any 

4 RearEnd Straight Straight RIGHT RIGHT Any Any 

5 RearEnd Stopping Stopping UP UP Any Any 

6 RearEnd Stopping Stopping DOWN DOWN Any Any 

7 RearEnd Stopping Stopping LEFT LEFT Any Any 

8 RearEnd Stopping Stopping RIGHT RIGHT Any Any 

9 Side Straight Stopped UP RIGHT 
SOUTH, 
CENTRE 

WEST, 
CENTRE 

10 Side Straight Stopped DOWN RIGHT 
NORTH, 
CENTRE 

WEST, 
CENTRE 

11 Side Straight Stopped DOWN LEFT 
NORTH, 
CENTRE 

EAST, 
CENTRE 

12 Side Straight Stopped RIGHT DOWN 
WEST, 
CENTRE 

NORTH, 
CENTRE 

13 Side Straight Stopped LEFT UP 
EAST, 
CENTRE 

SOUTH, 
CENTRE 

14 Side Straight Stopped LEFT DOWN 
EAST, 
CENTRE 

NORTH, 
CENTRE 

 

Table 4.8. Generic Collision Patterns in the Knowledge Base 

Pattern Name Collision 

Type  

Subject Vehicle 

(SV) 

Manoeuvre 

Principal Other 

Vehicle (POV) 

Manoeuvre 

Geometry 

 

Rear End Straight 
Straight 

Rear End Straight Straight 

Rear End Stopping 
Stopping 

Rear End Stopping Stopping 

Perpendicular Left 
Straight Stopped 

Side Straight Stopped 

Perpendicular Right 
Straight Stopped 

Side Straight Stopped 

 

The advantage of implementing specific collision patterns are that since it is 

purely based on the result of mining historical collision data, it is useful for the 

optimistic system mode, as only the patterns that have historical existence in the 

intersection are checked against future collision prediction. However, since the 

POV 

SV 

POV 

SV 

POV 

SV 

POV 

SV 
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number of specific collision patterns is higher than the number of generic 

collision patterns, it takes longer to iterate through specific collision patterns than 

through generic collision. It will be faster processing time to match an SV with a 

POV in a specific collision pattern, since all the required parameters to find a 

matching POV (manoeuvre pairs, direction pairs, leg location pairs) are stated. In 

contrast, in a generic collision pattern, an iterative process to match a POV based 

on the collision geometry and the manoeuvre pair would be necessary. 

 

Given the high number of specific collision patterns, we implement four generic 

collision patterns, which encompass only the most frequently occurring 

manoeuvre pairs of each collision type in the intersection. These patterns allow 

vehicles to be matched based on the criteria coded in the pattern, which are 

manoeuvres and the collision geometry (implemented as a delegate function). In 

this way, the system is not set to be moderate. It is not very optimistic, since no 

matter where is the subject vehicle’s location, it will be matched with other 

vehicles based on the colliding manoeuvre pairs and the geometry. It is not 

pessimistic either since not all possible manoeuvre pairs are considered. If the 

system is set to be very optimistic, specific collision patterns must be used as 

only certain direction pairs that exhibit the highest probability of a collision type 

is entered into the knowledge base.  

 

All the patterns stored in the knowledge base are deduced from the result of 

learning from collision event data generated from the simulation, which is a cross 

intersection with a traffic light and no turning vehicle movements. Hence, these 

patterns are applicable only to the particular intersection simulated. In the real-

world implementation, equivalent methodologies are applicable. All the collision 

event data and real-time traffic data need to be collected and learnt from. 

Collision patterns and traffic trends extracted from the data mining process are 

entered into the knowledge base for the generality of the intersection collision 
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warning and avoidance system and are used for the basis of detecting imminent 

and future collisions in the particular intersection. When such a system is 

transferred to a new intersection location, new knowledge about the intersection 

is learnt and entered into the knowledge base for that intersection. Therefore, due 

to the collision learning component in the U&I Aware Framework, the 

framework itself becomes adaptable to various and varying characteristics of an 

intersection. 

 

Given the positive results yielded from the data mining techniques employed on 

the intersection simulation, it can be explicitly extrapolated that employing same 

or similar techniques on various intersections will also yield positive results as 

that is a property of data mining techniques. The intersection model has covered 

two major collision patters as described in page 130-131 as rear-end collisions 

and side collisions, which in some literatures are described as the collision 

patterns with the highest occurrence [Mitre99], [USDOT04], [Lages04]. 

 

Next, we discuss learning of traffic trends in an intersection that may lead to 

collision. 

 

4.2.2 Traffic Trends during Non-Collision-Free Periods 

Apart from learning collision patterns, various characteristics of traffic may 

determine the risk for collisions to occur. We are interested to know whether 

variations in traffic attributes in different periods of a day can contribute to a 

higher or lower number of collisions. Attributes of intersection’s traffic that can 

be monitored for a period of time are as follows: period, number of collisions, 

traffic volume, time of day, peak hours/non-peak hours, average speed of 

vehicles, safe ranges of vehicle speeds. In the U&I Aware Framework, the data is 
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gathered periodically from our simulation, where different parameters of time of 

day (morning/afternoon/evening/dawn) and peak/off-peak hours are applied to 

produce different behaviours in speed and traffic volume as in the real-world 

situations (e.g. during peak hours, there are higher traffic volume but the average 

traffic speed is lower, an during off-peak hours, the traffic volume is lower but 

the average traffic speed is higher). The main purpose of this learning is to 

determine whether the variation of speed and traffic volume may affect the 

number of collisions and different kinds of collisions in an intersection. To find 

such correlations, there is a need to apply an unsupervised clustering algorithm, 

which is useful to find trends and patterns in data when no attribute is specified 

for classifying or segregating data. This is because we cannot choose a particular 

class label that determines a traffic trend, as there can be various factors that 

contribute to a safer (or more dangerous) traffic trend.  

 

Since there is no outlier to be considered such as in collision pattern learning, 

DBScan technique is inappropriate for clustering this data. Although either k-

means or EM (Expectation Maximization, a clustering algorithm discussed 

previously in 4.2.1) can be used for this scenario, k-means is less accurate than 

EM. Hence, we propose to apply EM to the periodic collision data (Figure 4.5), 

which is generated by our simulation. Each record in the data is generated in 

every interval (which is four seconds in our simulation) with the following 

attribute values: average traffic volume, average speed, total number of 

collisions, total number of side collisions, and total number of rear-end collisions 

in the last interval. The Pantheon Gateway Project [Gross05] uses a similar set of 

attributes of real-world sensor data (speed, volume, occupancy) to learn changes 

in highway traffic. The initial results of applying EM on the data generated from 

our simulation (with the size of 50 – 80 records per file) are as follows: 

• The higher the traffic volume and speed, the higher is the risk of collision. 

The exact figures cannot be quantified since collisions may happen at any 
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traffic situation. However, this can be used as an indication. When the current 

figures of traffic volume and speed are increasing, the system should be more 

pessimistic. 

• The number of rear-end collisions is heavily affected by traffic volume. The 

higher the traffic volume, the higher the possibility of rear end collision. 

Speed also contributes to rear end collisions. 

• Side collision is not much correlated with traffic volume but more so with 

higher speeds, especially when the speed limit is violated. 

 

Based on the results of the EM learning on traffic data on this particular 

intersection, we can deduce that the presence of collision (particularly rear-end 

collisions) during peak hours (morning peak hours when people commute to 

work and evening peak hours when people return home), are more likely than 

during non-peak hours. More side collisions occur during off-peak hours when 

average speed is higher than usual. Although these traffic patterns vary 

throughout the day, there is no correlation between the traffic patterns and 

collision patterns, since collision patterns are not affected by variations in traffic 

volume and average traffic speed. However, the number and type of collisions 

that occur can be affected by those attributes. Therefore, these traffic patterns can 

be useful in determining whether the intersection collision warning and 

avoidance system should be more pessimistic or optimistic. For example, during 

off-peak hours, we can set the system to be pessimistic for side collision 

detection, so that all possible side collision patterns are considered.  

 

The above results are only applicable at the intersection where learning is 

performed. In another intersection, results may vary. This is why data mining can 

contribute to a generic model of intersection safety system that can self-adapt to 

different types of intersections by learning from the data specific to the 

intersection.  
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Future works of traffic trends learning include: characterisation of incident free 

behaviours at intersections (the antithesis of the learning described in this 

section), safe thresholds (i.e. the attributes’ values under safe or normal 

situations), and identification of hazardous situations at the intersections when 

possibilities of collisions are present.  

4.2.3 Normal Behaviours of Drivers during Non-Collision-Free 

Periods 

Another set of data generated by our simulation is used to identify dangerous 

driving trends and it consists of attributes that are collected from pairs of vehicles 

involved in a collision, which are speed and distance to intersection of each 

vehicle, traffic light colour faced by each vehicle, and the collision point (Figure 

4.6) characterise ideal or dangerous driver behaviours, are as follows: above 

speed limit, above average speed, collision presence, approaching intersection, 

increasing speed (yes / no). Once we know the acceptable threshold of those 

attributes for a collision free drive in an intersection, we would be able to easily 

identify abnormality in intersection or abnormal behaviours of drivers that are 

using the intersection if they exhibit any attribute that exceeds the acceptable 

threshold.  

 

The purpose of this learning is to determine the boundaries of safe and dangerous 

driving behaviours. Data is recorded when a collision occurs. There are 20 – 30 

records in the collision data. After applying Expectation-Maximization (EM) 

unsupervised clustering to extract dangerous driving trends, the result shows that 

in this particular intersection, most of the collisions occur when one of the 

vehicles in the collision pair have speed over 49. Again, this is merely an 

indication of what can be learnt from such data. When we apply this knowledge 
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to a collision warning system, an earlier prediction and extra precautions can be 

taken to vehicles that speed above 49. Another result of learning driver behaviour 

data of this particular intersection using C4.5 is that most cases of speed limit 

violation occur if the vehicle increases its speed when leaving the approach leg 

(any intersection leg where there is incoming traffic to the intersection centre) 

and enters the centre of the intersection. Future work in this area includes 

learning driver’s distractions and its relationship to collisions and driver’s safest 

manoeuvres for avoidance. 

 

In terms of the time statistics of learning (or time taken to perform a data mining 

algorithm on a dataset), we have recorded that the time taken to build each model 

is around 0 to 0.03 seconds for each scenario described in Section 4.2.1 – 4.2.3. 

Since it is necessary to use learning algorithms that can work in real time and 

future works may include online incremental learning, our approach is proven 

efficient. 

 

As the preceding discussion and analysis show the potential scope for data 

mining in ITS and road safety is very significant, and there are still many issues 

to be explored where data mining can be found useful, e.g. driver distractions, 

drowsy drivers’ behaviours, red light running behaviours, etc. One of the aims of 

this thesis is to show and demonstrate the usage of data mining for development 

of a generic and adaptable intersection collision warning and avoidance systems, 

and therefore, the investigation of these issues is not in the primary concern of 

this research. However, the same principles and methodologies proposed in this 

thesis are applicable for various problem areas in road safety and ITS. 
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4.3. Summary 

Along with the detection and warning components that are generally found in a 

collision warning and avoidance systems, the U&I Aware Framework comprises 

of a key feature, namely the learning component. Learning collision and traffic 

data to facilitate a generic and adaptable framework is a novel and a 

distinguishing feature that contributes to ITS and road safety. Collision learning 

is not aimed at replacing current methods or processes of analysing collision data, 

but it is aimed to serve as a supplement or enhancement to current methods and 

processes. This novel approach also facilitates faster collision detection. With the 

results of learning attributes contributing to collisions being integrated with the 

knowledge base, the U&I Aware Framework becomes context-aware, as only 

patterns and trends that pertain to the intersection are kept and utilised.  

 

Since collision and traffic data from sensors data need to be gathered for collision 

learning, a traffic simulator is required to generate such data. We do not use 

existing traffic simulators since current existing simulators do not provide the 

following requirements: free flow and regulated traffic, macroscopic and 

microscopic view of traffic, continual and discrete data input by vehicles, and 

communication between vehicles and road infrastructure or base station. 

Moreover, the high cost of existing simulators makes them inaccessible. Hence, 

we have developed our own traffic simulation using four-leg cross intersection. 

The simulation generates intersection traffic and collision data and enables us to 

perform collision detection.  

 

Once we obtain the traffic and collision data from the simulation, we apply data 

mining techniques in order to learn collision patterns, traffic trends during non-

collision-free periods, and driver behaviours during non-collision-free periods. 

We apply different algorithms in different scenarios to achieve comprehensive 



 
 
 

 181  
 
 

and correct results. A general approach for performing data mining on collision 

and traffic data are proposed and used: 

• Identify the nature of the problem and the goal of learning; 

• Identify the method to be used; 

• Identify the technique to be used; 

• Identify the technique for validation; 

• Identify implementation strategy; 

• Compare, analyse, and evaluate results; 

• Integrate with the knowledge base. 

 

Finally, the results of collision learning are interpreted and represented in the 

knowledge base. The collision patterns are stored either as specific or generic 

patterns. A specific collision pattern comprises of a pair of leg position, vehicle 

direction, and manoeuvre of both vehicles. Specific collision patterns are used 

when the mode of the intersection collision warning and avoidance system is set 

to optimistic. A generic collision pattern is used when the mode is either 

moderate or pessimistic. It has a delegate function that defines the geometry of a 

set of specific collision patterns.  

 

Once all the useful patterns and trends for collision detection are entered into the 

knowledge base, they can be used as the criteria for filtering vehicle pairs, or 

namely “preselection”, before collision detection computation. The 

implementation of knowledge base is then utilised by the collision detection 

component of the U&I Aware Framework. Preselection is discussed in the next 

chapter. 
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CHAPTER 5  

 

Collision Detection 

To recapitulate, one of the objectives of this thesis is to address the issue of how a 

future collision at an intersection can be detected before the collision actually 

occurs in real-time. Hence, the collision detection component is part of the U&I 

Aware Framework (Figure 5.1). In ITS, the term collision prediction is 

commonly used, such as in [Stubbs03] and [Kwon06] to refer to the activity of 

foreseeing a future and imminent collision. Sometimes, the term collision or 

threat detection is used instead, such as in [Miller02]. In robotic collision 

avoidance, the term collision detection is used either to state whether two objects 

that are moving will come into a collision over a given time span [Camer90]. In 

computer graphic or geometry research, collision detection is used to refer to a 

process of finding graphical objects that are currently colliding or intersecting 

with each other. In this thesis, the term collision detection and collision 

prediction are used interchangeably, as both refer to the definition of recognising 

a potential future collision before it actually takes place.   

 

Collision detection and avoidance in road safety field are different from collision 

detection and avoidance in robotic collision avoidance. Studies in robotic 

collision avoidance have existed for many years [Fayad99], [Fox97], [Mani93]. 
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Robots need to be able to find their own way to their destination as well as to 

avoid obstacles on their path. Although it seems that a robotic collision avoidance 

system has much resemblance to the problem of a road collision avoidance 

system, those two subjects differ in many aspects, which are as follows:  

• A robotic collision avoidance system mostly focuses on static obstacles, such 

as walls [Mani93]; 

• A robotic collision avoidance system focuses on the goal of the robotic tasks 

such as to find a way out of a room, whereby a road collision avoidance 

system focuses on getting to the destination safely;  

• Collision avoidance is a component in the path finding in a robotic collision 

avoidance system [Fayad99], [Fox97], which is not applicable in a road 

collision avoidance system; 

• A robotic collision avoidance system does not need a human user, whereby a 

road collision avoidance system serves to assist a driver. 

 

Due to the above differences, we need to approach road collision avoidance 

issues differently from robotic collision avoidance. However, the dynamic 

knowledge base technique introduced by [Mani93] can be used in conjunction 

with collision detection. Therefore, the incorporation of collision learning and 

knowledge base (discussed in Chapter 4) with the collision detection algorithms 

(discussed in this chapter) facilitate effective and efficient collision avoidance. 

 

To facilitate collision avoidance, every incoming collision must be detected early. 

Therefore, fast and accurate techniques are needed such that collision warnings 

can be issued in time and the number of false alarms can be reduced. In the U&I 

Aware Framework, the results of the collision learning are stored in the 

knowledge base and become the basis for the preselection method for the 

collision detection component (Figure 5.1). As vehicle status data is received by 
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the intersection agent, the possibility of collision of each vehicle with other 

vehicles is assessed based on the known collision patterns (that have been 

obtained through mining, field observation, etc). The preselection method yields 

only the pairs of vehicles that have the potential for collision to the collision 

detection algorithm. The collision detection algorithm computes a future collision 

point of potentially colliding vehicle pairs as identified by the preselection. When 

a collision point exists, the time of each vehicle to reach the collision point is 

calculated. The timings for each of the vehicles to reach the collision point are 

compared and if the figures are almost equivalent, then an incoming collision is 

predicted. 

 

Figure 5.1. Collision Detection in the U&I Aware Framework 

 

This chapter covers discussion on the collision detection component of the U&I 

Aware Framework. The work in this chapter has been previously published in 

[Salim07a], [Salim07c], [Salim08b]. The conventional method of collision 
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detection (the pair wise collision detection algorithm, as adapted from [Miller02]) 

is reviewed in Section 5.1. Then, our proposed preselection method that is 

designed to increase the performance of collision detection with regards to the 

conventional method of collision detection is discussed in Section 5.2. The 

implementation details of collision detection and preselection are discussed in 

Section 5.3. Section 5.4 presents evaluation results of our approach which is 

implemented through our simulation. This chapter is concluded in Section 5.5. 

 

5.1. Improving Existing Collision Detection and 

Warning Algorithms by Preselection 

The basic of calculating collision detection is the well-known speed formula, 

which is calculated by: 

 t

s
v =

 (5.1)   

where v is speed, s is distance and t is travel time within the distance. 

 

Based on the formula (5.1), collision detection can be calculated by the following 

steps: 

• Calculate future collision point, which is by finding route contention of a pair 

of vehicles; 

• Calculate time for each vehicle to reach future collision point (Time-To-

Collision) based on the above speed formula; 

• If Time-To-Collision (TTC) of one vehicle is equal or nearly equal with TTC 

of another vehicle to reach the same collision point, then collision is detected. 

 

The peer to peer collision warning system by Miller and Huang [Miller02], as 

discussed previously in section 2.3.4, consists of a pair-wise collision detection 
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algorithm that computes the point of collision, Time-To-Collision (TTC) and 

Time-To-Avoidance (TTA). Their proposed algorithms to calculate the future 

collision point (x+, y+) [Miller02] are stated in (5.2) and (5.3) and the symbols 

used in those formulas are illustrated in the Figure 5.2 [Miller02]. 
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Figure 5.2. Collision Detection Algorithm [Miller02] 

 

The x and y coordinate represents the location of the vehicle. In the real world, 

this coordinate can be obtained from GPS. The θ represents the angle between the 

line drawn from the same orientation or point of reference used by both vehicles 

and the trajectory of the vehicle. Using the coordinates and angle of the pair of 

vehicles, the future collision point (x+, y+) is calculated. 

 

After a collision point is found, Time-To-Collision is then calculated. Time-To-

Collision (TTC) is a common term used in Traffic Conflict Studies and Collision 

Warning Systems to measure elapsed time before an accident or collision occurs. 
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TTC is defined by Hayward [Hayw72] as the time needed for two vehicles to 

collide if they continue at their current speed and on the same path. Time-To-

Collision (TTC) has been used as an effective measure to assess the severity of 

traffic conflicts and to distinguish dangerous from normal behaviour [Horst93]. 

TTC is calculated as a finite number that keeps decreasing in time as the future 

collision event goes unnoticed and vehicle speed and angle are constant. 

 

The time for each car to reach the future collision point (TTX) [Miller02] is 

calculated by: 
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where v is velocity of each car and r is the vector of the coordinate (x, y) 

[Miller02]. 

 

As vehicles have variation in size, collision can no longer be expressed as a point; 

instead as a region. The α parameter is used to represent the size of the region 

(which can be determined by various factors, e.g. vehicle size). Therefore, a 

future collision is detected if time for both vehicles to reach the collision point is 

the equal or nearly equal, that is expressed in formula 5.6 [Miller02]. In this case, 

TTC is equal to TTX. 

 
α<− 21 TTXTTX

           (5.6) 

 

In some cases, when both of the intersection angles are perfectly perpendicular, 

future collision point cannot be directly calculated using Miller and Huang’s 

formula (5.2) and (5.3). For example: if 
0

1 0=θ and
0

2 90=θ , then tan ( 1θ ) = 0, 

cot ( 1θ ) = ~, tan ( 2θ ) = ~, cot ( 2θ ) = 0. Therefore, the formula simply becomes: 
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 2XX =+                (5.7) 

  1YY =+            (5.8) 

 

By analysing the algorithm, we found that there are still a number of limitations. 

The algorithm may incur high communication overheads. The algorithms require 

very frequently updated information due to split second velocity and location 

changes. This is because firstly, the proposed collision system by Miller and 

Huang is a peer-to-peer vehicle based collision system [Miller02]. Therefore each 

vehicle needs to know the status of every other vehicle. Every time the car 

moves, all other vehicles must be informed. Hence, there should be a message 

queuing procedure that needs to be incorporated in each vehicle. However, since 

our proposed system applies a centralised computation approach, the message 

queuing procedure only needs to be applied on the central intersection agent. 

Secondly, collision detection should be computed again to find out possible 

collisions with any other vehicles in the vicinity using the current position. 

Changes in velocity in terms of acceleration and deceleration of vehicles in 

calculating collision time prediction are not considered. Average acceleration or 

deceleration a can be calculated by:   

 t

v
a

∆
=

≈  t

vv
a t 0−
=

            (5.9)  

where ∆v is velocity difference in a given time interval, vt is future velocity, vo is 

current velocity, and t is time interval. When acceleration or deceleration is taken 

into account, communication cost can be reduced. Update of information, in 

particular velocity, can be less frequent as near future velocity can be predicted 

with acceleration or deceleration. Therefore, we have taken acceleration into 

account in designing the protocol of status message sent from vehicles. The 

communication model and protocol were discussed and presented in Chapter 3. 
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This algorithm also incurs high computational cost because the algorithm 

requires calculation for each possible pair of vehicles in the intersection (brute 

force). Therefore, real time detection is challenging when the number of vehicles 

increases at the intersection. As centralised approach for collision detection 

computation is adopted in the U&I Aware Framework, the formula to calculate 

the number of vehicle pairs to be monitored for collision detection is as follows: 

 )1(
1

∑
=

−
n

i

i                     (5.10) 

where n is the number of vehicles. Hence, the number of vehicle pairs grows in a 

linear square as the number of vehicles in the intersection grows. In order to 

sustain the performance and scalability of collision detection of vehicle pairs in 

an intersection, there is a need for reducing the number of vehicle pairs for which 

collision detection points need to be calculated. 

 

Furthermore, mere application of the algorithm only enables the system to react 

to threat. There is a need for analysing collision, near collision or near miss data 

to enhance collision detection. Therefore, applying data mining techniques, as 

discussed in Chapter 4, along with implementation of the pair-wise collision 

detection algorithm help better situation recognition. In addition, with the results 

gained from mining collision patterns in Chapter 4, the number of vehicle pairs to 

be calculated for collision detection can be reduced by applying the preselection 

method. Therefore, the following section presents the preselection method as a 

proposed solution to deal with the issue. 

 

5.2. Preselection 

Preselection is a method to improve the performance of the conventional collision 

detection by reducing the number of vehicle pairs in the intersection to be 
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calculated for collision detection. Every Subject Vehicle (SV) is paired up with 

the potential Principal Other Vehicle (POV) based on the collision patterns learnt 

at the intersection. This pair is then added into the pool of matching vehicle pairs. 

Other vehicles that do not match with the SV based on the characteristics of any 

collision pattern are not included in the pool.  

 

An SV is paired up with a POV based on the direction pair, manoeuvre pair, 

and/or location pair in an existing collision pattern. Whenever a pair of vehicles 

for potential collision is found, the matching collision pattern yields the collision 

type (i.e. side collision or rear-end collision) and the relevant collision detection 

computation based on the collision type is applied to assess the possibility of an 

imminent collision. 

 

An example scenario of how a preselection algorithm can improve computational 

time is as follows (as pictured in Figure 5.3): 

 

 

Figure 5.3. Cross Intersection without Traffic Lights Implementation 

 

i. Figure 5.3 – left shows four vehicles in a four leg cross intersection. Without 

preselection and the knowledge base with patterns (i.e. when brute force 
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approach is adopted), there are six possible pairs to be calculated for collision 

detection at every computation interval. For example, if the collision 

detection algorithm is to be executed at every 10 milliseconds, then at every 

10 milliseconds, these vehicle pairs should be tested for possibility of 

collision. This is ineffective, since there are at least two vehicle pairs that will 

never collide, i.e. the pair of vehicle A and vehicle C. 

ii. The knowledge base of the intersection in this example records two types of 

side collision patterns: perpendicular left with straight manoeuvre and 

perpendicular right with straight manoeuvre.  

iii. In the brute force approach, each vehicle that moves needs to be checked for 

side collision prediction. However, we will not compare each vehicle to every 

other vehicle in the intersection. Only vehicles that are located within a 

certain area and exhibiting certain manoeuvres are selected. As for the truck 

B located at the right leg of the intersection in Figure 5.3, the algorithms will 

only be applied on vehicles on the upper and bottom legs that are exhibiting 

straight manoeuvre, based on perpendicular left with straight manoeuvre and 

perpendicular right with straight manoeuvre patterns. Those vehicles are 

vehicle A at the bottom leg and vehicle C at the upper leg. 

iv. After preselection is executed, only then the pair-wise collision detection 

algorithm is applied. 

 

Hence, in dealing with the issue of the high computational cost of a conventional 

collision detection algorithm, we propose a preselection strategy, so that collision 

detection is only performed on pairs of vehicles that have the possibility of 

collisions based on the known intersection collision patterns. Preselection is 

implemented by selecting merely the vehicles in the vicinity based on matching 

the behaviours, location, and driving manoeuvres exhibited by each SV and POV 

pair with the collision patterns in the knowledge base. The methodology of 

preselection is described as follows: 
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i. Selection of SV. Whenever status data is received from an SV, preselection is 

commenced for the particular SV. Based on the previous discussion in section 

3.6.1, a variable interval time is used based on the speed of vehicles and how 

far the vehicles have travelled since the last status update. Hence, preselection 

is not performed by scanning all vehicles in the intersection at a constant 

interval time. Thus, it increases the efficiency of collision detection 

computation. 

ii. Finding the Relevant Collision Pattern. After the intersection agent receives 

the status data from the vehicle agent, it extracts the information about the 

manoeuvre, direction and/or leg location of the SV. These information is used 

to find the matching collision pattern in the knowledge base. These patterns 

are stored in form of hashtables. As the knowledge base may consist of 

generic collision patterns and specific collision patterns, depending on the 

pattern type, the access method of finding the pattern varies. This is further 

elaborated in the next section.  

iii. Finding the POVs. When a matching collision pattern is found based on the 

SV’s manoeuvre, direction and/or leg location, then the manoeuvre, direction 

and/or leg location of POVs are retrieved from the collision pattern. The 

vehicles that are currently located in the relevant leg location as specified by 

the collision pattern are retrieved by directly accessing the LegPart hashtable 

(see Figure 4.6). Then, each vehicle is compared with the POV’s manoeuvre 

as specified by the collision pattern. Only the vehicles that match with the 

specified manoeuvre are considered as the potentially colliding POVs and 

thus passed on to the pair-wise collision detection algorithm to be computed 

as shown in section 5.1. 

 

As previously discussed in Chapter 4, the preselection can use two different 

modes as employed by the knowledge base, which are optimistic or pessimistic.  

In order to preselect pairs of vehicles that belong to the most frequently occurring 
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intersection collision patterns (i.e. optimistic system mode), it is necessary to be 

able to pair up one vehicle with other vehicle based on one of the attributes of the 

collision pattern, such as vehicle manoeuvre, direction, or leg location. For 

example, based on the given direction and manoeuvre of a Subject Vehicle (SV), 

we should be able to identify the opponent vehicles (Principal Other Vehicle – 

POV) that are most likely to collide with the SV. Each SV is then paired up with 

POV for collision detection computation. If the system is set to be pessimistic (an 

SV is paired up with POV based on an existing collision pattern, which is not 

necessarily the most frequently occurring pattern), all the existing collision 

patterns in the knowledge base of the intersection are to be used to identify 

potentially colliding vehicle pairs. A threshold can be set to determine the 

minimum probability of the occurrences required for a collision pattern to be 

included in preselection. Any collision patterns with any occurrence probability 

higher than the set threshold are to be considered in the preselection. 

 

The next section discusses further how the collision detection and preselection 

are implemented in our simulation. 

 

5.3. Collision Detection Evaluation 

As stated in Section 4.1, the simulation is also developed as a test-bed for 

intersection collision detection. Hence, in this section, components in the 

simulation that are used to evaluate collision detection are discussed.  

 

The knowledge base is coded as a class named CollisionPatterns. The 

CollisionPatterns class allow new patterns (each pattern is coded as CollPattern) 

to be added and provide methods to check for traffic conflicts. Specific collision 

patterns are coded as a class with five attributes (Figure 5.4): patternName (a 
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textual description for the pattern), drivingManoeuvre (of the SV), currentLeg (of 

the SV), collidingLeg (of the POV), and collidingManoeuvre (of the POV). 

 
public CollPattern(string patternName, string drivingManoeuvre, 

Leg currentLeg, Leg collidingLeg, string collidingManoeuvre); 

Figure 5.4. Implementation of Specific Collision Pattern  

 

A generic collision pattern is implemented as an object with a delegate function 

(Figure 5.5). The geometry of the collision is coded into the delegate function of 

the generic collision pattern. For example, “straight perpendicular left” collision 

pattern signifies that vehicles that are travelling with straight manoeuvre have 

possibilities of conflicts with vehicles approaching from their left hand side, no 

matter which leg they are currently located. To find conflicting vehicles with a 

generic collision pattern, a delegate function is used. The delegate function 

determines the conflicting vehicles based on the location of the subject vehicle 

and the attributes of the collision pattern coded into the delegate. 

 

public delegate Leg findCollidingLeg(Leg currentLeg, string 

direction, bool outgoing); 

 

CollPattern(string patternName, string drivingManeuver, 

findCollidingLeg collidingLeg, string collidingManeuver); 

Figure 5.5. Implementation of Generic Collision Pattern 

 

We have implemented the preselection and the pair-based collision detection 

algorithm. Preselection is implemented in the intersection agent. The 

implementation details are as follows: 

i. As mentioned in the Section 4.2, the knowledge base class CollisionPatterns 

maintains all the existing collision patterns learnt at the intersection. 

CollisionPatterns has a method named getConflictingLegsAndManuevers 
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(Figure 5.6), which is the main method that implements the preselection. The 

method requires input of the SV’s manouvre, current leg position, direction, 

and information about the SV’s movement (whether it is about to enter the 

intersection, at the intersection centre, has left the intersection centre or is 

leaving the intersection).  

ii. If generic collision patterns are used, this method compares those parameters 

of the SV with the generic collision patterns in the knowledge base using the 

findCollidingLeg delegate in the collision pattern. Otherwise, if specific 

collision patterns are used, string comparison between the parameters of the 

SV and the attributes of the collision patterns is performed.  

iii. When conflicts are found, the sets of conflicting manoeuvres, leg, and 

direction are recorded and returned in a hashtable.  

iv. getConflictingLegsAndManuevers method is called and executed whenever a 

new status update from a vehicle is received.  

v. If the hashtable returned from executing getConflictingLegsAndManuevers is 

not null, then we get the leg parts of the Legs hashtable, which match the 

values of the conflicting leg locations.  

vi. Following this, we retrieve all the POV in those legs that match the 

conflicting manouvres and directions.  

 

Hashtable getConflictingLegsAndManuevers(string currentManeuver, 

Leg currentLeg, string currentDirection, bool outgoing); 

Figure 5.6. getConflictingLegsAndManuevers Method 

 

After all the conflicting POV have been retrieved, we instantiate CarState object 

(Figure 5.7) for each vehicle. Subsequently, we perform pair-wise collision 

detection by executing the predictCollision method (Figure 5.8). This method 

firstly calculates the future collision point. If future collision point exists, then the 
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value of α as required in the formula 5.6 (see section 5.1) is calculated (α is the 

size of the larger vehicle divided by the speed of the larger vehicle).  

 

public CarState(Point carPos, int carAngle, double speed, string 

travelDirection, Size size); 

Figure 5.7. CarState Class Constructor 

 

public static Collision predictCollision(CarState car1, CarState 

car2, int intersectionWidth, int intersectionHeight); 

Figure 5.8. Pair Wise Collision Detection Algorithm Implementation 

 

The time for each vehicle to reach the future collision point (TTC) is calculated. 

If the difference between both TTCs is smaller than the value of α, it means a 

future collision has been detected, and a Collision object (Figure 5.9) is created 

and returned by predictCollision method, otherwise null is returned.  

 

public Collision(Point collisionPoint, double timeToCollCar1, 

double timeToCollCar2); 

Figure 5.9. Collision Object 

 

As seen in the simulation screen images of intersection without traffic lights 

(Figure 5.3), the red X mark is the collision point and the note on the upper left 

tells us the time to collision. The red X mark is displayed when the Collision 

object is not null, which means a collision is certain in near future if there is no 

manoeuvre or trajectory change. In Figure 5.3 – left screen, the collision point 

will be reached in 1.586 seconds by the cab A or truck B, as shown by the last 

sentence in the collision detection box. In the right screen of Figure 5.3, the 

collision actually happens in time of the predicted TTC. 
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To sum up, the pseudocode of the preselection method is as listed in Figure 5.10. 

Currently, the algorithm implemented for pair-wise collision detection is only for 

side collision detection, which comes from [Miller02], as has previously been 

discussed. The algorithm for side collision detection cannot be used for rear-end 

collision detection as rear-end collisions can be caused by multiple chain 

reactions, where there can be a number of cars following a collision, especially a 

rear-end collision. At this stage, we have not yet found an effective algorithm to 

detect multiple rear-end collisions, which are results of the chain reactions, as this 

is not the main focus of the research. 

 

if (status_update) 

   for each vehicle 

      get the current leg location, manoeuvre and direction  

      getConflictingLegsAndManuevers – return Hashtable object 

      if Hashtable is not null 

         retrieve leg parts that match the Hashtable values 

      if leg part is not null    

         then get vehicles that match the Hashtable values 

               for each conflicting vehicle       

            instantiate CarState 

            predictCollision – return Collision object 

               if Collision is not null 

                     send / display warning 

Figure 5.10. Preselection and Pair-Wise Collision Detection Pseudocode 

 

The preselection method has been evaluated and the results show that 

preselection optimises the performance of conventional collision detection 

algorithm. The next section discusses how the collision detection is evaluated and 

presents the evaluation results. 
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5.4. Collision Detection Evaluation 

In order to show the performance improvement of collision detection made by the 

preelection method, we evaluate our approach using the following methods: 

• Speed of detection; 

• Performance/accuracy: precision and coverage. 

The efficiency of the U&I Aware Framework needs to be evaluated by both 

speed and accuracy of collision detection. It is stated in the beginning of Chapter 

3 that it is necessary to increase the speed of detection for a collision to be 

avoided. However, the accuracy of the detection should not be compromised to 

compensate for speed. Both evaluation methods are equally important to 

demonstrate the efficiency of the framework. 

 

Each of these methods is performed in our system in two ways:  

i. the side collision detection is performed without using knowledge base and 

preselection (i.e. pure implementation of pair-wise collision algorithm 

[Miller02] where each possible pair of all the vehicles in the intersection is 

calculated);  

ii. the side collision detection is performed after applying preselection criteria 

from the knowledge base.  

These methods are further discussed in the following subsections.  

 

5.4.1 Speed of Detection 

Whenever a future collision event is detected for the first time, it is recorded in a 

log file, with attributes as follows: registration number of both vehicles, collision 

point, time to collision, leg location of both vehicles, and collision type. 

Afterwards, the average of detection time (time to collision) for each run is 
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calculated. In each execution, the average time to collision is calculated. At the 

evening peak vehicle distribution model (average traffic volume 37-42 vehicles), 

if preselection is ignored in collision detection, the average time to collision is 5.6 

seconds. However, when preselection is used, the average time to collision is 

10.7 second, which is around 5 seconds earlier than the previous method. In each 

distribution model, preselection yields faster detection result. Therefore, 

preselection is shown to speed up the process of collision detection. The greater 

the number of vehicles in an intersection, the more preselection is useful and 

effective. This is shown in Figure 5.11. When collision detection is performed 

with preselection, the collision is detected faster (as TTC is greater). 
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Figure 5.11. Speed Evaluation of Collision Detection  

 

5.4.2 Accuracy: Precision and Coverage 

This evaluation focuses on the accuracy of using preselection for collision 

detection and avoidance. Whenever a prediction of a future collision event is 
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issued, it is evaluated on whether the collision really happens. If it does, it is 

counted as a true positive (valid detection). However, when a predicted collision 

does not happen, it is counted as a false positive (invalid detection). When a 

collision occurs, and it is not previously predicted, then it is counted as false 

negative (undetected collision). The terms are described in Fig. 5.12. 

 

 

Figure 5.12. Evaluation Terms 

 

We determine performance based on the terms of precision (of all the detections) 

and coverage (of all the collisions), respectively: 
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Both precision and coverage are evaluated through the simulation. When an 

incoming collision is predicted, the registration numbers of both vehicles are 

entered into the CollPrediction hashtable as a new object of key and value pair. 

The time for each vehicle to reach the collision point is entered into the 

CollPredictionTime hashtable, which is updated throughout the course of the 

collision. When a collision occurs, the collision details are entered into the 

trueCollisions hashtable. Using a periodic timer, the method to calculate 
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precision and coverage are invoked periodically. The values of the CollPrediction 

hashtable is compared with the values of the trueCollisions hashtable. The 

matching values are considered as true positive events. The values in the 

trueCollisions hashtable that are not included in the CollPrediction hashtable are 

considered as false negative events. In order to calculate the false positive events, 

the CollPrediction hashtable is compared with the Vehicles hashtable that 

contains references to all the vehicles in the intersection. If a collision is 

predicted for a certain vehicle that no longer exists in the Vehicles hashtable and 

it is not included in the trueCollisions hashtable as a collision that actually 

happens, then the collision prediction is obsolete and considered as a false 

positive event. 

 

Based on the accuracy evaluation on side collision detection in our simulation, 

we achieve 100% precision when side collision detections are present and 100% 

coverage when side collisions are present. This level of 100% precision and 

coverage is valid in the simulation. This result shows that the collision detection 

algorithm is correctly implemented and effective. Furthermore, it reveals that the 

preselection algorithm has successfully identified potential collisions using 

collision patterns learnt at the intersection. When there is a false negative, it may 

indicate a new collision pattern that has not been included in the knowledge base. 

The collision learning component that continuously learn for collision patterns 

can identify this new collision pattern, which has to be added into the knowledge 

base. Thus, having a generic and adaptable framework for intersection collision 

avoidance serves the requirements of the dynamic and changing situations of an 

intersection. The integration of collision learning, detection, and warning 

components of the U&I Aware Framework produces a powerful and effective 

solution for intersection collision avoidance. 
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We also remark that the speed and accuracy results obtained from the evaluation 

are limited to computer based simulations. The following facts need to be 

considered when a full scale real-world evaluation is performed: 

• Sensor accuracy is probabilistic. Since each sensor has a range of error rate 

(as mentioned in Section 1.1), when multiple sensors are used, the error rates 

are accumulated. This affects the accuracy of status data that are typically 

based on vehicle sensors). Hence, in the real-world deployment, 100% 

accuracy cannot be guaranteed.  

• Computation time and workload is uncertain for various machines. 

Evaluation on various machines, platforms, and mobile devices has not been 

performed.  

• The tradeoffs between performance (i.e. speed and accuracy) and cost of 

computation. Given the availability of higher resources and computing power, 

the performance rate can be higher. However, when small mobile devices are 

used and only limited resources are available, there should be a threshold 

allowed for lower performance rate.  

 

In the next chapter, we discuss how to address the above issues in the real-world 

evaluation as part of the future directions of this research. 

 

5.5. Summary 

This chapter has presented methods and algorithms for collision detection in 

intersection collision avoidance systems. Mere application of the existing 

conventional pair-wise collision detection algorithm such as proposed by Miller 

and Huang [Miller02] can pose several issues: the performance and scalability 

when the number of vehicle pairs in the intersection grows exponentially, and the 

inability of the algorithm to adjust to the collision patterns that pertain to the 
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intersection for better situation recognition and faster detection.  Given those 

challenges in existing collision detection algorithms, it is necessary to develop a 

method to reduce the number of vehicle pairs to be computed for collision 

prediction. The dynamic knowledge base that contains the collision patterns of 

the U&I Aware Framework can be used in combination with the collision 

detection algorithm for that purpose. 

 

Hence, the collision detection component in the U&I Aware Framework is 

coupled with the collision learning component. The preselection method is 

proposed to reduce the number of vehicle pairs to be computed for collision 

prediction. The learning results that are stored in the knowledge base are utilised 

as the basis for the preselection method. Each vehicle in the intersection is only 

paired up with another vehicle in the intersection if it matches the preselection 

criteria, which are the collision patterns. Only the pairs that are selected by the 

preselection method are used for collision prediction computation, which uses the 

conventional collision detection algorithm. 

 

The collision prediction has been implemented and evaluated in the intersection 

simulation. The performance and accuracy of the collision detection are evaluated 

based on the speed and the coverage of detection (which evaluates both precision 

and recall of collision detection). The speed of the collision detection is improved 

when preselection is used. The precision of the collision detection is 100%, and 

the recall of side collision detection is 100% in the context of this evaluation. 
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CHAPTER 6  

 

Conclusion 

Road intersections have claimed and injured many lives worldwide. The costs of 

intersection collisions financially are also not trivial. Initiatives and efforts to 

increase safety for road users have resulted in new sensor technologies installed 

in vehicles and on the road, increased safety measures in vehicles, and 

intersection collision warning and avoidance systems being designed and 

developed. Nevertheless, the existing intersection collision warning and 

avoidance systems are mainly infrastructure-only. They typically rely only on 

infrastructure sensors as the data source and roadside LED signs for issuing 

warning. The implications here are that these systems do not leverage the 

available data sources adequately. They are also limited in their models for 

communicating warnings effectively. Furthermore, they are designed only for a 

particular type of intersection and are not capable of learning and adapting to 

different and varying characteristics of the intersection. Therefore, this thesis has 

investigated the features required in a cooperative intersection collision warning 

and avoidance systems that can adapt to the varied characteristics of 

intersections. The next section presents the contributions of this thesis. 
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6.1. Research Contributions 

This research has contributed novel findings for the pervasive computing 

community as well as the road safety and Intelligent Transportation Systems 

research, as discussed below. 

 

• The U&I Aware (Ubiquitous Intersection Awareness) Framework  

 

First of all, this thesis has proposed a generic and adaptive framework for real-

time collision detection (or prediction) and warning at road intersections, namely 

the U&I Aware (Ubiquitous Intersection Awareness) Framework. The following 

qualities have been incorporated into the U&I Aware Framework: adaptability of 

the framework to various intersections, improvement of performance and 

scalability of the collision detection (or prediction) process, usage of appropriate 

real-time data sources, and a real-time communication model and protocol 

between vehicles and the system infrastructure with an effective warning delivery 

based on the available time before collision is predicted to occur.  

 

The pervasive computing techniques – data mining, knowledge based systems, 

and context-awareness, which enable learning and adaptability have inspired the 

work of this thesis and are integrated as components of the framework, which are 

collision learning, collision detection, and collision warning. Current intersection 

collision warning and avoidance systems do not encompass collision learning, 

which is the capability for the system to learn collision patterns and other trends 

at the intersection. Through the learning of collision patterns, the U&I Aware 

Framework can be tailored for operation in any given intersection. Thus, the 

ability of the framework to adapt to various intersections is one of its key 

contributions. Furthermore, the patterns learnt at the intersection can be used as 

the basis for preselection, which identifies vehicle pairs that are likely to collide. 
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This approach improves the performance of the collision detection component in 

the U&I Aware Framework. An evaluation of the framework has been carried out 

using our custom-built intersection traffic simulation. 

 

For the purpose of collision avoidance, it is necessary to know the cost model of 

Time-To-Avoidance (TTA), since TTA must be lesser than Time-To-Collision 

(TTC). A comprehensive cost model of TTA, that considers all the cost 

components from existing research and also the U&I Aware Framework, has 

been proposed. TTC is known from computing the possibility of future collision 

between two vehicles with the collision detection algorithm. Given the need for 

effective warning delivery, we used two warning delivery types, which are 

collision warning message (intended for the driver, the cost of issuance is 

expressed as TTAwarning) and collision command message (intended for the 

vehicle braking system, the cost of issuance is expressed as TTAcommand). If TTC 

is greater than TTAwarning, collision warning message is issued, otherwise collision 

command message is sent. The cost model for calculating TTAwarning and 

TTAcommand are presented in this thesis. 

 

There are two major positive characteristics given by the U&I Aware Framework 

in improving safety at intersections. The first major impact is adaptability, as the 

framework is able to adapt to different and varying intersection characteristics. 

The second is the improvement in the performance and scalability of collision 

detection at intersections. In addition, the intersection simulation is also a 

contribution of this research. These features are discussed further. 

 

• Enabling Adaptability of the Framework to Different and Varying 

Intersection Characteristics 

 

Due to different and varying characteristics of intersections, it is necessary to 
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enable adaptability of an intersection collision warning and avoidance system to 

various intersections. A generic and adaptable intersection collision warning and 

avoidance system has been enabled through the U&I Aware Framework using 

intersection-specific collision pattern learning and its dynamic knowledge base.  

 

Collision learning in the U&I Aware Framework is performed to enable new 

patterns to be learnt and added into the knowledge base and thereby enhance the 

knowledge base for better collision detection. Offline mining is performed to 

extract collision patterns, dangerous traffic trends during various times of the day, 

and dangerous driver behaviours in the intersection from intersection data, which 

include collision and near collision events, driving behaviour, and real-time 

traffic data. The appropriate data mining algorithms for each learning scenario 

are suggested and applied in this thesis.  

 

The knowledge base is populated with results from mining intersection data. 

Information learnt at the intersection, such as collision patterns and traffic trends, 

is stored in the knowledge base to be used as the basis for identifying vehicle 

pairs that are likely to collide. Given the features of the collision learning 

component, which consists of data mining and a knowledge base, the U&I Aware 

Framework is applicable to various intersections. Since learning is performed 

using the traffic and collision data from the intersection vicinity, the knowledge 

base gets updated with collision patterns and traffic trends that pertain to that 

particular intersection.   

 

• Improvement of Performance and Scalability 

 

An intersection collision warning and avoidance system needs to perform 

efficiently and be scalable for increasing number of vehicles travelling through 

the intersection. The existing pair wise route contention (or collision detection) 
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algorithm relies on calculating point of collision of a vehicle pair and travel time 

of each vehicle in the vehicle pair to the collision point. Hence, such computation 

requires every possible pair of vehicles in the intersection to be calculated for 

possibility of collision. This thesis has proposed a preselection method, which 

performs better than the brute force method. The preselection method reduces the 

number of vehicle pairs in the intersection by only selecting the vehicle pairs that 

corresponds to one of the existing collision patterns in the knowledge base. The 

preselection method then passes the list of the vehicle pairs to the collision 

detection algorithm.  

 

In order to perform preselection, a global bird’s eye view of the intersection is 

needed, therefore, the U&I Aware Framework uses a central component that is 

located in the intersection’s vicinity, namely the intersection agent, which 

manages the tasks of communication, data mining, predicting potential collisions, 

and issuing warning to relevant vehicles. The dynamic knowledge base that is 

required for adaptability and preselection is located in the intersection agent 

[Salim08a]. The patterns learnt at the intersection are maintained as rules in the 

knowledge base and are used for the preselection technique. The mining results 

can be used to determine whether a pair of vehicles travelling in the intersection 

is possibly due for an imminent collision [Salim07a]. 

 

The performance and scalability of the intersection collision detection are 

evaluated based on the speed and the accuracy of the detection. We measure the 

speed of the detection by comparing the collision detection that is equipped with 

preselection, with collision detection that requires calculation of each possible 

vehicle pair in the intersection. The evaluation shows that preselection increases 

the speed of collision detection. The higher the number of vehicles in the 

intersection, the more effective preselection becomes. The accuracy of the 

detection is measured on the precision (rated by the number of collisions that are 
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detected correctly divided by all the collision detections issued) and the coverage 

(rated by the number of collisions that are detected correctly divided by all the 

actual collisions that occur in the intersection). The accuracy of the side collision 

detection in the intersection simulation is 100% precision and 100% coverage. 

Rear-end collisions, which mostly happen due to the chain effect after a side 

collision, are not detected at this stage since we have not found an effective rear-

end collision detection algorithms that can deal with chain collision effect. 

 

• Intersection Simulation 

 

In this thesis, we have proposed and developed an intersection simulation that is 

equipped with and without traffic light opreation, able to represent microscopic 

and macroscopic view of the traffic, able to accept both continuous and discrete 

input, able to simulate vehicle sensor data (as if data are communicated 

wirelessly from vehicles to the intersection agent), and consider both stochastic 

and deterministic models for vehicle distribution, vehicle speed change, and car 

following model. None of the existing simulations can provide all the above 

characteristics. The intersection simulation is used to generate collision events 

and traffic data, so the learning component of the U&I Aware Framework can 

mine the data. The simulation is also used as a test-bed for the implementation of 

the preselection and intersection collision detection. The data generated in the 

intersection resembles the real-world representations and yields interesting and 

useful patterns when learning is applied.  

 

The next section presents further investigations and extensions that are proposed 

as future directions for this research. 
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6.2. Research Directions 

The thrust of the work of this thesis has been focused on the pre-collision stage. 

Collision learning has been focused on finding the characteristics of driving (e.g. 

manoeuvre, trajectory, speed, etc) and traffic conditions just before a collision 

takes place. However, it is also important to learn the safest driver behaviours and 

manoeuvres during collision and post-collision stage on various conditions that 

will alleviate impacts, reduce severity of the collision, or avoid a collision 

completely on a given situation.  

 

Ideally, those processes are to be executed in a mobile and small resource-

constrained device (such as a Personal Digital Assistant (PDA)) for easy 

deployment in vehicles. Thus, data mining on resource-constrained devices in 

vehicles should be considered as a future work. It is also desirable to learn 

collision pattern and dangerous driver behaviours using online stream data from 

vehicle sensors and incrementally add the learning results into an evolving 

dynamic knowledge base. Although the framework is now able to adapt to 

various types of intersections, threat and collision learning is still performed 

offline on historical data using data mining.  The current state-of-the-art of data 

mining research, which is ubiquitous data stream mining, is a significant area to 

explore, given the increasing number of sensors and small devices that are 

available in vehicles. 

 

We also see the need for personalisation of warning since every driver is 

different. One driver might have a tendency to drive cautiously, while others 

might have a history of reckless driving. Young probationary drivers have the 

tendency to drive faster than middle-aged probationary drivers. A proficient 

driver might not need a very early warning for incoming threats, as it can be a 

nuisance to him. Therefore, it is also necessary to adjust the collision warning 
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based on the driver’s profile. With advances of ubiquitous data stream mining, 

learning can be done onboard the vehicle utilising driver’s profile and vehicle 

sensor data, thus making the vehicle agent that sits in the vehicle to be aware of 

the vehicle and the driver behavioural contexts. As a result, the intersection 

collision warning system can be more informed when a driver exhibits dangerous 

driving behaviours. Considering the tradeoffs between performance and 

computational cost, there is also a need to learn probabilistic model of the 

correlation between performance and computing resources. This is useful 

particularly in dealing with various road users that have various requirements. 

For example, an elderly may need a warning system that has a higher accuracy 

and thus a higher resource machine should be used. 

 

A full-scale real world deployment should be considered. The messaging cost 

model and protocols in the U&I Aware Framework [Salim08a] are proposed in 

this thesis without a real-world performance evaluation. It is necessary to 

implement the messaging protocols of the U&I Aware Framework at the 

intersection agent (in the server) and vehicle agents (in small devices) and 

evaluate the performance and accuracy of the collision warning and avoidance 

systems with input from real-world sensor data. Based on the given context 

(known from the sensor data), a specific contextual warning or manoeuvre should 

be suggested to completely avoid a collision or alleviate the impact. In a real-

world deployment, we need to setup a virtual time base where each part of the 

distributed application refers to the same timestamp. Furthermore, a real-world 

deployment also requires more complex manoeuvre modelling. This can be 

achieved by integrating a simple vehicle model with a filter (e.g. Kalman filter) in 

order to assess the vehicle state. Such filter needs to consider different types of 

noise that may arise in communication/messaging, vehicle model data, and sensor 

data. 
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Furthermore, the communication model in the U&I Aware Framework can be 

extended to include knowledge sharing capability among the intersection agent 

and vehicle agents. Since learning can also be done in each vehicle using 

mobile/small devices, the knowledge learnt can also be shared. In order to 

maintain the awareness of the system with the up to date situations on the road, 

knowledge sharing needs to be applied. After a vehicle is registered in an 

intersection administration zone and if the option of knowledge sharing is 

enabled in the vehicle agent (for privacy concerns, knowledge sharing can be 

disabled), the vehicle agent can also communicate the knowledge learnt about the 

driver. Patterns of dangerous driving behaviours can be utilised by the 

intersection agent to detect the presence of certain behaviour and activity that 

may lead to collisions in the intersection. Patterns of driver’s avoidance 

manoeuvres can be used by the intersection agent to correlate the collision pattern 

with certain manoeuvres, so that the best manoeuvre to avoid a foreseen collision 

in the intersection can be suggested to the relevant vehicles. However, when 

considering such scenario, security and privacy issues should also be dealt with. 

 

Given the contributions and directions of this research, we have demonstrated the 

potential of pervasive computing (i.e., the combination of situated sensing and 

computation) when applied to road intersection safety. There are still other areas 

of Intelligent Transportation Systems that are not discussed in this thesis where 

pervasive computing research can be applicable and useful.   

 

In summary, this thesis has made a novel and signification contribution to 

intersection safety through the proposal and development of the U&I Aware 

Framework. 
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