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Notation and Definitions

I Sn is the set of permutations of {1, . . . , n}

I π = a1a2 . . . an

I (ai , aj) is called an inversion if i < j and ai > aj

. . . 4 . . . 2 . . .

I π is called indecomposable (or connected) if there is no k < n

such that {a1, . . . , ak} = {1, . . . , k}
Otherwise it is decomposable

43127586 is decomposable; 43172586 is indecomposable

I Cn = number of indecomposable permutations of length n

(Sloane, sequence A003319)

Cn = n!−
n−1∑
k=1

Ck · (n − i)!
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Problem

I σ(n,m) = permutation chosen u.a.r. from all permutations

with n vertices and m inversions

Questions

• How does the connectedness probability of σ(n,m) change as

m increases?

• Is there a (sharp) threshold for connectedness?

Definition

T (n) is a sharp threshold for the property P if for any fixed ε > 0

• m ≤ (1− ε)T (n) =⇒ σ(n,m) does not have P whp

• m ≥ (1 + ε)T (n) =⇒ σ(n,m) does have P whp
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Permutation Graphs

◦ π = a1a2 . . . an −→ Gπ(V ,E )

• V = {1, 2, . . . , n}
• E = set of inversions

◦ Gπ = permutation graph or inversion graph

Example π = 35124786

3

5

1 2 4 7 8

6
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Simple Facts

I π indecomposable ⇐⇒ Gπ connected

I Vertex set of a connected component of Gπ consists of

consecutive integers

I (Comtet) If σ is chosen u.a.r. from Sn, then

Pr [σ is indecomposable] = 1− 2/n + O(1/n2)
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Connectivity and descent sets

I Connectivity set of π

C (π) = {i ∈ [n − 1] : aj < ak for all j ≤ i < k}

C (35124786) = {5}

I Descent set of π

D(π) = {i ∈ [n − 1] : ai > ai+1}

D(35124786) = {2, 7}

Proposition (Stanley)

Given I ⊆ [n − 1],

|{ω ∈ Sn : I ⊆ C (ω)}| · |{ω ∈ Sn : I ⊇ D(ω)}| = n!
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Permutations with given number of cycles

◦ π(n,m) = permutation chosen u.a.r from all permutations of

{1, . . . , n} with m cycles

◦ p(n,m) = Pr [π(n,m) is connected]

Theorem (R. Cori, C. Matthieu, and J.M. Robson - 2012)

(i) p(n,m) is decreasing in m

(ii) p(n,m)→ f (c) as n→∞ and m/n→ c



Erdős-Rényi Graphs

◦ G (n,m) : Uniform over all graphs on [n] with exactly m edges

I Connectedness probability of G (n,m) increases with m

I Sharp threshold: n log n/2

◦ Graph Process G̃n

I Start with n isolated vertices

I Add an edge chosen u.a.r. at each step

I G (n,m) is the snapshot at the m-th step of the process

I G (n,m) ⊂ G (n,m + 1)
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Erdős-Rényi Graph G (n,m)

0 n
k−2
k−1

( )

n/2
( )

n log n/2
( )

n4/3
( )

(n
2

)

I n(k−2)/(k−1): components of size k

I n/2: giant component

I n log n/2: connectedness

I n4/3: 4-clique



Question: Is there a similar process for σ(n,m) (or Gσ(n,m)) such

that

1. Uniform distribution is achieved after each step

2. Existing inversions (edges of Gσ(n,m)) are preserved

Answer: NO
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Evolution of a Permutation: Model 1

I Swap neighbors if they are in the correct order

Example (n=4)
1234

2134 1324 1243

1/3 1/3 1/3

2314 2143 3124 1342 2143 1423

? ?
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Evolution of a Permutation: Model 1

I Swap neighbors if they are in the correct order

Example (n=4)
1234

2134 1324 1243

1/3 1/3 1/3

2314 2143 3124 1342 2143 1423

? ?

• Preserves the existing inversions (edges in the permutation)

• No uniformity



Question: Is there a process for Gσ(n,m) (or σ(n,m)) such that

1. Uniform distribution is achieved after each step

2. Once the graph (permutation) becomes connected, it is

connected always

Answer: YES
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Inversion Sequences

◦ Inversion sequence of π = a1a2 . . . an is (x1, . . . , xn)

xj = #{i : i < j and ai > aj}

◦ 0 ≤ xj ≤ j − 1

◦ permutations of [n]↔ (x1, . . . , xn) where 0 ≤ xi ≤ i − 1

Example

• (x1, x2, x3, x4, x5) = (0, 1, 0, 3, 3)

• π = 4, 3, 5, 1, 2



Evolution of a Permutation: Model 2

Increase one of the components in the inversion sequence by 1

• Not all the inversions are protected

• Once the permutation becomes connected, it continues to be

connected

Example (n=4)

0000
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Inv. Sequence Permutation Graph

0000 1234

1

2 3

4

0010 1324
1

2 3

4

0011 1423
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0021 2413
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f (n, k) = number of permutations of [n] with k inversions

1. number of integer solutions of

x1 + · · ·+ xn = k , 0 ≤ xi ≤ i − 1

2. k balls are placed into n boxes

• box i has capacity i − 1

f (n, k) = [zk ]
n−1∏
j=0

(1 + z + · · ·+ z j)

= [zk ](1− z)−n
n∏

j=1

(1− z j)
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The Process

I Start with (0, 0, . . . , 0)

I Each time increase exactly one of the components by 1

I X(k) = (X1(k), . . . ,Xn(k)) after step k is uniformly

distributed

Example

(0, 0, 0, 0) −→ (0, 0, 1, 0) −→ (0, 0, 1, 1) −→ (0, 0, 2, 1) −→
(0, 0, 2, 2) −→ (0, 1, 2, 2) −→ (0, 1, 2, 3)
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Goal: Finding p(X(k)), a (conditional) probability distribution for

the (k + 1)st addition OR

Transition matrix ρn,k

• f (n, k)× f (n, k + 1) matrix

• rows are indexed by inversion sequences with sum k

• columns are indexed by inversion sequences with sum k + 1



Goal: Finding p(X(k)), a (conditional) probability distribution for

the (k + 1)st addition OR

Transition matrix ρn,k

• f (n, k)× f (n, k + 1) matrix

• rows are indexed by inversion sequences with sum k
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Example (n=3)

f (3, 0) = 1, f (3, 1) = 2, s(3, 2) = 2, and s(3, 3) = 1.

ρ3,0 =
[ 010 001

000 1/2 1/2
]

ρ3,1 =

[ 011 002

010 1 0

001 0 1

]

ρ3,2 =

[ 012

011 1

002 1

]

1/2 1/2

01 1

1 1

000

010 001

011 002

012



Theorem

Transition matrices exist for all n and for all possible values of m.

Sketch Proof

I Induction on n

I Order the sequences with reverse lexicographic order

yn = 0 yn = 1 yn = 2 . . . yn = n − 2 yn = n − 1

xn = 0 ρ′n−1,m β1I

xn = 1 ρ′n−1,m−1 β2I

xn = 2 ρ′n−1,m−2
. . .

...
. . .

. . .

xn = n − 2 ρ′n−1,m−n+2 βn−1I

xn = n − 1 ρ′n−1,m−n+1

I ρ′(n − 1,m − j) = (1− βj+1)ρn−1,m−j

I Find constants β1, . . . , βn−1 such that all the column sums are

equal to f (n,m)/f (n,m + 1)
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0120 0111 0021 0102 0012 0003

0110 1− β1 β1 0 0 0 0

0020 1− β1 0 β1 0 0 0

0101 0 1− β2 0 β2 0 0

0011 0 0 1− β2 0 β2 0

0002 0 0 0 1−β3
2

1−β3
2 β3

• column sums must be 5/6

0120 0111 0021 0102 0012 0003

0110 5/12 7/12 0 0 0 0

0020 5/12 0 7/12 0 0 0

0101 0 3/12 0 9/12 0 0

0011 0 0 3/12 0 9/12 0

0002 0 0 0 1/12 1/12 10/12
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Definition

An index t (t ≥ 1) is a decomposition point if (Xt+1, . . . ,Xn) is an

inversion sequence, i.e., if

Xt+1 ≤ 0, Xt+2 ≤ 1, . . . Xn ≤ n − t − 1

• number of components = number of decomposition points +1

Corollary

Pr[σ(n,m) is indecomposable] is non-decreasing in m



Definition

An index t (t ≥ 1) is a decomposition point if (Xt+1, . . . ,Xn) is an

inversion sequence, i.e., if

Xt+1 ≤ 0, Xt+2 ≤ 1, . . . Xn ≤ n − t − 1

• number of components = number of decomposition points +1

Corollary

Pr[σ(n,m) is indecomposable] is non-decreasing in m



Definition

An index t (t ≥ 1) is a decomposition point if (Xt+1, . . . ,Xn) is an

inversion sequence, i.e., if

Xt+1 ≤ 0, Xt+2 ≤ 1, . . . Xn ≤ n − t − 1

• number of components = number of decomposition points +1

Corollary

Pr[σ(n,m) is indecomposable] is non-decreasing in m



C (σ) := number of components in Gσ(n,m)

Theorem

If

(i) m = 6n
π2

[
log(n) + 0.5 log log(n) + log(12/π)− 12/π2 + xn

]
(ii) xn = o(log log log n)

then

dTV [C (σ)− 1,Poisson(e−xn)] ≤ (log n)−1+ε for any ε > 0.

Remarks

1. If xn → c , then C (σ)− 1
d−→ Poisson(e−c)

2. T (n) = 6n
π2 [log n + 0.5 log log n] is a sharp threshold for

connectedness of Gσ(n,m)
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2. T (n) = 6n
π2 [log n + 0.5 log log n] is a sharp threshold for

connectedness of Gσ(n,m)



Idea of the Proof for xn → c

1. Need Dn, the number of decomposition points

• ν = 2m log n/n

• Mark t if (Xt+1, . . . ,Xt+ν) is an inversion sequence

• Mn = number of marked points

2. Whp Mn = Dn as n→∞

3. Pr [t is marked] ∼ e−c/n

4. Ek = E
[(Mn

k

)]
→ (e−c )k

k!

5. Mn → Poisson(e−c) in distribution
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• Lmin = size of the smallest component

• Lmax = size of the largest block (component)

Theorem

If

◦ m = 6n
π2

[
log(n) + 0.5 log log(n) + log(12/π)− 12/π2 − xn

]
◦ xn = o(log log log n) and xn →∞

then

1. limn→∞ Pr [Lmin ≥ ne−2xny ] = e−y , for any constant y ≥ 0

2. limn→∞ P[Lmax ≤ ne−xn(xn + z)] = e−e
−z
, for constant z ≥ 0

Note: Expected number of decomposition points ∼ exn



Remark

Divide the interval [0, 1] into k intervals with k − 1 randomly

chosen points.

Lmin, Lmax = smallest and largest intervals, respectively

• Pr [Lmin ≥ y/k2]→ e−y as k →∞

• Pr [Lmax ≤ log k+z
k ]→ e−e

−z
as k →∞



Question: Conditioned on {the number of blocks in σ(n,m) = k},
do we have

(L1/n, . . . , Lk/n)→ (η1, . . . , ηk) as n→∞

where

• Lj = size of the j th block in σ(n,m)

• ηj = size of the j th interval in [0, 1]?



Chord Diagrams and Intersection Graphs

Chord Diagram

matching of 2n points

Intersection Graph

V = chords, E = crossings

1

2

3 4

5

6

7

8

910

11

12 (2,12)

(1,9)

(3,8) (4,10)

(5,11)

(6,7)

I Number of chord diagrams:

(2n − 1)!! = (2n − 1)(2n − 3) · · · (3) · (1)



Permutations as Chord Diagrams

I Relabel the points on the lower semicircle

I Draw the chords from the upper semicircle to the lower

semicircle
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Permutations as Chord Diagrams

I Relabel the points on the lower semicircle

I Draw the chords from the upper semicircle to the lower

semicircle

1

2

3 4

5

6

1

2

3 4

5

6

Permutation= 254136



pointed hypermaps ↔ indecomposable permutations

Definition

A labeled pointed hypermap on [n] is a triple

(σ, θ, r) ∈ Sn × Sn × [n] such that < σ, θ > acts transitively on [n].

Example

σ = (abel)(cdk)(fgi)(hjm)

θ = (adf )(bjc)(egh)(ilkm)

r = m

l

c

k

m∗

j

a

f

g

e

b
d

ih



THANK YOU!


