An evolution of a permutation

Huseyin Acan

April 28, 2014

Joint work with Boris Pittel

▶ S_n is the set of permutations of $\{1, \ldots, n\}$

- ▶ S_n is the set of permutations of $\{1, \ldots, n\}$
- $\blacktriangleright \pi = a_1 a_2 \dots a_n$

- ▶ S_n is the set of permutations of $\{1, \ldots, n\}$
- $\rightarrow \pi = a_1 a_2 \dots a_n$
- ▶ (a_i, a_j) is called an inversion if i < j and $a_i > a_j$...4...2...

- ▶ S_n is the set of permutations of $\{1, \ldots, n\}$
- $\triangleright \pi = a_1 a_2 \dots a_n$
- $ightharpoonup (a_i, a_i)$ is called an inversion if i < j and $a_i > a_i$. . . 4 . . . 2 . . .
- \blacktriangleright π is called indecomposable (or connected) if there is no k < nsuch that $\{a_1, ..., a_k\} = \{1, ..., k\}$ Otherwise it is decomposable 43127586 is decomposable; 43172586 is indecomposable

- ▶ S_n is the set of permutations of $\{1, \ldots, n\}$
- \blacksquare $\pi = a_1 a_2 \dots a_n$
- ▶ (a_i, a_j) is called an inversion if i < j and $a_i > a_j$...4...2...
- π is called indecomposable (or connected) if there is no k < n such that {a₁,..., a_k} = {1,..., k}
 Otherwise it is decomposable
 43127586 is decomposable; 43172586 is indecomposable
- $ightharpoonup C_n$ = number of indecomposable permutations of length n (Sloane, sequence A003319)

$$C_n = n! - \sum_{k=1}^{n-1} C_k \cdot (n-i)!$$

Problem

 $\sigma(n, m)$ = permutation chosen u.a.r. from all permutations with n vertices and m inversions

Problem

 $\sigma(n, m)$ = permutation chosen u.a.r. from all permutations with n vertices and m inversions

Questions

- How does the connectedness probability of $\sigma(n, m)$ change as m increases?
- Is there a (sharp) threshold for connectedness?

Problem

 $\sigma(n, m)$ = permutation chosen u.a.r. from all permutations with n vertices and m inversions

Questions

- How does the connectedness probability of σ(n, m) change as m increases?
- Is there a (sharp) threshold for connectedness?

Definition

T(n) is a sharp threshold for the property P if for any fixed $\epsilon>0$

- $m \le (1 \epsilon)T(n) \implies \sigma(n, m)$ does not have P whp
- $m \ge (1 + \epsilon)T(n) \implies \sigma(n, m)$ does have P whp

$$\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$$

- $V = \{1, 2, \dots, n\}$
- *E* = set of inversions

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

$$\pi = 35124786$$

$$\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$$

- $V = \{1, 2, \dots, n\}$
- *E* = set of inversions
- $\circ~$ $\textit{G}_{\pi} = \text{permutation graph or inversion graph}$

$$\pi = 35124786$$

3

$$\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$$

- $V = \{1, 2, \dots, n\}$
- *E* = set of inversions
- $\circ~$ $\textit{G}_{\pi} = \text{permutation graph or inversion graph}$

$$\pi = 35124786$$

3

$$\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$$

- $V = \{1, 2, \dots, n\}$
- *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

$$\pi = 35124786$$

$$\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$$

- $V = \{1, 2, \dots, n\}$
- *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

Example

$$\pi = 35124786$$

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - E = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - *E* = set of inversions
- \circ $G_{\pi}=$ permutation graph or inversion graph

- $\circ \ \pi = a_1 a_2 \dots a_n \longrightarrow G_{\pi}(V, E)$
 - $V = \{1, 2, \dots, n\}$
 - *E* = set of inversions
- $\circ~$ $\textit{G}_{\pi} = \text{permutation graph or inversion graph}$

Simple Facts

 \blacktriangleright π indecomposable \iff G_{π} connected

Simple Facts

- \blacktriangleright π indecomposable \iff G_{π} connected
- ▶ Vertex set of a connected component of G_{π} consists of consecutive integers

Simple Facts

- \blacktriangleright π indecomposable \iff G_{π} connected
- ▶ Vertex set of a connected component of G_{π} consists of consecutive integers
- ▶ (Comtet) If σ is chosen u.a.r. from S_n , then

$$Pr[\sigma \text{ is indecomposable}] = 1 - 2/n + O(1/n^2)$$

Connectivity and descent sets

▶ Connectivity set of π

$$C(\pi) = \{i \in [n-1] : a_j < a_k \text{ for all } j \le i < k\}$$
$$C(35124786) = \{5\}$$

Connectivity and descent sets

▶ Connectivity set of π

$$C(\pi) = \{i \in [n-1] : a_j < a_k \text{ for all } j \le i < k\}$$
$$C(35124786) = \{5\}$$

▶ Descent set of π

$$D(\pi) = \{i \in [n-1] : a_i > a_{i+1}\}$$
$$D(35124786) = \{2,7\}$$

Connectivity and descent sets

▶ Connectivity set of π

$$C(\pi) = \{i \in [n-1] : a_j < a_k \text{ for all } j \le i < k\}$$

 $C(35124786) = \{5\}$

▶ Descent set of π

$$D(\pi) = \{i \in [n-1] : a_i > a_{i+1}\}$$
$$D(35124786) = \{2, 7\}$$

Proposition (Stanley)

Given
$$I \subseteq [n-1]$$
,

$$|\{\omega \in S_n : I \subseteq C(\omega)\}| \cdot |\{\omega \in S_n : I \supseteq D(\omega)\}| = n!$$

Permutations with given number of cycles

- $\pi(n,m)=$ permutation chosen u.a.r from all permutations of $\{1,\ldots,n\}$ with m cycles
- $p(n, m) = Pr[\pi(n, m) \text{ is connected}]$

Theorem (R. Cori, C. Matthieu, and J.M. Robson - 2012)

- (i) p(n, m) is decreasing in m
- (ii) $p(n,m) \rightarrow f(c)$ as $n \rightarrow \infty$ and $m/n \rightarrow c$

Erdős-Rényi Graphs

- o G(n, m): Uniform over all graphs on [n] with exactly m edges
 - ▶ Connectedness probability of G(n, m) increases with m
 - ▶ Sharp threshold: $n \log n/2$

Erdős-Rényi Graphs

- o G(n, m): Uniform over all graphs on [n] with exactly m edges
 - ▶ Connectedness probability of G(n, m) increases with m
 - ▶ Sharp threshold: $n \log n/2$
- o Graph Process \widetilde{G}_n
 - Start with n isolated vertices
 - Add an edge chosen u.a.r. at each step
 - ightharpoonup G(n,m) is the snapshot at the m-th step of the process
 - $G(n,m) \subset G(n,m+1)$

Erdős-Rényi Graph G(n, m)

$$0 \qquad n^{\frac{k-2}{k-1}} \qquad n/2 \qquad n \log n/2 \qquad n^{4/3} \qquad {n \choose 2}$$

- ▶ $n^{(k-2)/(k-1)}$: components of size k
- ightharpoonup n/2: giant component
- \triangleright $n \log n/2$: connectedness
- $n^{4/3}$: 4-clique

Question: Is there a similar process for $\sigma(n,m)$ (or $G_{\sigma(n,m)}$) such that

- 1. Uniform distribution is achieved after each step
- 2. Existing inversions (edges of $G_{\sigma(n,m)}$) are preserved

Question: Is there a similar process for $\sigma(n,m)$ (or $G_{\sigma(n,m)}$) such that

- 1. Uniform distribution is achieved after each step
- 2. Existing inversions (edges of $G_{\sigma(n,m)}$) are preserved

Answer: NO

- Preserves the existing inversions (edges in the permutation)
- No uniformity

Question: Is there a process for $G_{\sigma(n,m)}$ (or $\sigma(n,m)$) such that

- 1. Uniform distribution is achieved after each step
- 2. Once the graph (permutation) becomes connected, it is connected always

Question: Is there a process for $G_{\sigma(n,m)}$ (or $\sigma(n,m)$) such that

- 1. Uniform distribution is achieved after each step
- 2. Once the graph (permutation) becomes connected, it is connected always

Answer: YES

Inversion Sequences

• Inversion sequence of $\pi = a_1 a_2 \dots a_n$ is (x_1, \dots, x_n)

$$x_j = \#\{i : i < j \text{ and } a_i > a_j\}$$

- $0 ≤ x_j ≤ j 1$
- ∘ permutations of [n] \leftrightarrow $(x_1, ..., x_n)$ where $0 \le x_i \le i 1$

Example

- $(x_1, x_2, x_3, x_4, x_5) = (0, 1, 0, 3, 3)$
- $\pi = 4, 3, 5, 1, 2$

Increase one of the components in the inversion sequence by 1

- Not all the inversions are protected
- Once the permutation becomes connected, it continues to be connected

Example (n=4)

Increase one of the components in the inversion sequence by 1

- Not all the inversions are protected
- Once the permutation becomes connected, it continues to be connected

Increase one of the components in the inversion sequence by 1

- Not all the inversions are protected
- Once the permutation becomes connected, it continues to be connected

Increase one of the components in the inversion sequence by 1

- Not all the inversions are protected
- Once the permutation becomes connected, it continues to be connected

Inv. Sequence Permutation Graph

0000 1234

Inv. Sequence	Permutation	Graph
0000	1004	1 4
0000	1234	2 3
0010	1324	1 4
		2 — 3

Inv. Sequence	Permutation	Graph
0000	1234	1 4
0010	1324	1 4
0011	1423	1 4

Inv. Sequence	Permutation	Graph
0000	1234	1 4
0010	1324	1 4
0011	1423	1 4
0021	2413	1 — 4

Inv. Sequence	Permutation	Graph
0021	2413	1 — 4
0022	3412	1 4

Inv. Sequence	Permutation	Graph
0021	2413	1 4
0022	3412	1 4
0122	4312	1 4

Inv. Sequence	Permutation	Graph
0021	2413	1 4
0022	3412	2 3
0122	4312	1 4
0123	4321	1 4

f(n, k) = number of permutations of [n] with k inversions

1. number of integer solutions of

$$x_1 + \cdots + x_n = k$$
, $0 \le x_i \le i - 1$

f(n, k) = number of permutations of [n] with k inversions

1. number of integer solutions of

$$x_1 + \cdots + x_n = k$$
, $0 \le x_i \le i - 1$

- 2. k balls are placed into n boxes
 - box i has capacity i-1

f(n, k) = number of permutations of [n] with k inversions

1. number of integer solutions of

$$x_1 + \cdots + x_n = k$$
, $0 \le x_i \le i - 1$

- 2. k balls are placed into n boxes
 - box i has capacity i-1

$$f(n,k) = [z^k] \prod_{j=0}^{n-1} (1+z+\cdots+z^j)$$
$$= [z^k] (1-z)^{-n} \prod_{j=1}^{n} (1-z^j)$$

The Process

- ► Start with (0,0,...,0)
- ▶ Each time increase exactly one of the components by 1
- ▶ $\mathbf{X}(k) = (X_1(k), \dots, X_n(k))$ after step k is uniformly distributed

The Process

- ► Start with (0,0,...,0)
- ▶ Each time increase exactly one of the components by 1
- ▶ $\mathbf{X}(k) = (X_1(k), \dots, X_n(k))$ after step k is uniformly distributed

Example

$$\begin{array}{c} (0,0,0,0) \longrightarrow (0,0,1,0) \longrightarrow (0,0,1,1) \longrightarrow (0,0,2,1) \longrightarrow \\ (0,0,2,2) \longrightarrow (0,1,2,2) \longrightarrow (0,1,2,3) \end{array}$$

Goal: Finding $\mathbf{p}(\mathbf{X}(k))$, a (conditional) probability distribution for the (k+1)st addition OR

Goal: Finding $\mathbf{p}(\mathbf{X}(k))$, a (conditional) probability distribution for the (k+1)st addition OR

Transition matrix $\rho_{n,k}$

- $f(n,k) \times f(n,k+1)$ matrix
- rows are indexed by inversion sequences with sum k
- columns are indexed by inversion sequences with sum k+1

Example (n=3)

$$f(3,0) = 1$$
, $f(3,1) = 2$, $s(3,2) = 2$, and $s(3,3) = 1$.

$$\rho_{3,0} = 000 \begin{bmatrix} 010 & 001 \\ 01/2 & 1/2 \end{bmatrix}$$

$$\rho_{3,1} = 010 \begin{bmatrix} 1 & 0 \\ 001 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rho_{3,2} = 011 \begin{bmatrix} 1 \\ 002 \end{bmatrix}$$

Theorem

Transition matrices exist for all n and for all possible values of m.

Theorem

Transition matrices exist for all n and for all possible values of m.

Sketch Proof

- ▶ Induction on n
- Order the sequences with reverse lexicographic order

	$y_n = 0$	$y_n = 1$	$y_n = 2$		$y_n = n - 2$	$y_n = n-1$
$x_n = 0$	$\rho'_{n-1,m}$	β_1 /				
$x_n = 1$		$\rho'_{n-1,m-1}$	$\beta_2 I$			
$x_n = 2$			$\rho'_{n-1,m-2}$	•••		
:				٠.	٠.	
$x_n = n-2$					$\rho'_{n-1,m-n+2}$	$\beta_{n-1}I$
$x_n = n-1$						$\rho'_{n-1,m-n+1}$

- $\rho'(n-1, m-j) = (1-\beta_{j+1})\rho_{n-1, m-j}$
- ▶ Find constants $\beta_1, \ldots, \beta_{n-1}$ such that all the column sums are equal to f(n, m)/f(n, m+1)

	0120	0111	0021	0102	0012	0003
0110	$1-\beta_1$	β_1	0	0	0	0
0020	$1-\beta_1$	0	eta_{1}	0	0	0
0101	0	$1-\beta_2$	0	β_2	0	0
0011	0	0	$1-eta_2$	0	β_2	0
0002	0	0	0	$\frac{1-\beta_3}{2}$	$\frac{1-\beta_3}{2}$	β_3

• column sums must be 5/6

	0120	0111	0021	0102	0012	0003
0110	$1-\beta_1$	β_1	0	0	0	0
0020	$1-\beta_1$	0	eta_1	0	0	0
0101	0	$1-\beta_2$	0	β_2	0	0
0011	0	0	$1-eta_2$	0	β_2	0
0002	0	0	0	$\frac{1-\beta_3}{2}$	$\frac{1-\beta_3}{2}$	β_3

\bullet column sums must be 5/6

	0120	0111	0021	0102	0012	0003
0110	5/12	7/12	0	0	0	0
0020	5/12	0	7/12	0	0	0
0101	0	3/12	0	9/12	0	0
0011	0	0	3/12	0	9/12	0
0002	0	0	0	1/12	1/12	10/12

Definition

An index t ($t \ge 1$) is a decomposition point if (X_{t+1}, \ldots, X_n) is an inversion sequence, i.e., if

$$X_{t+1} \le 0$$
, $X_{t+2} \le 1$, ... $X_n \le n - t - 1$

Definition

An index t ($t \ge 1$) is a decomposition point if (X_{t+1}, \ldots, X_n) is an inversion sequence, i.e., if

$$X_{t+1} \leq 0$$
, $X_{t+2} \leq 1$, ... $X_n \leq n - t - 1$

number of components = number of decomposition points +1

Definition

An index t ($t \ge 1$) is a decomposition point if (X_{t+1}, \ldots, X_n) is an inversion sequence, i.e., if

$$X_{t+1} \le 0, \quad X_{t+2} \le 1, \quad \dots \quad X_n \le n-t-1$$

number of components = number of decomposition points +1

Corollary

 $Pr[\sigma(n, m) \text{ is indecomposable}] \text{ is non-decreasing in } m$

$$C(\sigma) := \text{number of components in } G_{\sigma(n,m)}$$

Theorem

lf

(i)
$$m = \frac{6n}{\pi^2} \left[\log(n) + 0.5 \log \log(n) + \log(12/\pi) - 12/\pi^2 + x_n \right]$$

(ii)
$$x_n = o(\log \log \log n)$$

then

$$d_{TV}[C(\sigma)-1, Poisson(e^{-x_n})] \le (\log n)^{-1+\epsilon}$$
 for any $\epsilon > 0$.

$$C(\sigma) :=$$
 number of components in $G_{\sigma(n,m)}$

Theorem

lf

(i)
$$m = \frac{6n}{\pi^2} \left[\log(n) + 0.5 \log \log(n) + \log(12/\pi) - 12/\pi^2 + x_n \right]$$

(ii)
$$x_n = o(\log \log \log n)$$

then

$$d_{TV}[C(\sigma)-1, Poisson(e^{-x_n})] \le (\log n)^{-1+\epsilon}$$
 for any $\epsilon > 0$.

Remarks

- 1. If $x_n \to c$, then $C(\sigma) 1 \xrightarrow{d} Poisson(e^{-c})$
- 2. $T(n) = \frac{6n}{\pi^2} [\log n + 0.5 \log \log n]$ is a sharp threshold for connectedness of $G_{\sigma(n,m)}$

Idea of the Proof for $x_n \to c$

1. Need D_n , the number of decomposition points

Idea of the Proof for $x_n \to c$

- 1. Need D_n , the number of decomposition points
 - $\nu = 2m \log n/n$
 - Mark t if $(X_{t+1}, \ldots, X_{t+\nu})$ is an inversion sequence
 - M_n = number of marked points

Idea of the Proof for $x_n \to c$

- 1. Need D_n , the number of decomposition points
 - $\nu = 2m \log n/n$
 - Mark t if $(X_{t+1}, \ldots, X_{t+\nu})$ is an inversion sequence
 - M_n = number of marked points
- 2. Whp $M_n = D_n$ as $n \to \infty$
- 3. $Pr[t \text{ is marked}] \sim e^{-c}/n$
- 4. $E_k = E\left[\binom{M_n}{k}\right] \to \frac{(e^{-c})^k}{k!}$
- 5. $M_n o \mathsf{Poisson}(e^{-c})$ in distribution

- L_{\min} = size of the smallest component
- $L_{\text{max}} = \text{size of the largest block (component)}$

Theorem

lf

o
$$m = \frac{6n}{\pi^2} \left[\log(n) + 0.5 \log \log(n) + \log(12/\pi) - 12/\pi^2 - x_n \right]$$

$$\circ x_n = o(\log\log\log n) \text{ and } x_n \to \infty$$

then

- 1. $\lim_{n\to\infty} Pr[L_{min} \ge ne^{-2x_n}y] = e^{-y}$, for any constant $y \ge 0$
- 2. $\lim_{n\to\infty} P[L_{max} \le ne^{-x_n}(x_n+z)] = e^{-e^{-z}}$, for constant $z \ge 0$

Note: Expected number of decomposition points $\sim e^{x_n}$

Remark

Divide the interval [0,1] into k intervals with k-1 randomly chosen points.

 $L_{min}, L_{max} = \text{smallest}$ and largest intervals, respectively

- $Pr[L_{min} \ge y/k^2] \to e^{-y}$ as $k \to \infty$
- $Pr[L_{max} \leq \frac{\log k + z}{k}] \rightarrow e^{-e^{-z}}$ as $k \rightarrow \infty$

Question: Conditioned on {the number of blocks in $\sigma(n, m) = k$ }, do we have

$$(L_1/n,\ldots,L_k/n) o (\eta_1,\ldots,\eta_k)$$
 as $n o \infty$

where

- L_i = size of the j^{th} block in $\sigma(n, m)$
- $\eta_j = \text{size of the } j^{\text{th}} \text{ interval in } [0,1]$?

Chord Diagrams and Intersection Graphs

Chord Diagram matching of 2*n* points

Intersection Graph

V =chords, E =crossings

Number of chord diagrams:

$$(2n-1)!! = (2n-1)(2n-3)\cdots(3)\cdot(1)$$

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

- ▶ Relabel the points on the lower semicircle
- Draw the chords from the upper semicircle to the lower semicircle

Permutation = 254136

pointed hypermaps \leftrightarrow indecomposable permutations

Definition

A labeled pointed hypermap on [n] is a triple $(\sigma, \theta, r) \in S_n \times S_n \times [n]$ such that $< \sigma, \theta >$ acts transitively on [n].

Example

$$\sigma = (abel)(cdk)(fgi)(hjm)$$

$$\theta = (adf)(bjc)(egh)(ilkm)$$

$$r = m$$

THANK YOU!