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Notation and Definitions

» S, is the set of permutations of {1,...,n}

> T =aiax...an

v

(ai,a;) is called an inversion if i < j and a; > a;
LA 20

v

7 is called indecomposable (or connected) if there is no k < n
such that {a1,...,ac} ={1,... k}

Otherwise it is decomposable

43127586 is decomposable; 43172586 is indecomposable

v

C, = number of indecomposable permutations of length n
(Sloane, sequence A003319)

n—1
Co=nl=) GCc-(n—i)
k=1
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Problem

» o(n, m) = permutation chosen u.a.r. from all permutations

with n vertices and m inversions

Questions

e How does the connectedness probability of o(n, m) change as

m increases?
e Is there a (sharp) threshold for connectedness?
Definition
T(n) is a sharp threshold for the property P if for any fixed € > 0
e m<(1—¢)T(n) = o(n, m) does not have P whp

e m>(1+¢)T(n) = o(n, m) does have P whp
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Permutation Graphs

om=aa...ap — G (V,E)
e V={1,2,...,n}
e E — set of inversions

o Gr = permutation graph or inversion graph

Example m = 35124786

VAN




Simple Facts

» 7 indecomposable <= G, connected



Simple Facts

» 7 indecomposable <= G, connected

» Vertex set of a connected component of G, consists of

consecutive integers



Simple Facts

» 7 indecomposable <= G, connected

» Vertex set of a connected component of G, consists of

consecutive integers

» (Comtet) If o is chosen u.a.r. from S, then

Pr[o is indecomposable] = 1 —2/n + O(1/n?)
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Connectivity and descent sets
» Connectivity set of 7

C(r)={ie[n—1]:a; < a forall j <i< k}
C(35124786) = {5}

» Descent set of 7

D(r)y={ie[n—1]:a; > aj+1}
D(35124786) = {2,7}

Proposition (Stanley)
Given | C [n—1],

{w € Sp: 1 C Cw)} [{w e Sy: 12 Dw)} = n!



Permutations with given number of cycles

o m(n, m) = permutation chosen u.a.r from all permutations of

{1,...,n} with m cycles

o p(n,m) = Pr[r(n, m) is connected|
Theorem (R. Cori, C. Matthieu, and J.M. Robson - 2012)

(i) p(n, m) is decreasing in m

(i) p(n,m) — f(c) asn— oo and m/n — ¢
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o G(n, m) : Uniform over all graphs on [n] with exactly m edges

» Connectedness probability of G(n, m) increases with m
» Sharp threshold: nlogn/2



Erdés-Rényi Graphs

o G(n, m) : Uniform over all graphs on [n] with exactly m edges

» Connectedness probability of G(n, m) increases with m
» Sharp threshold: nlogn/2

o Graph Process &,,

» Start with n isolated vertices
» Add an edge chosen u.a.r. at each step

» G(n, m) is the snapshot at the m-th step of the process
» G(n,m)C G(n,m+1)



Erdés-Rényi Graph G(n, m)

0 = n/2 nlogn/2

4/3

(o) { o)
AY 7

» n(k=2)/(k=1): components of size k
» n/2: giant component
» nlogn/2: connectedness

» n*/3: 4-clique

-+



Question: Is there a similar process for o(n, m) (or G,(, m)) such
that

1. Uniform distribution is achieved after each step

2. Existing inversions (edges of Gg(n’m)) are preserved



Question: Is there a similar process for o(n, m) (or G,(, m)) such
that

1. Uniform distribution is achieved after each step

2. Existing inversions (edges of Gg(n’m)) are preserved

Answer: NO
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Evolution of a Permutation: Model 1

» Swap neighbors if they are in the correct order

Example (n=4)

(2314) (2143) (3124)(1342) (2143)  (1423)

e Preserves the existing inversions (edges in the permutation)

e No uniformity



Question: Is there a process for G, (p m) (or o(n, m)) such that
1. Uniform distribution is achieved after each step

2. Once the graph (permutation) becomes connected, it is

connected always



Question: Is there a process for G, (p m) (or o(n, m)) such that
1. Uniform distribution is achieved after each step

2. Once the graph (permutation) becomes connected, it is

connected always

Answer: YES



Inversion Sequences

o Inversion sequence of T = a1a2...ap is (X1,...,Xn)
xj=#{i:i<jand a; > a;}
o0 Xj <j-1
o permutations of [n] <> (x1,...,xn) where 0 < x; < —1
Example

L4 (X17X27X3aX47X5) = (0> 1’07373)
e m=4,3512



Evolution of a Permutation: Model 2
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e Not all the inversions are protected

e Once the permutation becomes connected, it continues to be

connected

Example (n=4)



Evolution of a Permutation: Model 2

Increase one of the components in the inversion sequence by 1
e Not all the inversions are protected

e Once the permutation becomes connected, it continues to be

connected

Example (n=4)



Evolution of a Permutation: Model 2

Increase one of the components in the inversion sequence by 1
e Not all the inversions are protected

e Once the permutation becomes connected, it continues to be

connected

Example (n=4)




Evolution of a Permutation: Model 2

Increase one of the components in the inversion sequence by 1
e Not all the inversions are protected

e Once the permutation becomes connected, it continues to be

connected

Example (n=4)

0020 (0011) (0101) (0011) (0002)
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0000 1234
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Permutation
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1324
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Inv. Sequence

0000

0010

0011

0021

Permutation

1234

1324

1423

2413

Graph
1 4
2 3
1 4
2—3
1 4
e
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Inv. Sequence

0021

0022

Permutation Graph

1
2413 |
2

3412 1;<
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Inv. Sequence

0021

0022

0122

0123

Permutation

2413

3412

4312

4321

Graph
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f(n, k) = number of permutations of [n] with k inversions

1. number of integer solutions of

Xttt xp=k, 0<x<i—1

2. k balls are placed into n boxes

e box / has capacity i — 1

n—1

f(n, k) =[ZT[J0+z+ -+ 2)
j=0

= [0 -2 [Ja-2)

Jj=1



The Process

» Start with (0,0,...,0)
» Each time increase exactly one of the components by 1

» X(k) = (X1(k),...,Xn(k)) after step k is uniformly
distributed



The Process

» Start with (0,0,...,0)
» Each time increase exactly one of the components by 1

» X(k) = (X1(k),...,Xn(k)) after step k is uniformly
distributed

Example
(0,0,0,0) — (0,0,1,0) — (0,0,1,1) — (0,0,2,1) —
(0,0,2,2) —» (0,1,2,2) —» (0,1,2,3)



Goal: Finding p(X(k)), a (conditional) probability distribution for
the (k + 1)st addition OR



Goal: Finding p(X(k)), a (conditional) probability distribution for
the (k + 1)st addition OR
Transition matrix p, «

e f(n, k) x f(n, k + 1) matrix

e rows are indexed by inversion sequences with sum k

e columns are indexed by inversion sequences with sum k + 1



Example (n=3)
£(3,0) =1, f(3,1) = 2, 5(3,2) = 2, and 5(3,3) = 1.

010 o001 000
P30 = 000[1/2 1/2} y/ \%
011 002 010 001
, 010[ 1 0 ] \ / \
3,1 =
001 O 1 011 002

1 1
012 \ /
012

o1
ps.2 002| 1



Theorem

Transition matrices exist for all n and for all possible values of m.



Theorem

Transition matrices exist for all n and for all possible values of m.
Sketch Proof
> Induction on n

» Order the sequences with reverse lexicographic order

Yn=0 Yn=1 Yn =2 Yan=n—=2 y,=n—1
xn =10 /)In—l,m Bl
Xa =1 Prt1,m—1 pal
Xy =2 ﬂln—l,m—Z
Xp=n—2 p;—l,m—n+2 Bn-1l
Xp=n—1 p’n—l,m7n+1

> p(n=1,m—j)=(1-Bjt1)pn-1,m—j
» Find constants 1, ..., By—1 such that all the column sums are
equal to f(n,m)/f(n,m+ 1)



0120 0111 0021 0102 0012 0003

0110 | 1 — 1 51 0 0 0 0
0020 | 1 —f1 0 51 0 0 0
0101 0 1-5 0 B2 0 0
0011 0 0 1-755 0 57 0
0002 | O 0 0 |5 LAl s

e column sums must be 5/6



0110
0020
0101
0011
0002

0110
0020
0101
0011
0002

0120 0111 0021 0102 0012 0003
1=p1| 5h 0 0 0 0
1-751 0 b1 0 0 0
0 1-75 0 B2 0 0
0 0 1-51] O B2 0
0 0 0 [ LA g
e column sums must be 5/6
0120 0111 0021 0102 0012 0003
5/12 | 7/12 0 0 0 0
5/12| 0 7/12| 0 0 0
0 [3/12 0 [9/12 0 0
0 0 3/12| 0 9/12 0
0 0 0 |1/12 1/12]10/12
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Definition
An index t (t > 1) is a decomposition point if (X¢t1,...,X,) is an

inversion sequence, i.e., if

X1 <0, Xey2 <1, ... X, <n—-t-1

e number of components = number of decomposition points +1

Corollary

Pr[o(n, m) is indecomposable| is non-decreasing in m



C(o) := number of components in G,(, m)

Theorem
If

(i) m= %’2’ [log(n) + 0.5 log log(n) + log(12/7) — 12/ + xy|
(ii) x, = o(loglog log n)

then
drv[C(c) — 1, Poisson(e™")] < (log n) ™1+ for any e > 0.



C(o) := number of components in G,(, m)

Theorem
If

(i) m= %’2’ [log(n) + 0.5 log log(n) + log(12/7) — 12/ + xy|
(ii) x, = o(loglog log n)
then
drv[C(c) — 1, Poisson(e™")] < (log n) ™1+ for any e > 0.

Remarks

1. If x, = ¢, then C(0) — 1 LN Poisson(e™ )
2. T(n)= %’2’ [log n + 0.5log log n] is a sharp threshold for

connectedness of G, (,,m)



Idea of the Proof for x, — ¢

1. Need D,,, the number of decomposition points
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Idea of the Proof for x, — ¢

1. Need D,,, the number of decomposition points

e v =2mlogn/n
e Mark t if (Xi11,...,Xt4,) is an inversion sequence
e M, = number of marked points

Whp M, = D,, as n — o0

Pr[t is marked] ~ e~ ¢/n
—c)k

Ex=E [(AZ")} - (ek!)

M,, — Poisson(e™¢) in distribution

o s~ LN



® Lin = size of the smallest component

o Ly = size of the largest block (component)

Theorem
If

om= %’2"' [log(n) + 0.5 log log(n) + log(12/7) — 12/m% — xy|
o xp = o(logloglog n) and x, — oo

then
1. limp o0 Pr[Lmin > ne=2ny] = e™Y, for any constant y > 0

2. im0 P[Lmax < ne™(x, + z)] = e~¢ ", for constant z > 0

Note: Expected number of decomposition points ~ e*



Remark
Divide the interval [0, 1] into k intervals with kK — 1 randomly

chosen points.
L miny Lmax = smallest and largest intervals, respectively
o Pr[Lmin > y/k? — e as k — oo

o Pr[Lmax < %] —e ¢ ask o o0



Question: Conditioned on {the number of blocks in o(n, m) = k},

do we have
(Ll/n,...,Lk/n) — (’I]l,...,T]k) as n — oo
where

e L; = size of the j*" block in o(n, m)

e 1) = size of the j™ interval in [0,1]?



Chord Diagrams and Intersection Graphs

Chord Diagram Intersection Graph
matching of 2n points V = chords, E = crossings

(1,9) ——— (511)

7

(2.12) (6.7)

(3,8) ———  (4,10)

» Number of chord diagrams:
2n—1)=(2n-1)2n-=3)---(3)- (1)



Permutations as Chord Diagrams

» Relabel the points on the lower semicircle

» Draw the chords from the upper semicircle to the lower

semicircle
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Permutations as Chord Diagrams

» Relabel the points on the lower semicircle

» Draw the chords from the upper semicircle to the lower

semicircle

Permutation= 254136



pointed hypermaps <> indecomposable permutations

Definition
A labeled pointed hypermap on [n] is a triple
(0,0,r) € Sp x S, % [n] such that < 0,6 > acts transitively on [n].

Example

o = (abel)(cdk)(fgi)(hjm)

0 = (adf)(bjc)(egh)(ilkm)  j




THANK YOU!



