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Counting problems and Statistical Mechanics

SM studies the properties emerging in very large systems
The possible emerging behaviour are often due to the competing
effects of energy and entropy

energy is a physical problem
(what interaction is this energy due to?)

entropy is a combinatorial problem
(how many possible configurations are there?)
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Fundamental concepts

In SM one has a “model” defined on some graph (regular or not).

A model is made out of two elements:
A configuration space C
A function associating to each configuration a discrete energy E .

The statistical weight of a configuration is e−E (Gibbs weight)

Some configurations can be very rare but still dominat if their
energy is small
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All the properties of a system are deduced from the partition function:

Z =
∑
C

e−E

which can be thought as an energy generating function

Computing the partition function is usually out of reach both
analytically and numerically (only small systems are tractable)
A better algorithm can reach larger sizes and consequently shed
more light on the phenomena relevant at infinite size
The transfer-matrix is a simple but efficient method to compute
exactly partition functions for finite systems
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The Potts model as a spin model

Given a graph G = (V ,E), we consider the set of colorings:

σ : V −→ [1,Q] Q ∈ N (colors)

each of them are assigned an energy

H(σ) = −K
∑
(ij)∈E

δ(σi , σj) K ∈ R (coupling)

so the partition function is given by

ZG(Q,K ) =
∑
σ

e−H(σ) =
∑
σ

∏
(ij)∈E

eK δ(σi ,σj )
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The Potts model as a cluster model

We defined the model in terms of spins, but the same model can be
view as a geometrical model

Fortuin-Kasteleyin representation

Rewriting eK δ(σi ,σj ) = 1 + v δ(σi , σj), we have

ZG(Q, v) =
∑
A⊆E

v |A|Qk(A)

“Objects” carrying enery are no longer localised but extended
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Tutte polynomial

ZG(Q, v) is equivalent to the Tutte polynomial

TG(x , y) =
∑
A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

∝ ZG((x − 1)(y − 1), y − 1)

where r(A) = |V | − k(A) is the rank of subgraph A.
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Counting proper colorings

In the limit K →∞ (or v = −1) non proper colorings get weight zero
and proper Q-colourings contribute with weight one.

Chromatic polynomial

χG(Q) = ZG(Q, v = −1) =
∑
A⊆E

(−1)|A|Qk(A)
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Complexity classes for counting problems

#P is the class of enumeration problems in which structures being
counter are recognisable in polynomial time.

A ∈ #P-complete if ∀B ∈ #P then B ≤P A

A ∈ #P-hard if ∃B ∈ #P-complete s.t. B ≤P A

Jaeger et al, 1990

Computing ZG(Q, v) is #P-hard except few exceptional points in the
(Q, v) plane.
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In practice ...

The previously best known algorithm is due to Haggard, Pearce
and Royle (2008)
It uses an optimized deletion/contraction recursion

ZG(Q, v) = ZG \e(Q, v) + v ZG/e(Q, v)

where G \e is the graph obtained by deleting the edge e
and G/e is the graph obtained by contracting e.

It runs in exponential time and takes ∼ 10s to deal with a planar
graph of 40 vertices
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Basic ideas

ZG(Q, v) =
∑
A⊆E

v |A|Qk(A)

The sum is constructed iteratively by the action of linear operators.
These operators act on “states”, properly weighted
super-imposition of partially built configurations.
When all possible configurations of a part of G have been
elaborated, we forget their state and re-sum all the information
into the weights.
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Definitions for the Potts model

ZG(Q, v) =
∑
A⊆E

v |A|Qk(A)

To keep track of k the state will be linear combinations of vertex
partitions (non-crossing if G is planar)

α
∣∣

1 2 3 4

〉
+ β

∣∣
1 2 3 4

〉
+ γ

∣∣
1 2 3 4

〉
The number of partitions is the Catalan number CN =

1
N + 1

(
2N
N

)
∼ 4N

N3/2π
if planar and the Bell number BN otherwise.
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We will act on these states with the operators:

Jij
∣∣

i j

〉
=
∣∣

i j

〉
Di
∣∣

i
· · ·
〉
= Q

∣∣ · · · 〉
Jij
∣∣

i j

〉
=
∣∣

i j

〉
Di
∣∣

i j
· · ·
〉
=
∣∣

j
· · ·
〉

If G has a layer structure then∣∣s′〉 = T
∣∣s〉 where

1 2 3 4

1′ 2′ 3′ 4′

∣∣s〉
∣∣s′〉

T =
∏

i

Di(1 + v Ji,i ′)(1 + v Ji,i+1)
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The same procedure can be implemented for general graphs.

We fix the order in which process vertices
To process a vertex i we first process all its incident edges and
then we delete it with Di .
To process an edge (ij) we act with (1 + v Jij)

New vertices are inserted into partitions as needed

Di
∏
j∼i

(1 + v Jij)
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Example

∣∣s′〉 = D1 (1 + vJ12) (1 + vJ13)
∣∣

1 2 3

〉
= (Q + 2v)

∣∣
2 3

〉
+ v2∣∣

2 3

〉
∣∣s′′〉 = D2 (1 + vJ24)

∣∣s′
4

〉
= (. . . )

∣∣
3 4

〉
+ (. . . )

∣∣
3 4

〉
∣∣s′′′〉 = . . .
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Time decomposition

1

2

3

4
5

6
7

8
9

The ordering defines a “time decomposition” in
slices we call bags
Time and memory requirements scale
exponentially with the maximum bag size k .
It happens to be a particular case of a more
general construction

1 2 3

2 3 4

3 4 5 6

4 5 6 8

5 6 7 8 9

6 7 8 9

7 8 9
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Tree decomposition

1

2

3

4
5

6
7

8
9

5 8 9

4 5 8

3 4 5

2 3 4

1 2 3

3 5 6

5 6 7

It is a collections of bags organised in a tree.
∀i ∈ V , there exists a bag containing i
∀(ij) ∈ E , there exists a bag containing both i and j
∀i ∈ V , the set of bags containing i is connected in the tree
The treewidth k is the maximum bag size.
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Tree decomposition

1

2

3

4
5

6
7

8
9

5 8 9

4 5 8

3 4 5

2 3 4

1 2 3

3 5 6

5 6 7

Tree decomposition can have smaller bags
therefore an exponentially smaller state space (Ck )
Finding an optimal tree decompositions is NP-hard
Heuristic algorithms give reasonably good decompositions in
linear time

Bedini, Jacobsen (MASCOS and LPTENS) A tree-decomposed transfer matrix Monash 23/3/2011 23 / 32



Introduction Potts model and vertex colourings The transfer matrix Example Tree-decomposition Application

The fusion procedure

When a bag has several children, we need to “fuse” different timelines.
Given two partitions

∣∣P1
〉

and
∣∣P2
〉
, we define∣∣P1

〉
⊗
∣∣P2
〉
=
∣∣P1 ∨ P2

〉
Exemple:

∣∣
1 2 3 4

〉
⊗
∣∣

1 2 3 4

〉
=
∣∣

1 2 3 4

〉
. . . 2 3 4

∑
i ai
∣∣Pi
〉

. . . 3 5 6
∑

j bj
∣∣Qj
〉

∑
ij aibj

∣∣Pi
〉
⊗
∣∣Qj
〉

3 4 5 . . .

This is a quadratic operation requiring time ∼ O(C2
k )
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Complexity

The planar separator theorem gives an upper bound on treewidth
k of a planar graph:

k < α
√

N (α < 3.182)

The algorithm requires time O(C2
k ) ' 16k

This implies a sub-exponential upper bound for the running time

t < 163.182
√

N = e8.222
√

N

It’s the natural generalization of the traditional TM whose
requirements scale as CL, where the side L '

√
N
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Performances

4 5 6 7 8 9 10√
N

10-3

10-2

10-1

100

101

102
a
v
e
ra

g
e
 r

u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

t̄tuttepoly'e0.245N

t̄tree ' e1.842
√
N

t̄tree+pruning ' e1.516
√
N

on an uniform sample of planar graphs
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Chromatic roots – regular lattice

Regular lattices have chromatic roots close to the Beraha
numbers Bk = 4 cos2(π/k) up to a lattice specific limit

0 1 2 3 4
Re(Q)

-2

-1

0

1

2
Im

(Q
)

10 x 10
12 x 12
14 x 14
16 x 16
18 x 18

We also know that chromatic roots are dense in C
Little is known about the roots of the typical planar graph
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Chromatic roots – random planar

We sampled 2500 planar graphs with N = 100 and for each of
them we computed the chromatic polynomial and its roots

0 1 2 3 4
Re(Q)

-2

-1

0

1

2

Im
(Q

)

10 x 10
12 x 12
14 x 14
16 x 16
18 x 18

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

3

2

1

0

1

2

3

y

1e-03

1e-02

1e-01

1

10

p
(x
,y

)

Bedini, Jacobsen (MASCOS and LPTENS) A tree-decomposed transfer matrix Monash 23/3/2011 29 / 32



Introduction Potts model and vertex colourings The transfer matrix Example Tree-decomposition Application

Outlook

In progress:
Adapt the same algorithm to different graph models
(hamiltonian walks, longest-path, vertex covering,
maximum-biconnected subgraph, etc)
Better understanding of the scaling of the treewidth and its
heuristic approximations (hint: 〈k〉 scales as N0.3 < N1/2)
Look at other families of planar graphs (2-, 3-connected)

Further reading:
AB, J.L. Jacobsen, J. Phys. A: Math. Theor. 43, 385001, 2010
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