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Problem Statement

Let X be an unknown discrete random variable with
distribution P and taking values in X which is finite or
countable. X could represent an unknown key, IV, or
password for a cryptosystem, or an unknown quantity of
information security value.

To model problems of interest, we assume that the guessor is
not all-powerful and can only ask atomic questions (e.g.,
query keys/passwords) regarding singletons in X . This
corresponds to submitting the password and seeing if the login
is successful or not.

We assume that a sequence of questions of the form
Is X = x?

are posed until the first YES answer determines the value of
the random variable X .



Introduction Guessing, Predictability and Entropy Conclusions

Problem Statement

Let X be an unknown discrete random variable with
distribution P and taking values in X which is finite or
countable. X could represent an unknown key, IV, or
password for a cryptosystem, or an unknown quantity of
information security value.

To model problems of interest, we assume that the guessor is
not all-powerful and can only ask atomic questions (e.g.,
query keys/passwords) regarding singletons in X . This
corresponds to submitting the password and seeing if the login
is successful or not.

We assume that a sequence of questions of the form
Is X = x?

are posed until the first YES answer determines the value of
the random variable X .



Introduction Guessing, Predictability and Entropy Conclusions

Problem Statement

Let X be an unknown discrete random variable with
distribution P and taking values in X which is finite or
countable. X could represent an unknown key, IV, or
password for a cryptosystem, or an unknown quantity of
information security value.

To model problems of interest, we assume that the guessor is
not all-powerful and can only ask atomic questions (e.g.,
query keys/passwords) regarding singletons in X . This
corresponds to submitting the password and seeing if the login
is successful or not.

We assume that a sequence of questions of the form
Is X = x?

are posed until the first YES answer determines the value of
the random variable X .



Introduction Guessing, Predictability and Entropy Conclusions

Problem History

The link between guessing and entropy was popularized by
James L. Massey in the early 1990s. If X has high entropy is
it hard to Guess? Is Shannon entropy the right measure?

The problem of bounding the expected number of guesses in
terms of Rényi entropies was investigated by Erdal Arikan in
the context of sequential decoding. Arikan used the Hölder
Inequality to obtain his bound.

John Pliam independently investigated the relationship
between entropy, “guesswork” and security.

Boztaş improved Arikan’s bound and presented other tighter
bounds for specific cases.

The concept of “guessing entropy” has (i) been adopted by
NIST as a measure of password strength; and (ii) also applied
by others to graphical passwords.
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terms of Rényi entropies was investigated by Erdal Arikan in
the context of sequential decoding. Arikan used the Hölder
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Our Contribution

In this talk we first focus on a Single Attacker Guessing an
unknown random variable X .

In this simple form, the problem is easier to state and analyze,
and we revisit proofs of the early results in estimating the
average number of guesses to determine X .

This is the quantity called “guessing entropy” by NIST. A
related quantity defined by Pliam, which specifies the minimal
number of guesses required to succeed with a given probability
in guessing X is also of interest.
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Our Contribution

Consider a single guessor. He can guess X in order of
decreasing probability. Clearly this minimizes the expected
number of guesses. How is this related to the entropy of X ?

It is tempting to have a number of different guessors working
in parallel in trying to determine X , but tricky to make this
practical and scalable if they have to keep track of what each
other is guessing–consider guessors entering and leaving the
group performing the search.

Moreover the computational power of each participant (thus
the rate at which they can implement the guessing
mechanism) can vary a great deal. These factors make the
study of Oblivious Distributed Guessing of interest.
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Definitions

A guessing strategy can be represented by a function
G : X → {1, 2, . . .} where G (k) equals the time index of the
question Is X = k?.

Clearly, G must be invertible on its range {1, 2, . . .} since only
one element may be probed at any given time by a guessor.
Since the answers to the queries Is X = k? are noiseless, it is
enough to ask the above question exactly once for each
k ≥ 1. Hence the mapping G must be one-to-one and onto.

Assuming that the guessor knows P she is interested in
minimizing–an increasing function of–the number of questions
required to determine X . Formally, she wants to minimize a
positive moment E[G ρ] (mostly ρ = 1 is of interest) where

E[G ρ] =
∑
x∈X

P(x)G (x)ρ =
∑
k≥1

kρP(G−1(k)).
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Definitions

The Rényi entropy of order α of X is defined as

Hα(X ) =
log
(∑

X∈Y P(X )α
)

1− α
α ∈ [0, 1) ∪ (1,∞),

and is a generalization of the Shannon entropy

H(X ) = −
∑
X∈X

P(X ) log(P(X ))

and obeys limα→1 Hα(X ) = H(X ) as well as being strictly
decreasing in α unless X is uniform on its support.

Tsallis and other entropies also connected with Rényi entropy.
Most entropies lack one or more of the nice properties of
Shannon entropy, but can be useful in special settings.
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Guessing by one attacker

Guess every value of X one by one in order of decreasing
probability, when the distribution P(x) is known.

Theorem

(Arikan) For all ρ ≥ 0, a guessing algorithm for X obeys the lower
bound

E[G (X )ρ] ≥
[
∑M

k=1 PX (xk)1/(1+ρ)]1+ρ

(1 + ln M)ρ
,

while an optimal guessing algorithm for X satisfies the upper bound

E[G (X )ρ] ≤

[
M∑
k=1

PX (xk)1/(1+ρ)

]1+ρ
.



Introduction Guessing, Predictability and Entropy Conclusions

Guessing by one attacker

Guess every value of X one by one in order of decreasing
probability, when the distribution P(x) is known.

Theorem

(Arikan) For all ρ ≥ 0, a guessing algorithm for X obeys the lower
bound

E[G (X )ρ] ≥
[
∑M

k=1 PX (xk)1/(1+ρ)]1+ρ

(1 + ln M)ρ
,

while an optimal guessing algorithm for X satisfies the upper bound

E[G (X )ρ] ≤

[
M∑
k=1

PX (xk)1/(1+ρ)

]1+ρ
.



Introduction Guessing, Predictability and Entropy Conclusions

Guessing by one attacker

Arikan’s bounds give

[
∑M

k=1

√
PX (xk)]2

(1 + ln M)
≤ E[G (X )]

(a)

≤

[
M∑
k=1

√
PX (xk)

]2

where (a) applies to the optimal guessing sequence.

Boztaş’s improved upper bound gives

E[G (X )] ≤ 1

2

[
M∑
k=1

√
PX (xk)

]2
+

1

2
= 2H1/2(X )−1 +

1

2

for a more general class of guessing sequences. These provide
an operational definition of Rényi entropy of order 1/2.
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Limited Resource Guessing

Consider a set of guessors attacking multiple targets, whose
passwords are assumed to come from the same distribution
P(x).

Given P(x), how should the attacker(s) choose a distribution
Q(x) in order to optimize some performance criterion, when
all the guessor(s) draw random sequential guesses from Q(x)?

In general the guessor(s) should work in parallel,
independently.
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Limited Memory Single Guessor

Consider a single guessor who is memory constrained and
won’t keep track of past guesses, but knows the distribution P
which the opponent uses to draw a single value X from X .

Define G = min{k : Xk = X} as a random variable which
denotes the number of guesses before she is successful in
exposing X . The guessor generates i.i.d. guesses X1,X2, . . . ,
from X according to a distribution Q(x) with the goal of
minimizing E[G ].

Note that G = k with probability∑
x∈X P(x)(1−Q(x))k−1Q(x). where k ≥ 1, by a success-fail

argument. This is because

P(G = k) =
∑
x∈X

P(X = x)P(G = k | X = x)

and we can use the geometric distribution with success
probability Q(x).
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Limited Memory Single Guessor

If we apply Lagrange multipliers with the Lagrangian

J = E[G ] + λ(
∑
x∈X

Q(x)− 1) =
∑
x∈X

P(x)

Q(x)
+ λ(

∑
x∈X

Q(x)− 1),

we can actually show that E[G ] is minimized when we choose

Q(x) ∝
√
P(x)

which means that the distribution Q(x) should be “flatter” than
P(x).

Theorem

The distribution Q which minimizes the expected number of
guesses for single guessor targeting X with distribution P is

Q(x) =

√
P(x)∑

y∈X
√
P(y)
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Limited Memory Single Guessor

Easy to check the Lagrange multipliers give minimum.

Note that if we choose Q(x) = P(x) for all x ∈ X which may
look like an attractive choice, we obtain E[G ] = |X | which is
surprisingly high.

What is the minimum value of the expectation which the
guessor using Proposition 1 achieves? It is

E[G ] =
∑
x∈X

P(x)

Q(x)
=
∑
y∈X

√
P(y)

∑
x∈X

P(x)√
P(x)

=
[∑√

P(x)
]2

= 2H1/2(X )

which provides a new operational definition of Rényi entropy
of order 1/2 relating it exactly to oblivious guessing.
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Power and Memory Constrained Guessor Minimizing
Failure Probability

Now the guesses are still i.i.d. from Q(x) but the guessor
(e.g., a sensor net node) decides ahead of time that she will
only use L ∈ N guesses. We aim to find the Q(x) which
minimizes the failure probability in L guesses, namely

Pfail(L) =
∑
x∈X

P(x)(1−Q(x))L.

This yields the Lagrangian

J = Pfail(L) + λ(
∑
x∈X

Q(x)− 1)

=
∑
x∈X

P(x)(1−Q(x))L + λ(
∑
x∈X

Q(x)− 1).
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Power and Memory Constrained Guessor Minimizing
Failure Probability

The Lagrangian leads to the conditions

∂J

∂Q(x)
= −LP(x)(1−Q(x))L−1 = −λ, ∀x ∈ X

Considering the Lagrangian and observing that L is constant,
we have

Q(x) = 1− (µ/P(x))1/(L−1)

for some positive constant µ = λ/L.

The second derivative is

∂2J

∂Q(x)2
= L(L− 1)P(x)(1−Q(x))L−2

and if we assume the non-degeneracy condition 0 < Q(x) < 1
for all x ∈ X and L > 1 we conclude it is positive.
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Power and Memory Constrained Guessor Minimizing
Failure Probability

Thus we have a minimum for Pfail(L). The normalization condition
can be shown to yield

µ =

(
|X | − 1∑

x∈X P(x)−1/(L−1)

)L−1
,

thus proving:

Theorem

If the attacker is restricted to a fixed number of L ≥ 2 guesses, her
optimal oblivious strategy is to generate L i.i.d. guesses from the
following distribution

Q(x) = 1−

[
|X | − 1∑

y∈X (P(x)/P(y))−1/(L−1)

]
, ∀x ∈ X
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Multiple Memory Constrained Oblivious Guessors

Consider v ≥ 2 guessors working in parallel, each drawing
i.i.d. guesses from Q(x), but not coordinating their guesses. If
they collectively work at a rate v times the rate of the single
guessor, then ⌊

EQ[G ]

v

⌋
≤ EQ[Gv ] ≤

⌈
EQ[G ]

v

⌉
where EQ[Gv ] denotes the expected number of guesses when
v guessors each use Q(x).

How should we optimize Q(x) once v is fixed?

Drop the subscript Q from the expectations and note that

P[Gv = k] = Pr [G ∈ [(k − 1)v + 1, kv ] ∩ Z+].
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We obtain

E[Gv ]=
∑
x∈X

P(x)Q(x)
∞∑
k=0

(1+k)[(1−Q(x))v ]k
v∑

j=1

(1−Q(x))j−1,

or

E[Gv ] =
∑
x∈X

P(x)Q(x)
∞∑
k=0

(1+k)[(1−Q(x))v ]k
[

1− (1−Q(x))v

Q(x)

]
,

Using generation functions yields

E[Gv ] =
∑
x∈X

(
P(x)

1− (1−Q(x))v

)
.

and the Lagrangian is now

Jv = E[Gv ] + λ(
∑
x∈X

Q(x)− 1)
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Differentiation indicates that the optimum distribution Q(x)
satisfies

v(1−Q(x))v−1

(1− (1−Q(x))v )2
∝ 1

P(x)
.

Let R(x) = 1−Q(x) which takes on values in (0, 1) but is
not a probability distribution since

∑
x R(x) = |X | − 1.

Thus we have
(1− R(x)v )2

vR(x)v−1
∝ P(x)

and by considering the function f (u) = (1−uv )2
vuv−1 on (0, 1) and

its derivative

f ′(u) = −(1− uv )[(v + 1)uv + v − 1]

vuv

we conclude that we have a minimum.
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Multiple Memory Constrained Oblivious Guessors

Theorem

v oblivious memory constrained attackers wanting to minimize
E[Gv ] should generate i.i.d. guesses from

Q(x) ∝
[
1− f −1(P(x))

]
.

For a distribution P for which the maximum probability is much
smaller than one, we have

z = f (u) = (1− uv )2/(vuv−1) ≈ (1− 2u)/v

giving f −1(z) ≈ (1− vz)/2 resulting in the fast approximation

Q(x) =
1 + vP(x)∑

y∈X 1 + vP(y)
.



Introduction Guessing, Predictability and Entropy Conclusions

Multiple Memory Constrained Oblivious Guessors

Theorem

v oblivious memory constrained attackers wanting to minimize
E[Gv ] should generate i.i.d. guesses from

Q(x) ∝
[
1− f −1(P(x))

]
.

For a distribution P for which the maximum probability is much
smaller than one, we have

z = f (u) = (1− uv )2/(vuv−1) ≈ (1− 2u)/v

giving f −1(z) ≈ (1− vz)/2 resulting in the fast approximation

Q(x) =
1 + vP(x)∑

y∈X 1 + vP(y)
.



Introduction Guessing, Predictability and Entropy Conclusions

Conclusions

Our results continue work on information theoretic problems
in the context of guessing and prediction–with applications in
the setting of security.

We have provided an alternative but exact operational
definition of Rényi entropy in terms of oblivious guessing.

We have generalized the guessing framework to multiple
guessors, in the regime where communication between
guessors is expensive or undesirable, such as P2P networks

Thank you for listening
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